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Abstract 

With respect to the other dimensions of hospital behaviour, studying the presence of 
interaction effects on efficiency involves the issue of which approach is most appropriate 
to incorporate the spatial dependence in the empirical efficiency model. Using a large 
sample of Italian hospitals, this paper explores the presence of spatial dependence in 
technical efficiency. To this purpose, we employ a Spatial Stochastic Frontier Analysis 
(SSFA) that allows us to robustly estimate the efficiency of each hospital while 
considering the presence of spatial dependence. Furthermore, we employ both standard 
spatial contiguity matrix and spatial matrixes exploring the idea of institutional 
contiguity. Overall, the results suggest an insignificant role for spatial dependence in the 
efficiency of Italian hospitals, regardless of the specific form of spatial dependence 
implicit in the weights matrix. 
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1. Introduction 

There is an increasing interest in the health literature on the potential interaction 

effects among hospitals in different aspects of their behaviour. The underlying 

idea is that the behaviour of a given hospital may not be indifferent from that of 

other neighbouring hospitals. In this perspective, Mobley et al. (2009) estimate 

reaction functions in pricing behaviour of hospitals in the US, where prices are not 

fixed, and test strategic complementarity in prices through a spatial econometric 

approach. As for quality, the theoretical literature on hospital competition 

suggests that, under fixed price regulation, hospitals are induced to compete on 

quality with their rivals to attract more patients within the same local market (e.g., 

Gaynor, 2007; Brekke et al., 2011). In this respect, Gravelle et al. (2014) find that 

hospitals in the UK are strategic complements in many, even if not all, quality 

dimensions. In a similar perspective, Guccio and Lisi (2016) investigate whether 

the inappropriate behaviour of hospitals is affected by that of their peers, finding a 

significant presence of peer effects in Italy. 

This paper explores the presence of spatial dependence in the efficiency 

behaviour of Italian hospitals. With respect to the other dimensions of hospital 

behaviour, studying the presence of interaction effects on hospital efficiency 

involves the additional issues of measuring the efficiency in the hospital sector 

(e.g., Mutter et al., 2011; Rosko and Mutter, 2011; Hollingsworth, 2012) and, 

most importantly, of which approach is most appropriate to incorporate the spatial 

dependence in the empirical efficiency model. Nonetheless, a few recent studies 

have investigated the presence of spatial dependence in hospital efficiency. 

Herwartz and Strumann (2012) implement a two-stage analysis where, in the first-

stage, hospital efficiency is estimated by means of non-parametric (i.e. Data 

Envelopment Analysis, DEA) and parametric (i.e. Stochastic Frontier Analysis, 

SFA) frontier models and, then, standard spatial models (i.e. SARAR) are 

employed that account for spatial interdependence among hospitals. They 

conclude that, after the introduction of a prospective hospital reimbursement in 

Germany, the rise in competition for low cost patients has induced a negative 

spatial interdependence in hospital efficiency. In the UK, Longo et al. (2017) 

investigate the presence of spatial dependence in hospital efficiency by estimating 
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different spatial models (i.e. SAR, SAC, cross-sections and panels) on several 

efficiency indicators, such as bed occupancy rate and cost indices for many 

hospital activities. As for the efficiency, their findings suggest the absence of 

spatial dependence among hospitals, consistently with their theoretical 

framework. 

In this study, to the best of our knowledge, we employ for the first time in 

the health literature the Spatial Stochastic Frontier Analysis (SSFA) proposed by 

Fusco and Vidoli (2013), an integrated empirical approach that allows estimating 

the efficiency of each hospital, considering at the same time the potential presence 

of spatial dependence among hospitals. More specifically, the SSFA extends the 

standard error decomposition of the SFA model by adding a spatial autoregressive 

specification in the inefficiency term. As better discussed in the following, this 

approach has many important advantages with respect to two-stage approaches. In 

particular, when spatial dependence among decision making units (DMUs) is 

significant, the standard approaches to estimate the efficiency of DMUs (such as, 

DEA and SFA) have proved to generate biased results as they ascribe to the 

inefficiency term a part of the spatial dependence (e.g., LeSage, 1997). Therefore, 

two-stage efficiency models fail to provide a robust inference in the second-stage 

results. On the contrary, as the SSFA is immediately comparable with the 

corresponding SFA (i.e. without spatial autoregressive term), the former allows 

inferring robustly the presence of spatial dependence in hospital efficiency (e.g., 

Vidoli et al., 2016). 

