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Abstract: In the present paper, using previous results from Del Popolo papers, we show how the mass function evo-
lution can be obtained in the framework of a spherical collapse model, which has been modified to take account of
dynamical friction, the cosmological constant, and angular momentum which proto-structures acquire through tidal
interaction with neighbouring ones. We found an improved barrier which is in excellent agreement with simulations.
The quoted barrier is used to calculated the mass function. In the case of the ΛCDM paradigm, our mass function is
in good agreement (within some %) with the mass function of Klypin’s Bolshoi simulation for the virial mass range
5 × 109 − 5 × 1014h−1M⊙, and 0 . z . 10. Similar agreement is obtained with Tinker’s mass function, and Castorina’s
simulations.
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1 Introduction
The ΛCDM model has been proven to be very successful
in fitting a large variety of data (Spergel 2003; Del Popolo
2007; Komatsu et al. 2011; Del Popolo 2013, 2014; Ade et
al. 2015). At kpc-scales, the model is suffering problems
like the cusp/core problem (Flores & Primack 1994; Car-
done et al. 2011a,b; Cardone&Del Popolo 2012; Del Popolo
2012a,b; Del Popolo et al. 2013; Del Popolo &Hiotelis 2014;
Del Popolo et al. 2014 or the missing satellite problem
(Moore et al. 1999; Hiotelis & del Popolo 2013) (see Del
Popolo & Le Delliou 2017, for a review). At large scales, the
model is a�icted by the fine–tuning problem (Weinberg
1989; Astashenok & Del Popolo 2012) and the cosmic coin-
cidence problem (e.g., Velten et al. 2014). Another funda-
mental test of the ΛCDM model is the accurate prediction
of the number density of dark matter halos per mass inter-
val (see Del Popolo & Yesilyurt 2007; Hiotelis & Del Popolo
2006; Hiotelis & del Popolo 2013), dubbed mass function
(MF). At low redshifts (z ≤ 2), the high mass end of the MF
is very sensitive to cosmological parameters like σ8¹, the
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1 σ8 represents the linear power spectrum amplitude on a scale of 8
h−1 Mpc.

Universe darkmatter (DM), dark energy (DE) content, (i.e.,
Ωm, and ΩΛ), the equation of state parameter w, and its
evolution (Holder et al. 2001; Haiman et al. 2001; Weller et
al. 2001; Majumdar & Mohr 2002). At redshifts larger that
the one previously indicated, theMF is an important probe
of the Universe reionization history (e.g., Furlanetto et al.
2006), quasar abundance (e.g., Haiman & Loeb 2001).

A simplemodel to get theMF is that of Press&Schecter
(1974) (PS). In thismodel, initial fluctuations are spherical,
and with Gaussian distribution, and their evolution is fol-
lowed from the linear phase untill collapse, using a spher-
ical collapse model (SCM) (Del Popolo & Gambera 1998,
1999, 2000; Del Popolo et al. 2000; Del Popolo 2010, 2011;
Del Popolo et al. 2013a,b,c). Since the density field is Gaus-
sian one can calculate the probability that the overdensity
δ = ρ−ρb

ρb on a given scale exceeds the critical threshold in
the spherical collapse, δc. This constant quantity is pro-
portional to the number of cosmic structures characterized
by a density perturbation > δc. Unfortunately, in the PS
theory, thenumber of objects in thehighmass tail is under-
predicted, and overpredicted for objects in the low mass
tail of the MF (e.g. Efstathiou et al. 1988; Gross et al. 1998;
Jenkins et al. 2001; White 2002).

