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ABSTRACT

Context. Average stellar radii in open clusters can be estimated from rotation periods and projected rotational velocities under the
assumption that the spin axis has a random orientation. These estimates are independent of distance, interstellar absorption, and
models, but their validity can be limited by lacking data (truncation) or data that only represent upper or lower limits (censoring).
Aims. We present a new statistical analysis method to estimate average stellar radii in the presence of censoring and truncation.
Methods. We used theoretical distribution functions of the projected stellar radius R sin i to define a likelihood function in the pres-
ence of censoring and truncation. Average stellar radii in magnitude bins were then obtained by a maximum likelihood parametric
estimation procedure.
Results. This method is capable of recovering the average stellar radius within a few percent with as few as about ten measurements.
Here we apply this for the first time to the dataset available for the Pleiades. We find an agreement better than ≈10 percent between
the observed R vs. MK relationship and current standard stellar models for 1.2 ≥ M/M� ≥ 0.85 with no evident bias. Evidence of a
systematic deviation at 2σ level are found for stars with 0.8 ≥ M/M� ≥ 0.6 that approach the slow-rotator sequence. Fast rotators
(P < 2 d) agree with standard models within 15 percent with no systematic deviations in the whole 1.2 ? M/M� ? 0.5 range.
Conclusions. The evidence of a possible radius inflation just below the lower mass limit of the slow-rotator sequence indicates a
possible connection with the transition from the fast- to the slow-rotator sequence.

Key words. stars: rotation – open clusters and associations: general – open clusters and associations: individual: The Pleiades –
stars: fundamental parameters

1. Introduction

The disagreement between theoretical and observed param-
eters of young magnetically active and of fully convective
or almost fully convective low-mass stars remains one of
the main long standing problems in stellar physics. Cur-
rent investigations focus on the inhibition of the convec-
tive transport by interior dynamo-generated magnetic fields
and/or by the blocking of flux at the surface by cool mag-
netic starspots (e.g. Mullan & MacDonald 2001; Chabrier et al.
2007; Feiden & Chaboyer 2013, 2014; Jackson & Jeffries 2014),
which produce an increase in stellar radius and a decrease
in Teff . The same effect is also thought to be linked to
the observed correlation between Li abundance and rotation
(e.g. Somers & Pinsonneault 2014, 2015b,a; Jackson & Jeffries
2014). The consequences of these discrepancies are manifold.
These include, for example, the determination of the mass and
the radius of exoplanets, whose accuracy depends on that of
the hosting star (e.g. Henry 2004; Mann et al. 2015), the age
estimate of young open clusters (e.g. Soderblom et al. 2014;
Somers & Pinsonneault 2015a), and the mass-luminosity rela-
tionship for magnetically active low-mass stars.
? Full Table 1 is only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A63

Fundamental determinations of stellar masses and radii with
a 3 percent accuracy or better are provided by the light-
curve analysis of detached eclipsing binaries (e.g. Torres et al.
2010; Feiden & Chaboyer 2012). Interferometric angular diam-
eter measurements of single stars are available today for tens of
stars (e.g. Boyajian et al. 2012) with diameters measured to bet-
ter than 5 percent.

Statistical methods based on the product of P and v sin i,
which produces the projected radius R sin i (Sect. 3.1), and
the assumption of random orientation of the spin axis (e.g.
Jackson et al. 2009) have the advantage of providing mean radii
estimates for a large number of (coeval) single stars indepen-
dently of distance, interstellar absorption, and models. No evi-
dence of preferred orientation of the spin axis in open clusters
has been found so far (e.g. Jackson & Jeffries 2010, and refer-
ences therein), and therefore the method seems to be sound in
this respect. The main difficulty is that the data sample is al-
ways truncated at a combination of sufficiently low inclination
angle i and low equatorial velocities veq. In these cases, depend-
ing also on the spectral resolution, v sin i cannot be derived and
only an upper limit can be given. A low i may also cause dif-
ficulties in measuring P and therefore there may be cases in
which either one or both v sin i and P cannot be measured. At
the other extreme, ultra-fast rotator spectra can be so smeared by
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the rotational broadening that in some cases only a lower v sin i
limit can be given.

To take a low R sin i truncation into account, Jackson et al.
(2009) considered a cut-off inclination such that stars with lower
inclination yield no R sin i, and they corrected the average sin i
accordingly. Mean radii are then derived by taking the average
of the ratio R sin i/〈sin i〉 in suitable magnitude bins.