In general, a robust empirical approach seems to be especially important in 

exploring spatial dependence in hospital efficiency, as fairly any empirical finding 

could be deemed to be reasonable on the theoretical ground. On the one hand, it 

might be argued that, when prices are fixed and hospitals compete for low cost 

patients, those hospitals that are successful in attracting low cost patients use 

relatively less resources with respect to contiguous hospitals treating more 

complex patients, thus implying a negative spatial interdependence in hospital 

efficiency (e.g., Herwartz and Strumann, 2012). On the other hand, it might be 

also expected that, when public hospitals share the same health authority, being 

surrounded by many efficient hospitals could induce to be more efficient in the 
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use of public resources, resulting in a positive spatial dependence. Finally, it is 

worth mentioning that rigorous theoretical models of hospital competition predict 

that, while hospitals are likely to be strategic complements in quality, they are 

independent in efficiency (e.g., Longo et al., 2017), consistently with an 

insignificant spatial dependence. 

Looking at our study, the Italian National Health System (NHS) is a 

particularly interesting institutional context for investigating the presence of 

spatial dependence in hospital efficiency: in the last two decades, there has been 

an extensive devolution of healthcare responsibilities to regional governments 

(e.g., France et al., 2005). Therefore, significant differences exist in the regional 

health systems that, in turn, give rise to a large variability in the efficiency results 

of Italian hospitals (e.g., Barbetta et al., 2007; Cavalieri et al., 2016); under this 

perspective, in our empirical analysis such large variability in hospitals’ behaviour 

could be exploited to disentangle the different sources of hospital production. 

Our results are fairly consistent across different models and testing 

procedures, overall suggesting an insignificant role for spatial dependence in the 

efficiency of Italian hospitals, regardless of the specific form of spatial 

dependence implicit in the weights matrix. Therefore, in line with Longo et al. 

(2017), there does not seem to be a significant presence of spatial dependence in 

the efficiency behaviour of Italian hospitals. 

The reminder of this paper proceeds as follows. In Section 2, we provide the 

methodological background for the study. Section 3 presents the dataset and the 

empirical strategy employed to test for the presence of spatial dependence in 

hospital efficiency. Then, in Section 4, we discuss the results of our empirical 

analysis. Section 5 concludes with some final remarks. 

 

2. Methodological background 

Spatial econometrics applications have progressively attracted the interest of 

researchers in health economics (Moscone and Tosetti, 2014) due to the 

importance of analysing the effects of geographical and institutional 

interdependencies on both the input and output variables of neighbouring units 
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(e.g., local health authorities, hospitals, etc.). Most of the existing literature 

focuses on the relevance of spatial interactions in the case of health expenditures 

(Lippi Bruni and Mammi, 2015) and on the quality levels of health services 

provided by hospitals (Gravelle et al., 2014). The analysis of the influence of 

spatial patterns in the efficiency of hospitals, however, has received limited 

attention to date. In principle, the efficiency of a given hospital can be affected by 

the efficiency of neighbouring hospitals as a consequence of strategic interactions 

and common geographical and institutional factors (Longo et al., 2017). On policy 

grounds, moreover, investigating the role of spatial effects in explaining 

differences in efficiency across hospitals can be useful in order to evaluate the 

potential implications of hospitals’ merging and antitrust policies, as well (Brekke 

et al., 2016).  