As shown in Del Popolo & Gambera (1998, Eq. 28, Fig-
ure 6), and Sheth et al. (2001) (SMT) the tidal field and
shearmodifies the collapse of a given regionmaking δc de-
pendent on mass, and this change the mass function (Del
Popolo&Gambera 1999, 2000) (SMT). A deeper analysis of
the previous, semi-analytic models for the mass function
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showed some problems: the PS MF, as already reported,
overpredicts the MF at all masses except the low and high
mass extremes (Reed et al. 2003), and even the STMF over-
predicts the haloes number at large masses (Lukic et al.
2007). In the case of the Bolshoi simulation (Klypin et al.
2011) (K11), the discrepancy is < 10% at z = 0, in the mass
range 5 × 109-5 × 1014M⊙ (K11), while at z = 10 the ST MF
gives≃ 10 times more haloes than simulations (K11).

Another important issue is that of the universality of
the MF, namely, its independence on redshift and cosmol-
ogy (Tinker et al. 2008; Crocce et al. 2010; Bhattacharya
et al. 2011; Watson et al. 2013). In order to discuss this is-
sue, we have to recall that halo identification is performed
mainly by means of the Friends of Friends (FoF) algorithm
which identifies halos by a percolation technique, con-
necting particles, within a certain distance (the linking
length b = 0.15 − 0.2) to each other, in the same halo, or
the SOmethod. The SOmethod first finds the halo’s centre
frompotentialminimumormost boundparticle to identify
haloes with spheres reaching a threshold density, given
with respect to either critical or background density. SO-
based halo mass functions are not universal especially at
higher z, while the FoF MF scales very closely to the uni-
versal behaviour (K11).

More recent simulations showed a non-universal be-
haviour also in the case of FoF MF when one requests a
high precision between simulations and fitting formulas.
The FOF MF of the Millennium simulation increases by
20% for the redshift range z = 0 − 10 (Reed et al. 2007),
and when corrected for "spurious FOF linking between
haloes", it shows the same evolution (20%) in the range
z = 0 − 1 (Fakhouri & Ma 2008). Further studies on the
FOFMF showed evidence of non-universality coming from
redshift dependence (Bhattacharya et al. 2011; Crocce et al.
2010), or cosmology dependence (Courtin et al. 2011), and
other showed an almost universal behaviour (Watson et al.
2013). This leadmany authors to propose a redshift depen-
dent FOF MF (e.g., Bhattacharya et al. 2011; Crocce et al.
2010; Watson et al. 2013)

In this paper, we will use the model of Del Popolo &
Gambera (1998, 1999, 2000), Del Popolo (2002a), and Del
Popolo (2006a,b) to show how the evolution of the mass
function can be obtained in a modified spherical collapse
model, taking into account angular momentum acquired
by proto-structures as a result of tidal interaction with
neighboring ones, dynamical friction, and the cosmolog-
ical constant. In Section 2, we discuss the barrier, in Sec-
tion 3 the MF, and Sections 4, and 5, are devoted to results
and conclusions.

2 Barrier
An improvement of the PS formalism to model the halo
formation statistics is the "excursion set formalism" (ESF)
(e.g., Bond et al. 1991; Lacey & Cole 1993). The halo statis-
tics is obtained from the average overdensity, δ(Rf ), within
a window of radius Rf . If density perturbations are rep-
resented by a Gaussian density field δ(Rf ) vs Rf , in a hi-
erarchical universe, is a random walk (see Del Popolo &
Yesilyurt 2007). In the ESF, a halo forms when the random
walk crosses a threshold value, or barrier, δc, or equiva-
lently the mass variance S. The PS MF is reobtained in the
ESF by studying random walks and flat barriers. In order
to improve on the PS formalism, several years ago, ran-
domwalkswere consideredwith a non-flat barrier, usually
dubbedmovingbarrier, since the barrier is changing (mov-
ing) with S. As shown by Del Popolo & Gambera (1998,
1999, 2000), in such barriers, the collapse threshold be-
comesmassdependent.Del Popolo&Gambera (1999), and
Del Popolo & Gambera (2000) showed that the mass de-
pendence solves the problems of the PS MF, suppressing
the abundance of haloes of low mass, and increasing that
of massive ones (with respect the PS MF). The new thresh-
old (barrier) gave rise to a MF in good agreement with ob-
servations (see Del Popolo 2006a; Zhang et al. 2008). As
already reported SMT found a similar barrier.