Here we present a new method, based on the survival anal-
ysis concept (Klein & Moeschberger 2003), that makes use of
the whole information content of the dataset by also considering
upper and lower limits and data truncation. Data may also come
from inhomogeneous estimates, like those in which v sin i upper
and lower limits are obtained from different analyses and instru-
mentation, as long as they are not affected by significant biases.
Uncertainties due to surface differential rotation (SDR) are also
estimated, with the most likely values derived from the recent
work of Distefano et al. (2016). The method is applied for the
first time to the rich dataset available for the Pleiades.

In Sect. 2 we present the data used in this work. The method
is described in Sect. 3. The results obtained for the Pleiades
dataset are discussed in Sect. 4. We draw our conclusions in
Sect. 5.

2. Data

For this work rotational periods and memberships from
Hartman et al. (2010) are used. Measurements of v sin i are taken
from Stauffer & Hartmann (1987), Soderblom et al. (1993),
Queloz et al. (1998) and Terndrup et al. (2000). Magnitudes are
adopted from Stauffer et al. (2007).

The P dataset of Hartman et al. (2010) comprises 383 stars
and is 93 percent complete in the mass range 1.0 ? M/M� ?
0.7. Of these, 227 have measured v sin i. Stars flagged as binaries
in Hartman et al. (2010) were excluded from the sample. A total
of 217 stars constitute the final working sample (Fig. 1).

Theoretical mass-radius-magnitude relationships were taken
from Baraffe et al. (2015). Together with the adopted distance to
the Pleiades of 136.2 pc (Melis et al. 2014), an age of 120 Myr
(Stauffer et al. 1998), and an extinction of AK = 0.01 mag
(Stauffer et al. 2007), the models of Baraffe et al. (2015) were
used to build bins in MK magnitude corresponding to approxi-
mately regular intervals of mass, and then in the comparison of
our results with the theoretical R-MK relationship. The calcula-
tions reported in Sect. 4 were repeated, also assuming a distance
to the Pleiades of 120.2 pc (van Leeuwen 2009). Our results,
however, are more consistent with a distance of ≈136.2 pc, and
therefore we report only the results obtained assuming this value
(see also Soderblom et al. 2005).

We note that the fraction of stars with both P and v sin i con-
sidered in the analysis with respect to the whole P dataset of
Hartman et al. (2010) is very close to one down to MK ≈ 4.3,
corresponding to M ≈ 0.8 M�. For fainter magnitudes this
fraction decreases progressively to MK ≈ 6 (M ≈ 0.5 M�),
below which there are no v sin i measurements and very few
and sparse P measurements (Fig. 1, upper panel). Further-
more, v sin i values for fast rotators were mostly adopted from
Soderblom et al. (1993), for slow-rotators with MK > 4.3 mostly
from Queloz et al. (1998), while at fainter magnitudes the mea-
surements are mostly those reported by Terndrup et al. (2000).
Possible consequences of this inhomogeneity for our results are
discussed in Sect. 4.

Fig. 1. Hartman et al. (2010) P dataset of the Pleiades (blue filled cir-
cles). Upper panel: open red squares outline targets for which v sin i
is available and green stars those considered in this work. Lower
panel: open red triangles indicate v sin i from Queloz et al. (1998), green
squares the values adopted from Terndrup et al. (2000), plum pentagons
those from Stauffer & Hartmann (1987), and olive hexagons those from
Soderblom et al. (1993). See text for details.

3. Method

3.1. Projected radius

When we assume spherical symmetry, the relationship between
stellar radius R, stellar equatorial rotational period Peq, and equa-
torial velocity veq is

R = CPeqveq, (1)

where C = 0.02 when Peq is in days, R in solar units,
and veq in km s−1. The analysis of photometric time-series
of stars showing rotational modulation produces the measured
period P (see Sect. 3.2), while the estimated rotational broad-
ening from spectroscopic analysis provides projected rotational
velocities v sin i. For most of our sample deviations from spheri-
cal symmetry are expected to be negligible (e.g. Collins & Truax
1995). Furthermore, from our SDR estimate (Sect. 3.2) and
the work of Reiners (2003), Reiners & Schmitt (2003), and
von Eiff & Reiners (2010), who also took limb darkening into
account, we estimate that the SDR effects on v sin i are not larger
than ≈1 percent and are therefore significantly smaller than our
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Table 1. Data with the rotational sequence classification based on the P vs. (B − V) diagram adapted from Lanzafame & Spada (2015).