Using the SSFA approach recently presented by Areal et al. (2012) and 

Fusco and Vidoli (2013), our work pursues two main objectives. First, we 

empirically test the presence of spatial heterogeneity in technical efficiency of 

Italian hospitals by comparing the results obtained from a standard non-spatial 

SFA with those generated by a SSFA. In particular, the SSFA framework 

employed in this paper allows for the decomposition of the inefficiency terms in a 

spatial autoregressive component (i.e. a spatial lag) and a unit-specific term and, 

more importantly, provides results that are comparable with those arising from a 

standard non-spatial SFA (Vidoli et al., 2016). This adds to the work of Longo et 

al. (2017), where spatial interactions in efficiency are modelled by applying 

spatial econometric models to indicators of efficiency for different units.1 Second, 

our analysis complements previous findings in spatial health econometrics by 

introducing spatial dependence in the estimation of hospital efficiency in a more 

robust way. In fact, the application of the SSFA is found to be more consistent 

than the two-stage procedures used in Herwartz and Strumann (2012) for 

investigating spatial issues in technical efficiency. This is because the former 

approach provides efficiency estimates that are robust to the presence of spatial 

                                                           
1 Differently from Longo et al. (2017) that use panel data, which are helpful for checking 
the consequences of time-varying effects, we apply the SSFA methodology to cross-
section observations. For a discussion on the application of SSFA to panel data, see Chen 
et al. (2017) and Glass et al. (2016). 
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heterogeneity. In addition, we consider the Italian case where spatial 

characteristics have been already found to be relevant for the study of the health 

sector (Guccio and Lisi, 2016) as well as of other economic aspects (Tsionas and 

Michaelides, 2016). 

We now start presenting the main features of the SSFA modelling approach 

that is used in the following empirical analysis. Specifically, for each unit of 

observation (i.e. the hospital), the Normal/Half-Normal spatial SFA model can be 

written as follows2: 

log���� = log	
���; ��� + �� − �� =
= log	
���; ��� + �� − �1 − � � ���

�
�� ���                                    �1� 

where ��  is the output of hospital i, ��  denotes the input vectors, 
 is a generic 

parametric function – in our case a Cobb-Douglas or a Translog function – 

��~��� ��0, "#$�, ��~��� �%	0, �1 − � ∑ ���� �$ "'�$�, ��� ~�	0, "'�$�. Observe that, 

��  and ��  are ���  with respect to each other and the covariates, as well. The 

inefficiency term �� depends on the spatial lag parameter � and the spatial weights 

matrix W: that is, the level of technical efficiency of a given hospital can be 

influenced by the efficiency levels of the other hospitals ( ≠ � on the basis of the 

particular neighbouring effects that are modelled through the elements of the 

spatial weights matrix. Simply put, in this framework spatial effects are modelled 

by introducing a spatial error autoregressive specification in the inefficiency term 

of the standard SFA error structure. For a sample of n DMUs, Fusco and Vidoli 

(2013) have shown that the log-likelihood of the relation in Eq. (1) reads as:    

                  *��|, ,, "$, �� = 2 � ./�0"� 11 − 2�,0" �34
5

�6�
                         �2� 

                                                           
2 Whenever possible we follow the notation used in Fusco and Vidoli (2013), where a 
more detailed discussion on the SSFA approach used in this paper can be found.  
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where " = 7"#$ + �8�����$"'�$; , = �9�:��;<=>�=?  and /(.) and 2(.) are the standard 

normal density and distribution functions, respectively. Eq. (2) can be then 

maximized with respect to the parameters by maximum likelihood.3 

As underlined by Vidoli et al. (2016), the SSFA has three main advantages. 

First, by overcoming the potential biases present in standard non-spatial SFA 

(LeSage, 1997), it provides an estimation of technical efficiency that is robust to 

the presence of spatial effects. Second, the estimation of technical efficiency by 

the SSFA modelling approach does not suffer from the biases occurring in spatial 

applications based on two-stages SFA techniques (Wang and Schmidt, 2002)4. 

Third, SSFA results are comparable with those obtained from the application of 

standard non-spatial SFA; indeed, this aspect is especially important as our main 

objective is to assess the occurrence of spatial interactions in technical efficiency 

among Italian hospitals. 