The Del Popolo’s barrier and that of SMT are respec-
tively given by

B(M) =
√
aδc(z)

(︂
1 + β

aνα

)︂
(1)

and
B(M)ST =

√
a1δc(z)

(︂
1 + β1

a1να1

)︂
(2)

where ν = ( δcσ )
2, δc is the critical overdensity needed for

collapse in the sphericalmodel, and σ(M) is the r.m.s. den-
sity fluctuation, on a comoving scale including a mass,
a = 0.67, and, a1 = 0.707, α = 0.585, α1 = 0.615,
β = 0.46, and β1 = 0.485.

As shown by SMT, by changing the shape of the bar-
rier, going from a flat barrier to a barrier increasing with
S, allows to incorporate several physical effects, like frag-
mentation and mergers (SMT), apart the effects of tidal
torques (Del Popolo & Gambera 1998), cosmological con-
stant (Del Popolo 2006a), dynamical friction (see the next
sections). The barrier given by Eq. (1) can be generalized to
consider the effect of a cosmological constant and dynam-
ical friction (DF) as was done in Del Popolo (2006b), and
is given by

δc = δco (3)
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Figure 1. The collapse threshold δc(ν) vs ν. Left panel: the solid line is the shows the SMT result, the short-dashed line that of Del Popolo &
Gambera (1998), taking into account the effect of the tidal field, the long-dashed the result of Del Popolo (2006a,b) taking into account the
effect of the tidal field, and the cosmological constant, and the dot-dashed line is δc(ν) taking into account the effect of the tidal field, the
cosmological constant, and DF (Del Popolo 2006b). Right panel: the collapse threshold in terms of redshift when angular momentum and Λ
is taken into account (solid line) for a mass M = 1011h−1M⊙. The dashed line represents the same quantity when dynamical friction is taken
into account.

⎡⎣1 + rta∫︁
ri

rtaL2 · dr
GM3r3 + λo

1 − µ(δ) + Λ
rtar2
6GM

⎤⎦
≃ δco

[︂
1 + β

να +
ΩΛβ2
να2 + β3

να3

]︂
where α2 = 0.4, β2 = 0.02, α3 = 0.45, β3 = 0.07, ΩΛ
is the contribution to the density parameter coming from
Λ, µ(δ) is given in Colafrancesco et al. (1995, (Eq. 29)),
λo = ϵoTco, and ϵo, is proportional to the coefficient of DF
η (see Eq. 23 of Antonuccio-Delogu & Colafrancesco 1994),
and Tco is the collapse time of a perturbation without DF
(see Eq. 24 of Antonuccio-Delogu & Colafrancesco 1994).
The angular momentum, L, is calculated as shown in Del
Popolo (2006b, 2009); Del Popolo & Kroupa (2009), while
the term related to DF is obtained in Antonuccio-Delogu &
Colafrancesco (1994).

Figure 1 (left panel) compares δc(ν) obtained by SMT
by means of an ellipsoidal collapse model with the mod-
ified collapse thresholds obtained by Del Popolo. In the
plot, the solid line represents the SMT result, Eq. (2) (with
a1 = 1), thedashed lineEq. (1) (with a = 1) obtainedbyDel
Popolo & Gambera (1998), the dashed line the improve-
ment of Eq. (1) taking into account Λ, and the dot dashed
line the improvement of Eq. (3) taking into account also
the effect of DF.