ID RA (deg) Dec (deg) (B − V) MK M R P limv sin i v sin i seq.
J2000 J2000 (mag) (mag) (M�) (R�) (d) (km s−1)

HAT214-0001101 52.890079 26.265511 0.68 3.387 1.050 0.961 3.242160 0 15.5 i
HAT259-0005281 53.001961 23.774900 1.32 4.839 0.664 0.596 8.366860 0 5.5 –
HAT259-0001868 53.307941 23.006470 0.95 3.988 0.876 0.778 7.064630 0 3.1 i
HAT259-0000955 53.507519 24.880960 0.70 3.497 1.017 0.924 4.333200 0 11.1 i
HAT259-0000962 54.073441 21.894220 0.69 3.569 0.996 0.900 4.252010 0 8.5 i
HAT259-0002206 54.126259 24.012230 0.97 4.222 0.812 0.719 7.410650 0 4.9 i
HAT259-0002463 54.301289 21.468170 1.04 4.265 0.801 0.709 7.262440 0 5.5 –
HAT259-0000543 54.594090 22.499701 0.57 3.015 1.162 1.105 2.295330 0 24.4 i
HAT259-0000690 54.736938 24.569799 0.65 3.360 1.058 0.971 2.986200 0 9.6 i
HAT259-0000652 54.806122 24.466511 0.62 3.224 1.099 1.021 2.646660 0 11.8 i

Notes. The full table is available in electronic form at CDS and contains 217 stars. Mass and radius are derived from MK according to the models of
Baraffe et al. (2015). Periods are truncated to the 6th decimal figure. Upper v sin i limits are flagged with limv sin i = 1, lower limits with limv sin i = 2.
See text for details.

conservative estimate of the period uncertainties associated with
SDR (see Sect. 3.2). For our purposes we therefore neglected the
SDR effects on v sin i and adopted the relationship

(v sin i) = veq sin i, (2)

where i is the inclination of the spin axis from the line of sight.
Combining the measured v sin i and Peq, we obtain the projected
stellar radius

(R sin i) = CPeqveq sin i = CPeq (v sin i). (3)

The inclination angle i is unknown and therefore it is not possi-
ble to derive either veq from v sin i or R from R sin i for each in-
dividual star. However, when the underlying probability density
functions of R and i are known, it is possible to estimate the ex-
pected value of R, R, from an ensemble of R sin i measurements
(see Sect. 3.3).

3.2. Surface differential rotation

Surface differential rotation implies that magnetically active re-
gions, associated with dark spots and bright faculae, rotate with
different frequencies, depending on their latitudes. Multiple ac-
tive regions at different latitudes broaden the periodogram peak
and contribute to the uncertainty in the period, as discussed by
Hartman et al. (2010), for instance. On the other hand, SDR also
leads to a systematic error in determining the rotation period of
the star since the degree of differential rotation and the latitude
of the dominant active region are not known, which prevents us
from relating the measured period to the equatorial period Peq.
For young rapidly rotating stars like the Pleiades, Hartman et al.
(2010) assumed that the dominant active region groups can be
assumed to be isotropically distributed, from which they esti-
mated that the mean rotational period is 〈P〉 = 1.03Peq. Follow-
ing Kitchatinov (2005), for a solar-like SDR1 in which spots are
confined to latitudes |β| < 30◦, Hartman et al. (2010) estimated
〈P〉 = 1.07Peq.

Distefano et al. (2016) made use of long-term photometric
monitoring to estimate SDR lower limits in members of young
loose association from the P modulation itself. Considering the
AB Doradus young loose association, whose age is very simi-
lar if not identical to the Pleiades, assuming a solar-like SDR

1 It is customary to indicate an SDR corresponding to a decrease in
surface rotational velocity with latitude as a solar-like SDR.
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Fig. 2. Fit to the mean period vs. equatorial period for the AB Dor young
loose association.

and that the minimum period corresponds to Peq, we fitted
the observed 〈P〉 vs. Peq with a linear relationship obtaining
〈P〉 = 1.04Peq (Fig. 2), which is very similar to that estimated
by Hartman et al. (2010).