One additional advantage of the SSFA approach concerns the fact that it 

represents an ideal framework for distinguishing the presence of strong and weak 

spatial or cross-sectional effects (Bailey et al., 2016). On the one side, the 

introduction of regional fixed-effects in Eq. (1) makes it possible to control for the 

influence of strong spatial effects: that is, common (geographical and 

institutional) factors affecting technical efficiency of hospitals located in the same 

region. In this respect, the regional organization of the Italian health system and 

the presence of significant economic and social differences across the twenty 

regions suggest that common factors could play a significant role in shaping 

technical efficiency of hospitals (Atella et al., 2014; Cavalieri et al., 2016). On the 

other side, the parameter � within the inefficiency term captures residual or weak 

                                                           
3 For a different estimation procedure of Eq. (1), see Areal et al. (2012) that adopt a 
Bayesian procedure relying upon the combination of a Gibbs sampler and two 
Metropolis-Hastings steps. 
4  More specifically, the two-stage approach has serious drawbacks if the vector of 
efficiency variables is correlated with the vector of production function parameters, 
making the coefficient estimates of the production function biased (Wang and Schmidt, 
2002). However, within the non-parametric frontier framework, Simar and Wilson (2007) 
propose a bootstrap truncated DEA two-stage approach that ensures a feasible, consistent 
inference for the parameters estimated. For a comparative analysis of the SFA two-stage 
estimates and DEA two-stage approach, see Schmidt (2011). 
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spatial effects in our sample: that is, the presence of spatial interactions across 

neighbouring units once common factors are controlled for. Therefore, the 

application of the SSFA approach allows  taking into consideration the two main 

sources – common factors and neighbouring effects – of spatial interactions that 

can potentially occur when studying hospitals efficiency (Longo et al., 2017). 

 

3. Empirical strategy and data 

3.1. Empirical strategy 

Since the ‘90s, a set of reforms aiming to promote regionalization and managed 

competition within the Italian NHS has widely shaped the hospital sector. The 20 

Regional Health Authorities (RHAs) are now in charge of deciding how to 

organize and finance healthcare for their population. Particularly, they have full 

discretion of deciding whether to provide healthcare services beyond the 

mandatory standard benefit package defined at the central level (i.e. Livelli 

Essenziali di Assistenza).  

The decision-making autonomy of the regions has concerned a number of 

important health issues, first of all the organizational set-up of regional healthcare 

systems. Among others, regional governments have been asked to decide: 1) on 

the number of local health authorities (LHAs) in which to divide their territory5; 

2) whether to leave hospitals under LHA management, or grant them the status of 

trusts with full managerial autonomy (Aziende Ospedaliere, AO); 3) the degree of 

involvement of private providers. The regional choices have been reflected in a 

great heterogeneity of regional health models, especially concerning the mix of 

hospital care supply. Hospital providers can, thus, include public hospital units 

directly run by LHAs (Ospedali a Gestione Diretta or Presidi Ospedalieri), public 

hospital trusts formally independent of LHAs (i.e. AO), and accredited private 

hospitals (either for-profit or not-for-profit) that compete with the public hospitals 

in the delivery of services.  

                                                           
5 The RHAs act through a network of geographic- or population- based LHAs, which are 
independent public entities with their own budgets and management. 
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Different regional healthcare models have resulted in marked geographical 

differences in terms of hospital size (as measured by hospital beds), volume of 

activity (as measured by the number of treated patients) and case-mix complexity 

(as measured by the case-mix index). Particularly, Graph 1 (left side) depicts the 

average number of beds per public hospital at regional level: the regions in the 

North of Italy show a larger average hospital size than those in the South and the 

two main Island. The picture does not change a lot when private accredited 

hospitals are also included (right side). In Graph 2, Italian regions are compared 

with regard to the average hospital (both public and private accredited) number of 

discharged acute patients (left side) and the average case-mix index (right side). 

With very few exceptions, the north-south divide continues to exist.  