All δc(ν) are monotonically decreasing function of ν,
and mass M, and monotonically increasing function of S.
Their behaviours tend to the typical value of the spherical
collapse (δc = 1.686) for large ν. This imply that smaller
objects are less likely to form structures than higher one,

since, in order less massive, "peaks" (in the initial random
field) form structure, have to cross a higher threshold, in
comparison with more massive ones (Peebles 1990; Del
Popolo&Gambera 1996;Audit 1997;Del Popolo et al. 2001;
Del Popolo 2002b,c; Del Popolo et al. 2013a,b; Pace et al.
2014)

The effect of a non-zero cosmological constant is simi-
lar to that of angularmomentum, slowing down especially
the collapse of structure of large mass. The role of the cos-
mological constant tends to vanish with increasing red-
shift, z. Then the final result is that the behaviour of the
moving barrier reduces the small haloes abundance, in
comparison with a flat barrier (PS mass function), and in-
creases that ofmassivehaloes. In the case of the ellipsoidal
collapse of ST, this is due to the fact that smaller haloes are
characterized by larger ellipticity, and consequently by a
larger collapse time (see Zhang et al. 2008).

In addition to the δc dependence on mass, one needs
to take into account its time evolution. In Figure 1 (right
panel), we plot δc(z), following Del Popolo et al. (2013a)
for a ΛCDM model, taking into account the angular mo-
mentum and Λ for a mass M = 1011 h−1 M⊙ (for a gen-
eralization to DE models, see Del Del Popolo et al. 2013b;
Pace et al. 2014). The dashed line adds the effect of dynam-
ical friction. Angular momentum causes δc to be a mono-
tonic decreasing function of z (while already is the case
for massM): δc(z) is larger than δc at all values of z. Thus,
structure formation is "suppressed" at high z by angular
momentum. This explains why our MF predicts a smaller
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abundance than that of Sheth & Tormen (2002) (ST1) with
increasing z.

3 The mass function
In ESF, the unconditional mass function, n(M, z), namely,
the average comoving number density of haloes in a mass
range M, M + dM is given by:

n(M, z) = ρ
M2

d log ν
d logMνf (ν) (4)

(Bond et al. 1991), where ρ is the background density The
quantity f (ν) is the so-called "multiplicity function" or the
distribution of the first crossings.

As shown by Sheth & Tormen (2002) (ST1), for a large
range of moving barriers, one can approximate the first
crossing distribution using the formula

f (S)dS = |T(S)| exp(−B(S)
2

2S ) dS/S√
2πS

(5)

where S ≡ S*( σσ* )
2 = S*

ν , being σ* =
√︀
(S*), and T(S) can

be obtained using a Taylor expansion of B(S):

T(S) =
5∑︁
n=0

(−S)n
n!

∂nB(S)
∂Sn (6)

The multiplicity function, which is, as previously re-
ported, the distribution of first crossings of a barrier B(ν)
by independent uncorrelated Brownian random walks
(Bond et al. 1991), is given by νf (ν) = 2Sf (S, t).

Then, knowing the barrier (e.g., Eq. (2)), the multiplic-
ity function, νf (ν), can be obtained following ST1, namely
using their equations Eqs. (5) and (6), truncated at fifth or-
der n = 5, as by them shown:

νf (ν) = A
(︂
1 + βg(α)

(aν)α
)︂√︂

aν
2π (7)

exp
{︃
−aν
2

[︂
1 + β

(aν)α
]︂2}︃

where

g(α) =
⃒⃒⃒⃒
1 − α + α(α − 1)2! − ... − α(α − 1) · · · (α − 4)5!

⃒⃒⃒⃒
(8)

and α = 0.6, β = 0.46, a = 0.707, A ≃ 1.