We therefore assumed that the Hartman et al. (2010) P are
representative of 〈P〉 and derived the equatorial period from the
〈P〉 = 1.04Peq relationship. In this way, we obtained our best
estimate of Peq. Furthermore, to evaluate the uncertainties asso-
ciated with the SDR, we considered at one extreme solid-body
rotation, 〈P〉 = Peq, and at the other extreme the 〈P〉 = 1.07Peq
relationship. Given the information derived from the AB Dor
mean vs. equatorial period fit, such uncertainties likely overesti-
mate the true uncertainties due to the SDR. The corresponding
R sin i uncertainties obtained using Eq. (3) are then also overes-
timated and larger, overall, than expected from the propagation
of Peq and v sin i uncertainties due to SDR (see Sect. 3.1). These
can therefore be considered to include both Peq and v sin i uncer-
tainties due to the SDR.
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3.3. Distribution functions

The statistical analysis presented here is similar to that used ex-
tensively in the past to derive the expected distribution of veq
from v sin i measurements (e.g. Gaige 1993; Queloz et al. 1998;
Spada et al. 2011). The application of these concepts to the anal-
ysis of the R sin i distribution in open clusters has some ad-
vantages with respect to the analysis of v sin i. Stars of similar
mass in a stellar cluster, which therefore have approximately the
same age, are expected to also have a similar radius, and this
can justify the assumption that radii are distributed normally
around the expected value, with a standard deviation that in-
cludes the intrinsic spread and measurement uncertainties. In
contrast, there are no such constraints on veq, which makes re-
constructing its distribution conceptually more difficult. Follow-
ing Chandrasekhar & Münch (1950), the y ≡ R sin i probability
density function (p.d.f.) for a random orientation of spin axis can
be therefore written as

φ(y|R, σ) = y

∫ ∞
y

N(x|R, σ)
x(x2 − y2)1/2 dx, (4)

where x ≡ R, and N(x|R, σ) is the normal distribution with ex-
pected value R and standard deviation σ; the first two moments
of the distributions are related by

x̄ =
4
π
ȳ (5)

x̄2 =
3
2
ȳ2.

As there is no known analytical solution to the integral in Eq. (4),
this is evaluated numerically. From Eq. (4) the cumulative distri-
bution function (c.d.f.)

Φ(y|R, σ) =

∫ y

0
φ(y′|R, σ)dy′ (6)

is also estimated numerically. Hereafter the dependence on the
parameters R and σ is considered implicitly, that is, φ(y) =
φ(y|R, σ) and Φ(y) = Φ(y|R, σ).

3.4. Censoring and truncation

The finite wavelength resolution of spectrographs and the intrin-
sic broadening of a non-rotating star set limits on the capability
of measuring v sin i below a certain threshold. This can be due
to low veq, low i, or both. When i is sufficiently low, we can also
expect that P cannot be measured because the star is seen al-
most pole-on and the rotational modulation induced by surface
inhomogeneities is therefore undetectable. In practice, P is still
measurable also when only a v sin i upper limit can be estimated,
and therefore the limits on v sin i in general dominate those on
P. Other cases when P is expected not to be measurable include
uniformly distributed surface inhomogeneities and unfavourable
photometric sampling.

A survival analysis (Klein & Moeschberger 2003;
Feigelson & Jogesh Babu 2012) can be applied to recover
R and σ from a {R sin i} set in presence of censoring and
truncation, in which cases Eq. (5) become invalid. When only a
v sin i upper limit, (v sin i)lim, is available for the object, this is
translated into an R sin i upper limit using the relation

(R sin i)lim = CP(v sin i)lim, (7)

which is then considered as a left-censored data point.

At the other extreme, ultra-fast rotators may have such a high
v sin i value that its measurement is very uncertain or impossi-
ble, and therefore only a lower limit is available. These measure-
ments can be treated as right-censored data points, for which a
(R sin i) lower limit can be defined in analogy with Eq. (7).

Left- and right-censored data points are taken into ac-
count through a survival function (Klein & Moeschberger 2003),
which gives the probability that an object has a value above some
specified level. For the case at hand, the survival function is

S (y) = P(R sin i > y) = 1 − Φ(y), (8)

where Φ(y) is given by Eq. (6). Using Eq. (8), we assign a prob-
ability S (y) if y is a right-censored (lower limit) data point and
(1 − S (y)) if y is a left-censored (upper limit) data point.