 

- GRAPH 1 about here – 

- GRAPH 2 about here – 

 

A number of empirical studies have investigated the efficiency of Italian 

hospitals, albeit with different scopes and methodologies. Among these, Barbetta 

et al. (2007) examine behavioural differences between public and private not-for-

profit hospitals following the introduction of the DRG-based payment system in 

the Italian NHS. They estimate an output distance function and apply both 

parametric (COLS and SFA) and non-parametric (DEA) approaches to a balanced 

panel of 531 Italian hospitals between 1995 and 2000. The authors conclude that 

differences in economic performances between competing ownership forms are 

more the result of the institutional settings in which they operate than the effect of 

the incentive structures embedded in the different ownership forms. Daidone and 

D’Amico (2009) adopt a distance function approach and stochastic frontier 

techniques to analyse the impact of the productive structure and the level of 

specialization of hospitals on the technical efficiency of a 6-year panel of Italian 

hospitals. Controlling for environmental variables and hospital case-mix, they find 

that inefficiency is negatively associated with specialization and positively 

associated with capitalization. Cavalieri et al. (2016) employ a two-stage DEA, in 
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which the estimated efficiency scores of Italian hospitals are regressed on 

different environmental variables, to investigate the impact of the use of DRG-

based prospective payment systems on hospitals’ efficiency. 

Building on this literature, in our empirical analysis we start by estimating 

standard parametric frontier models (i.e., OLS, COLS, SFA) under different 

assumptions on the functional form of the production function (i.e., Cobb-Douglas 

and Translog) and testing for the presence of spatial dependence in efficiency by 

the Moran’s I test. Then, we estimate the SSFA models to obtain hospital 

efficiency scores robust to the presence of spatial dependence, which allows 

inferring the significant presence of spatial dependence in hospital efficiency (e.g., 

Vidoli et al., 2016). As for the spatial weights matrix, we first consider a standard 

spatial contiguity matrix, and, then, check the robustness of the results with 

respect to other different spatial matrixes exploring the idea of institutional 

contiguity, which might be relevant in our context (Atella et al., 2014; Guccio et 

al., 2016). Specifically, the spatial contiguity matrix in our estimates is based on 

the Euclidean distance between hospitals. Therefore, we call @ ∈ B5C5  an 

Euclidean distance matrix (EDM) if there exist points D�, D$, … , D5 (i.e. hospital 

locations expressed as latitudes and longitudes) such that: 

     ��F = GD� − DFG$
 for �, ( = 1,2, … , H.               (3) 

In particular, every EDM is a nonnegative symmetric matrix with zeros on 

its main diagonal, but not vice versa. 

 

3.2. Data 

The data used in this paper are provided by the Italian Ministry of Health 

(specifically, the Department of Healthcare) and refer to hospital discharge 

records and activity information. The final sample comprises cross sectional data 

on 866 hospitals, both public and private (for-profit and not-for-profit)6, working 

                                                           
6 To control for existing differences in the sources of funding between public and private 
hospitals, we restrict the analysis of the latter category only to those services covered by 
public funds (i.e. the number of beds accredited with the NHS and a proportional fraction 
of their personnel). 



11 

 

on behalf of the Italian NHS in the year 2010. Table 1 shows the composition of 

the sample by geographical area. Overall, the sample covers 66.8% of the total 

hospital discharges for acute patients in Italy in the year 2010 (i.e. 10.396.714 

discharges). Most of the hospitals included in the sample are located in the South 

and the two main Islands of the country (49%), followed by the North (29%) and 

the Centre (22%). However, looking at the total number of discharges of acute 

patients, the previous picture is reversed: around 44% of discharges are placed in 

the northern regions while only 36% in the southern regions and 20% in the 

central ones. The latter geographical distribution is further confirmed by the 

average number of acute discharges by hospitals and, indeed, is consistent with 

the Italian reality where many small-sized hospital structures operate in the South 

and the Islands. 