νf (ν) ≃
(︂
1 + 0.094

(aν)0.6

)︂√︂
aν
2π (9)

exp
{︃
−12aν

[︂
1 + 0.5

(aν)0.6

]︂2}︃
,

which is a good approximation to the first crossing dis-
tribution of the ellipsoidal barrier obtained through the
simulations of unconstrained, independent randomwalks
and that fitting the GIF simulations (see Eq. 2 of Sheth &
Tormen (2002), ST1)

νf (ν) ≃ A
(︂
1 + 1

(aν)0.3

)︂√︂
2aν
π exp (−aν/2) , (10)

where A = 0.322.
Applying the previous methods to the barrier given by

Eq. (3), we get

νf (ν) = A1
(︂
1 + β1g(α1)

(aν)α1
+ β2g(α2)

(aν)α2
+ β3g(α3)

(aν)α3

)︂
(11)√︂

aν
2π exp

{︃
−aν
2

[︂
1 + β1

(aν)α1
+ β2
(aν)α2

+ β3
(aν)α3

]︂2}︃
which writing explicitly the constants α1, α2, and α3 be-
comes

νf (ν) ≃ A1

√︂
2aν
π (12)(︂

1 + 0.1218
(aν)0.585

+ 0.0079
(aν)0.4

+ 0.1
(aν)0.45

)︂
× exp

{︂
−0.4019a

√
ν2.12

[︂
1 + 0.5526

(aν)0.585

+ 0.02
(aν)0.4

+ 0.07
(aν)0.45

]︂2}︃
,

where A1 = 0.93702 and a=0.707. The CDM spectrum
used in the present paper is that of Bardeen et al. (1986)
(equation (G3)). It is important to stress that all numerical
constants (except a) derive from barrier calculations. The
condition

∞∫︁
0

f (ν)dν = 1 . (13)

gives the normalization constant A. Although the parame-
ter a, which gives the number of high mass haloes, could
also be obtained by the excursion set theory with a diffus-
ing barrier, as shown by Maggiore & Riotto (2010), it was
determined as a fit to the massive haloes number in the
simulations of ST.

4 Results
In the present section, we will compare our mass function
with the result of K11, in the redshift range 0 < z < 10, and
with Tinker et al. (2008) (T08).

In Figure 2 (left panel), the solid line plots our MF
given by Eq. (12), the dashed line Eq. (10), namely the ST1
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0
.

Figure 2. Comparison of the mass functions of ST1 and this work with the Bolshoi MF. Left panel: the dashed line represents the ST1 MF,
while the solid line ours. Diamonds represent the Bolshoi MF. From left to right z receives the values 10, 6, 2.5, 0. Right panel: Curves and
symbols are as in the left panel, except that now the dashed line represents the correction by Klypin to the ST MF. Bottom panel: the ratio
between the Klypin’s data and our mass function.
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Figure 3. Same as in Figure 2 but for Tinker’s MF.

MF, and the diamonds with error-bars represent the MF
obtained in the Bolshoi simulation by K11. The z depen-
dence in the MF of this paper, comes just from δc(z). At
z = 0, rightmost curves, the ST1 MF deviates from the sim-
ulation data in less than 10% in the mass range Mvir ≃
5 × 109 − 5 × 1014h−1M⊙. Going to higher redshifts ST1
overpredicts the simulation results, and the overpredic-
tion increases with increasing redshift. At z = 6, and for
masses Mvir ≃ 1 − 10 × 1011h−1M⊙, ST1 predicts 1.5 more
halos than simulations, and the situation is much worse
at z = 10 since the ST1 MF predicts 10 times more haloes
than simulations. Ourmass function (solid line), is in good
agreementwith the simulationswithmaximumdeviations
of≃ 3% calculated by average on each curve from the cen-
tral values, intersecting all the errorbars.

The reason our MF is in better agreement with sim-
ulations than the ST1 mass function is given by the fol-
lowing reasons. ST1 introduced the effects of asphericity
considering an intuitive parameterization of an elliptical
collapse without considering the interaction with neigh-
bors (isolated spheroid), and not the effect of Λ. So, while
their model is an improvement on the PS model based
on spherical collapse, the improvement is partial, and the
MF shows the quoted discrepancies with simulations. In
our model, angular momentum acquisition through tidal
torques, and Λ is taken into account, together with the ef-
fects of dynamical friction. Moreover, ST1 did not consider
the z dependence of δc (as done in many other recent pa-
pers). The previous improvements give rise to aMF in good
agreement with simulations, as we will detail in the fol-

lowing paragraphs. Moreover, barriers like ours, increas-
ing with S allow mergers, and fragmentation. So, the pre-
cise MF is related to the barrier, whose shape depends on
the effects of dynamical friction, those of the cosmological
constant, and those due to the angular momentum.