The incompleteness of the sample does not represent a limi-
tation for the analysis as long as selection effects do not depend
on the variates of interest. We expect, however, that when i is
sufficiently low, neither v sin i nor P can be measured and that
the data are left-truncated in most cases. Data points like this are
not present in the {R sin i} dataset, but we do not know the ex-
act truncation value (R sin i)trunc in each bin a priori. However,
for a random orientation of the spin axis the probability of oc-
currence of the inclination i between i and i + di is sin i di, and
therefore the distribution favours high values of i. The results are
therefore quite insensitive to the accuracy in determining the left-
truncation level, and we adopt the practical approach of consid-
ering the lowest R sin i value as an approximation of (R sin i)trunc
in each bin. The way in which truncation is taken into account in
the analysis is described in Sect. 3.5.

Right-truncation is ignored because we assumed that for
ultra-fast rotator for which the v sin i measurement is uncertain
or impossible a lower limit is reported instead of omitting the
measurement.

3.5. Estimating the mean radius from the projected radius
distribution

After the p.d.f. and the corresponding c.d.f. and survival func-
tion (Eqs. (4), (6), and (8)) were defined, we defined a likelihood
function as

L =
∏
det

φ(y j)
∏
lcens

[
1 − S (y j)

]∏
rcens

S (y j), (9)

where the products are over detected, left-censored, and right-
censored data points, respectively. Since our dataset is always
left-truncated, in Eq. (9) we replace φ(y j) by φ(y j)/S (YL) and
S (y j) by S (y j)/S (YL) (Klein & Moeschberger 2003), with YL =
(R sin i)trunc the left-truncation y value in the dataset. The nega-
tive log-likelihood function is therefore

− lnL = −

∑
det

ln(φ(y j)) +
∑
lcens

ln(1 − S (y j)) +
∑
rcens

ln(S (y j))

 .
(10)

The parameters R and σ are finally evaluated by minimising the
negative log-likelihood function Eq. (10) using the L-BFGS-B
optimisation method of Byrd et al. (1995) as implemented in R.

3.6. Simulations

The method was extensively tested using numerical simulations.
For brevity, only a summary of these tests is reported here. More
details are reported in Appendix A.
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For a sufficiently low level of censoring and truncation, that
is, (R sin i)trunc > 0.1R and (R sin i)cens > 0.3R, and σ/R ≈ 0.1
the method is capable of reproducing R within ≈2 percent and
σ within ≈2 percent with n ? 10 data points (median over
100 realisation – see Appendix A).

Maintaining a low level of censoring and truncation, the
accuracy degrades for extremely high or low values of σ/R.
For σ → 0, the numerator in Eq. (4) tends to a Dirac
delta function and φ develops a singularity at y = R (see
Chandrasekhar & Münch 1950). As a consequence, for σ/R >
0.01 the numerator of the integrand in Eq. (4) is a very steep
function of x, which causes numerical instabilities in the evalu-
ation of the integral. Simulations for σ/R → 0.01 show that in
this limit R can still be recovered within ≈5 percent, while σ can
be overestimated by a factor of several because of the smooth-
ing implied by the integral in Eq. (4). At the other extreme,
for σ/R ? 0.3 the theoretical distribution would imply a non-
negligible probability of having negative (unphysical) values and
the numerical procedure fails. Simulations for σ/R → 0.3 show
that in such extreme cases R can be recovered within ≈4 percent
and σ within ≈50 percent (median over 100 realisations).

Fixing σ/R ≈ 0.1, an increase in the level of censoring and
truncation does not significantly decrease the accuracy in repro-
ducing R and σ as long as the core of the distribution remains
unaffected. In practice, both R and σ are recovered within a
few percent up to (R sin i)trunc and (R sin i)cens ≈ 0.6R. Above
this level, censoring and truncation affect the core of the distri-
bution, making it difficult to recover its original shape.

We note that these simulations outline limitations that are in-
trinsic to the problem at hand and cannot be overcome using a
simplified approach, and they set the boundaries for a meaning-
ful estimate of the mean radius from an {R sin i} set.

4. Mean stellar radii in the Pleiades

The method described in Sect. 3 was applied for the first time
to the dataset available for the Pleiades (Sect. 2). The data were
organised in MK bins corresponding to fixed ∆M according to
the theoretical relationship reported by Baraffe et al. (2015) for
MK vs. M at the Pleiades age. For each bin we compute R
and σ from the R sin i distribution. In Fig. 3 we compare R vs.
〈MK〉 with the models of Baraffe et al. (2015) and Spada et al.
(2013). The comparison is carried out for the whole P range, for
the slow-rotator sequence (as identified in Lanzafame & Spada
2015), for the fast rotators (P < 2 d), and for the stars with pe-
riods in between the fast rotators and the slow-rotator sequence.
According to the definition of Barnes (2003), these correspond
to the I sequence, the C sequence and stars in the gap2. Bins
are ∆M ≈ 0.1 M� wide, except for fast rotators, for which
∆M ≈ 0.2 M� to have at least ten stars in each bin, and which are
allowed to overlap to provide R estimates at steps of ≈0.05 M�.
For 1.2 ? M/M� ? 0.85, using the whole P range,R agrees with
the theoretical models within ≈10 percent (≈5 percent for 1.2 ?
M/M� ? 1.00) with no significant bias. The noise in the data,
however, increases with decreasing mass, resulting in increas-
ingly larger σ. For 0.85 ? M/M� ? 0.65, R becomes system-
atically larger than theory, although still within ≈1σ. Restricting
the calculations to stars belonging to the slow-rotator sequence,
R still agrees with the theoretical models within ≈10 percent
with no significant bias. The results for the fast rotators have
larger σ and R scatter, up to ≈15 percent, mostly because larger

2 We note that 14 stars of the whole sample are not assigned to any
sequence as their period is at least 1σ above the slow-rotator sequence.

Table 2. Ratio between the expected radius R and the theoretical aver-
age radius 〈R〉 in a ∆M ≈ 0.2 M� bin centred on M ≈ 0.7 M� for stars
not belonging to the slow-rotator sequence and P > 2 d.

Set 〈M〉 n nul R̄/〈Rtheo〉 σ/〈Rtheo〉

All 0.68 41 5 1.31+0.05
−0.04 0.19

Q98 0.71 24 0 1.33+0.05
−0.04 0.17

T00 0.65 13 3 1.14+0.04
−0.03 0.12

Notes. Calculations are carried out using all v sin i values, only the
Queloz et al. (1998) v sin i (Q98), and only the Terndrup et al. (2000)
v sin i (T00). n is the number of points in the bin, nul the number of
v sin i upper limits. The estimated uncertainties due to SDR are reported
together with R/ 〈Rtheo〉, with a separate column for the standard devia-
tion σ scaled by 〈Rtheo〉.

bins are required to have at least ten data points in each bin,
but no systematic deviations from the models are found. The
discrepancy with the theoretical model is confined to stars with
mass just below the low-mass end of the slow-rotator sequence
and P > 2 d (panels (c) and (c′) in Fig. 3), for which R is in-
flated at 2σ level. According to the scenario described by Barnes
(2003), these are stars that converge on the slow-rotator sequence
(gap).

Possible alternative explanations for this behaviour are

1. systematic deviations due to some outliers;
2. P-dependent observational biases not taken into account by

our procedure;
3. biases in the v sin i datasets.

To consider the first alternative explanation, we repeated the
calculation using different binning and obtained essentially the
same results. We also repeated the calculations excluding m =
3 stars in each bin and using all n − m combinations, with n the
number of stars in each bin, with no significant change with re-
spect to the original results. In this way we verified that there
is indeed a group of measurements that produces the observed
deviation and not just some isolated outliers, to which our pro-
cedure is rather insensitive in any case.

The second alternative explanation is deemed rather unlikely
since the decrease in fraction of stars with both P and v sin i
measurements is rather uniform in P down to at least M ≈

0.6 M� (see Fig. 1) and the P dataset of Hartman et al. (2010)
is 93 percent complete in the mass range 1.0 ? M/M� ? 0.7.

The third alternative explanation is therefore the only one
that could be of some concern. Hartman et al. (2010) estimated
that for M > 0.85 M� the v sin i dataset could be affected by
a bias ∆v sin i ≈ −1.5 km s−1, but this was still insufficient to
explain the sin i distribution, so that the authors invoked other
factors like the radius inflation and a rather high SDR. By con-
straining the SDR effects as described in Sect. 3.2, we estimate
that to explain the R vs. 〈MK〉 discrepancy at M ≈ 0.7 M�, a bias
of at least ∆v sin i ≈ −4.0 km s−1 limited to a rather restricted MK
range would be necessary. Considering the expected uncertain-
ties in the intrinsic width of non-rotating stars (e.g. Queloz et al.
1998), which are expected to be the main cause of such system-
atic deviations, this bias seems too high and its dependence on
spectral type much steeper than deemed plausible.