Klypin, as previously done by several authors (e.g.,
Reed et al. 2003), proposed an improvement to the STmass
function, multiplying it for a correction factor

F(δ) = (5.501δ)4
1 + (5.500δ)4 (14)

According to K11, the corrected mass function gives a MF
having deviations smaller than 10 % from simulations, in
the mass range 5 × 109 − 5 × 1014h−1M⊙. This is shown
in Figure 2 (right panel), by plotting the comparison of the
Bolshoi data with the K11 correction (dashed line), and the
result of our model (solid line). As it is evident, our MF
gives amuch better result than the K11 correction. The bot-
tompanel of Figure 2 shows the ratio betweenK11 data and
our mass function.

As already reported, our result is in agreement with
K11 simulation with T08, of Cohn & White (2008). Our
result, similarly to that of the previous ones, shows an
increasing overprediction of the ST1 MF going to larger
masses and redshifts, togetherwith a steepening of theMF
with mass.

T08 proposed a new SO MF, and discussed its non-
universality. The Tinker f (σ) function is given by

f (σ) = A
(1 + z)0.14

[︃
(

b
1+z)α

σ )
a

(1+z)0.06 + 1
]︃
e−c/σ

2
(15)

where for ∆ = 200² A = 0.186, a = 1.47, b = 2.57, c =
1.19, and α = 0.0106.

Figure 3 shows the comparison of T08 mass function
(dashed line) with the Bolshoi data, and our result (solid
line). The previous result shows that the MF generated
from our barrier is in good agreement both with simula-
tions at z = 0, and with its redshift evolution, with a preci-
sion of the order of 3%.

Finally, in Figure 4, we compare the mass function of
this paper with recent results of Castorina et al. (2016). In
the top panel, the solid line represents Eq. 15 in Castorina
et al. (2016) (ESPτmodel), the points with errorbars shows
the simulation in the same paper for WMAP3 (left panel)
and Planck13 (right panel) cosmologies. The dashed line
is T08, and the dotted line the MF of this paper. The com-
parison is made for two redshifts z = 0, and z = 1.1. The

2 ∆ represents the overdensity in a sphere of a given radius, R∆ at a
given epoch, ∆ = M∆

4π
3 R

3
∆ρ
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THIS PAPERTHIS PAPER

THIS PAPER

Figure 4. Comparison of the mass function of this paper with other mass functions at z = 0, and z = 1.1. The solid line represents Eq. 15 in
Castorina et al. (2016) (ESPτ model), the points with errorbars the simulation in the same paper for WMAP3 (left panel) and Planck13 (right
panel) cosmologies. The dashed line is T08, and the dotted line the MF of this paper. The bottom plot represents the same quantities for
z = 6, and z = 9. The dot-dashed line represents the ST1 MF.

plot in the bottompanel represents the same quantities for
z = 6, and z = 9. The dot-dashed line represents the ST1
MF. Figure 4, confirms the previous results. ST mass func-
tion overpredicts the simulations MF, while T08 is in good
agreement with them. Castorina et al. (2016) MF underpre-
dicts the halo abundance, and the problem increases with

z. Our MF is in good agreement with the simulations data
and T08.

Multiplicity functions like that of Klypin, and Tinker,
or MF data in Castorina et al. (2016), differently from ours
(Eq. 12), are produced by high resolution N-body simula-
tions fits, similar in functional forms to SMT, Jenkins et al.
(2001). These fits have no theoretical foundations, reveal-
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ing the importance of obtaining a realistic analytical form
from first principles. Such form is both able to better "de-
scribe" simulations and physically motivated. TheMF (Eq.
12) obtained in this paper does provide an excellent predic-
tion of high resolution simulations, and at the same time,
derives from solid physical and theoretical arguments.

On top of this theoretical advantage, our approach can
very accurately predict the darkmatter halo distribution at
much lower computational cost than high resolution sim-
ulations. This is because we can derive its functional form
without having to rely on numerical results: it follows di-
rectly by using an improved barrier.

In conclusion, the excursion set approach, with a
structure formation physics motivated barrier, produces
an excellent approximation to the numerical multiplicity
function: improving the barrier form (with more andmore
physical effects: angularmomentumacquisition, non-zero
cosmological constant, etc.) and increases the approxima-
tion accuracy. Moreover, this method displays a remark-
able versatility: any effect, such as the presence of a non-
zero cosmological constant, is very easy to take into ac-
count by embedding it in the barrier.

The role of angular momentum in shaping theMFwas
discussed in section 2, where we showed that it reduces or
prevents structure formation, especially at small scales.

The term involving the cosmological constant has the
same effect as those involving angular momentum and
DF, namely, slowing down the collapse (Del Popolo &
Gambera 1997, 1998, 1999; Del Popolo 2002a). This gives
rise to a delay in large-scale structure formation, reducing
their abundance and steepening the MF. This would also
produce a larger proportion of high-z haloes, that would
be smaller than the resolution of simulations Feyereisen
(2015). At the same time the cosmological constant clearly
decreases the number of halos in the high-mass tail, (Fey-
ereisen private communication and paper in preparation).

Dynamical friction also slows down the collapse, sim-
ilarly to the cosmological constant. Of the three effects
taken into account, angular momentum is the strongest
in slowing down the collapse, followed by dynamical fric-
tion. ³

Before concluding, we want to point out that the
agreement between our MF and the Bolshoi simulation
data could be further improved assuming a slight redshift
dependence of A2 and a, as done in many of the papers
cited in the Introduction.

3 For an alternative description of the effects of tidal shear and an-
gular momentum for the ΛCDM and dark energy models, we refer to
Reischke et al. 2016a,b; Pace et al. 2014.

5 Discussion
In the present paper, we selected physical effects (tidal
field, cosmological constant, and dynamical friction)
known to play an important role in the shaping of the MF
and explainedwhy the PSMF gives bad fits to the observed
MF, and why the ST MF has problems in reproducing it
at high z. At the same time, the approach leaves us with
a semi-analytical form of the MF in very good agreement
with simulations. In this sense our result is much more
physical than that of simulations in general and gives a fit
to their results.

The paper shows that the introduction of a moving
barrier makes the collapse threshold mass-dependent,
contrary to the standard spherical collapse model, but in
parallel with extended models where shear, tidal fields
and/or angular momentum are taken into account.

An interesting feature of a moving barrier is the pos-
sibility to introduce effects such as mergers, tidal torques,
dynamical friction, and cosmological effects such as the
cosmological constant (note that, as it is also pointed out
by Murray et al. (2013), ST, SMT, and ST1, Spedicato et al.
2003 fitted their mass function with an EdS model).

The effect of introducing the cosmological constant
remains minor compared with other effects such as tidal
fields and angular momentum, but both the cosmological
constant and the angular momentum slow down the col-
lapse.

The positive consequence of these aspects is to solve
the PS approach problems, in particular to reduce (in-
crease) the number of objects at low (high) mass.

A similar result has been found for the ellipsoidal col-
lapse in SMT.

The barrier for the first crossing shapes themass func-
tion andmodify its functional formwith respect to the sim-
ple PS formulation. The improved mass function yields
results in very good agreement with N-body simulations
(T08; K11; Castorina et al. 2016 simulation), within 3%
level at z = 0 and during its time evolution.
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