As discussed in Sect. 2, v sin i of fast rotators are mostly
adopted from Soderblom et al. (1993), while for the other stars
they are mostly taken from Queloz et al. (1998) for M ?
0.85 M� and from Terndrup et al. (2000) for M < 0.85 M�.
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Fig. 3. Comparison of the expected radius R with the models of Baraffe et al. (2015; dotted line) and Spada et al. (2013; dashed line). R is reported
as a function of the average MK in each bin. The three values of R correspond to our best estimate of the SDR (blue diamond) and the estimated
upper and lower SDR limits (black and red diamonds). The horizontal bars encompass the MK range in each bin. The vertical bars represent
the standard deviation σ for each bin centred on our best estimate of the SDR. Right panels show the ratio with the Baraffe et al. (2015) model.
Panels a) and a′) are obtained using all data, panels b) and b′) for the slow-rotator sequence, panels c) and c′) for stars with periods between
fast and slow rotators, panels d) and d′) for fast rotators only (P < 2 d). Bins are ∆M ≈ 0.1 M� wide except for the fast rotators set, for which
∆M ≈ 0.2 M� to ensure that at least ≈10 stars fall in each bin.

Excluding the fast-rotator measurements of Soderblom et al.
(1993), the comparison for the five stars in common between
the two remaining datasets does not point to any significant bias.
To investigate the possible v sin i bias in more detail, we repeated
the calculations on a ∆M ≈ 0.2 M� bin centred on M ≈ 0.7 M�
using all available v sin i, only the Q98, and only the T00 v sin i.
The results, reported in Table 2, show that in all three cases the
expected mean radius is larger than the theoretical mean radius
by 1 or 2σ. We note that the discrepancies are smaller than those

shown in Fig. 3 (panels c) and c′)) because to have at least ten
stars for each set, the bin is larger and the mean mass in two sets
(Q98 and T00) differs by 0.06 M�. In conclusion, we have no
evidence of an observational v sin i bias at the level required to
explain the radius discrepancy found for stars that are converging
on the slow-rotator sequence.

From a different perspective, it can be argued that the results
obtained for the fast-rotator sequence may be affected by the pos-
sible omission of high v sin i values that have not been reported
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as lower limits as our method requires. This aspect can be of con-
cern as more than one hundred stars of the Hartman et al. (2010)
periods sample have no v sin i measurement and a significant
fraction of them have short periods. In the Pleiades case, how-
ever, we can reasonably assume that the lacking v sin i data do not
depend on its value as high values of v sin i and lower limit are
reported. The treatment of datasets in which high v sin i values
are lacking would require sufficient information to allow consid-
ering right-truncation in Eq. (9).

5. Conclusions

We have set up a new method for deriving mean stellar radii from
rotational periods, P, and projected rotational velocities, v sin i,
based on the survival analysis concept (Klein & Moeschberger
2003). This method exploits the whole information content of
the dataset with an appropriate statistical treatment of censored
and truncated data. Provided censoring and truncation do not sig-
nificantly affect the peak of the R sin i distribution and that there
is no significant bias in the data, the method can recover the mean
stellar radius with an accuracy of a few percent with as few as
n ≈ 10 measurements. The total standard deviation, σ, which
cumulatively takes the data noise and the intrinsic R standard
deviation into account, can also be estimated with an accuracy
of a few percent except in extreme cases where the distribution
is too broad (σ/R ∼ 0.3) or too narrow (σ/R ∼ 0.01).

The method has been applied for the first time to the dataset
available for the Pleiades. We found that deviations of the
empirical R vs. MK relationship from standard models (e.g.
Spada et al. 2013; Baraffe et al. 2015) do not exceed 5 percent
for 1.2 ≥ M/M� ≥ 1.0 and 10 percent for 1.0 > M/M� ≥ 0.85,
with no significant bias. Evidence of a systematic deviation at
1−2σ level of the empirical R vs. MK relationship from stan-
dard models is found only for stars with M ≈ 0.7 ± 0.1 M� that
are converging on the slow-rotator sequence. Deviations of the
R vs. MK relationship for fast rotators (P < 2 d) do not exceed
≈15 percent in the whole mass range with no evidence of a sys-
tematic deviation from standard models. No evidence of a radius
inflation of fast rotators in the Pleiades is therefore found.
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Appendix A: Accuracy of the method

In this appendix we present some examples and tests carried out
to estimate the method accuracy.

We considered as an illustrative example a group of stars
with M ∼ 1 M� in the Pleiades slow-rotator sequence
(Lanzafame & Spada 2015). This group of stars has a normal
distribution of periods with P̄ ' 3.53 d and σP ' 0.35 (see
Table 2 in Lanzafame & Spada 2015). Assuming R ∼ 1 R�,
it follows that the equatorial velocities have a normal distri-
bution with ¯veq ' 12.7 and σv ' 1.3 km s−1. Assuming that
this group is composed of n = 30 stars, we generated syn-
thetic {R sin i} datasets with these parameters by applying differ-
ent levels of censoring and truncation. Figure A.1 reports some
examples in the censoring no-truncation cases. These tests show
that for the Pleiades dataset considered here, where R sin i trun-
cation does not exceed 0.4, the maximum censoring is around
(v sin i)lim ∼ 7 km s−1, and σ/R ≈ 0.1, we expect that R can be
recovered with a precision better than 2% and σ with a precision
better than 1%. We note that censoring at (v sin i)lim ? 9 km s−1

affects the core of the distribution, making it difficult to recover
its original shape.

To evaluate how the accuracy depends on the number of mea-
surements and on theσ/R ratio, we applied the method to groups
of 100 R sin i synthetic distribution realisations, each one with
a different number of stars in each bin and different σ/R val-
ues. For brevity, here we compare the results obtained with no-
censoring and no-truncation with the worse levels of censoring
and truncation in the Pleiades dataset. Furthermore, we compare
the results obtained for σ/R = 0.1, which is representative of
non-extreme values of the radius dispersion, with those obtained
with σ/R = 0.03 and 0.3, which are representative of extremely
low and extremely high values of the radius dispersion. We recall
that σ takes both the intrinsic radius dispersion and the observa-
tional uncertainties into account.

Figure A.2 shows the results for no censoring and no trunca-
tion. For σ/R = 0.1 the median of the ratio of the expected value
to the true value of R ranges from 0.976 for n = 10 to 0.993 for
n = 100. For narrow distributions (e.g. σ/R = 0.03) this is es-
sentially unity with n = 15 or more while for extremely broad
distributions (e.g. σ/R = 0.3) it amounts to 0.963 in the worst
case. The scatter in the expected-to-true R ratio decreases with
decreasing width of the distribution and with increasing number
of observations. The median of the reconstructed σ behaves in
a similar way, although its relative accuracy decreases more sig-
nificantly with increasing width of the distribution. The intrinsic
skewness of the R sin i distribution leads to a general tendency of
underestimating the true R and σ for small n and large σ/R.

The results of the simulation with the worse level of cen-
soring and truncation in the Pleiades dataset are summarised in
Fig. A.3. For sufficiently narrow distributions the accuracy does
not degrade significantly with respect to the no-censoring and
no-truncation cases. Only for large σ/R, that is, when censor-
ing and truncation affect the peak of the R sin i distribution, the
median of the ratio of the expected value to true value of R is sig-
nificantly below unity. For theσ/R = 0.3 case shown in Fig. A.3,
the radius is underestimated by ≈10 percent (median) even when
the number of measurements is increased to n = 100. We note,
however, that this latter condition is never met in the Pleiades
dataset we analysed in this paper and it is presented here to out-
line a condition in which it is not possible to recover the average
radius reliably.

In summary, the golden rule for evaluating the mean radius
is that censoring and truncation must not affect the core of the
R sin i distribution. We argue that this is a general requirement,
which is not due to a limitation of this particular method, but to
the lack of sufficient information when the data cannot define the
core of the R sin i distribution with sufficient detail.
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Fig. A.1. Illustrative tests in recovering R from a synthetic {R sin i} set with censoring. The simulations reproduce n = 30 slow-rotator sequence
stars in the Pleiades with M ∼ 1 M� and R ∼ 1 R� at varying censoring levels: (v sin i)lim = 0 (panel a)); 6 (panel b)); 9 (panel c)); 10
(panel d)) km s−1. Blue and red histograms are used for censored and not-censored data. The kernel density estimate is shown as a thin blue line
for not-censored data and as a red thin line for censored data, the function φ corresponding to the given synthetic distribution parameters is plotted
as a thick black line and that corresponding to the reconstructed parameter as a thick red line. Histograms are representations of frequency.
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Fig. A.2. Box-and-whisker plots for the reconstructed R and σ from 100 random realisations of the R sin i distribution with no censoring and no
truncation at different σ/R values and different number of measurements per bin.
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Fig. A.3. Box-and-whisker plots for the reconstructedR andσ from 100 random realisations of the R sin i distribution with censoring and truncation
at different σ/R values and different number of measurements per bin.
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