 

- TABLE 1 about here – 

 

The dataset contains information on different inputs that are usually taken 

into consideration in the literature on hospital efficiency. Among these, the 

number of hospital beds is included as a proxy measure of capital. Labour inputs 

are measured by the number of full time equivalent personnel units (physicians, 

nurses, and others). As for the measurement of output, hospitals are recognized 

to provide highly different products in terms of quality and quantity, thus calling 

for a multiple output approach. However, frontier techniques are better suited to 

estimate efficiency when the product is homogeneous and one-dimensional (e.g., 

Daidone and D’Amico, 2009). This is because multiple output efficiency 

techniques require the estimation of a distance function that incorporates 

discretional choices regarding what type of outputs to include in the analysis and 

what output is to be used to normalize the others.  

To overcome all these problems and to account for technology differences 

among units in the production of hospital care, we restrict our analysis only to 

acute patients and we employ a single output approach. This is computed in two 

steps. First, for each hospital the revenue is estimated in monetary terms by 
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applying the national DRG system (Ministry of Health Decree of December 18, 

2008) and the tariff agreement for interregional mobility (Tariffa Unica 

Convenzionale, TUC, 2012) to all discharged acute patients. By employing the 

national tariff system, we are able to offset both inter- and intra-regional 

differences in tariffs for the same DRG. Specifically, inter regional differences are 

related to the fact that each region is entitled to adopt either its own tariff system 

or the national one, while intra-regional differences refer to the possibility that 

regions differentiate tariffs according to the typology of hospital providers (e.g., 

public versus private; teaching versus non-teaching; etc.). A picture of the 

distribution of hospital monetary revenue by geographical area is provided in 

Table 2. Overall, revenue differences among geographical areas replicate those 

presented in Table 1 and concerning the total number of discharges of acute 

patients.  

 

- TABLE 2 about here – 

 

Second, to make easier the interpretation of the estimates of the production 

function, we transform the monetary hospital revenue dividing it by the base DRG 

point according to the TUC 2012 (2,049 euros). Therefore, our output variable 

measures hospital revenue in terms of DRG points 7 . Table 3 presents the 

descriptive statistics of the main variables used in the specification of the 

production function. 

 

- TABLE 3 about here – 

 

                                                           
7  Indeed, measuring output in terms of total virtual revenue would make hospitals 
homogeneous with regard to their choices of treating the patient in a day-hospital or 
inpatient setting. Otherwise, applying simple DRG weights would make those hospitals 
where the day hospital regimen is mostly used – for instance due to a favorable regional 
tariff system – appear as systematically more efficient than the others, simply because the 
DRG weights are the same but the day hospital treatment requires less inputs, ceteris 

paribus. 
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4. Results 

4.1 Baseline efficiency estimates 

A number of different functional forms are used in the literature to model 

production functions (e.g., Mutter et al., 2011; Rosko and Mutter, 2011; 

Hollingsworth, 2012). Among these, the Cobb–Douglas and the Translog 

functional forms are probably the most well-known. The Cobb–Douglas allows 

interpreting coefficients as output elasticities (i.e. covariates are all expressed in 

logs) and it is easy to interpret. However, its main drawback is that it assumes 

constant input elasticities and return to scale for all hospitals. In this regard, the 

Translog form imposes fewer restrictions on production and substitution 

elasticities, but it is susceptible to degrees of freedom problems and 

multicollinearity. Both Cobb-Douglas and Translog functions are linear in 

parameters and can be estimated using least squares methods. In this study, we 

employ the Cobb-Douglas form as the baseline specification and the Translog 

form as a robustness check8. 

As a first step of our analysis, we run a OLS regression with a log–log 

functional form in order to provide a simple test for the presence of technical 

inefficiency in the data. The general form of the Cobb-Douglas production 

function used in our cross-sectional one-output stochastic frontier model is as 

follows: 

ln (DRG_W_REVENUE)ij = β0 + β1 ln (BEDS)ij + β2 ln (PHYSICIANS)ij + β3 ln 

(NURSES)ij + β4 ln (O_PERS)ij + ΣΣΣΣ βj REGIONj + εi                  (4) 

 

       εi = νi - μi                      (5) 
 
where i denotes hospital,  j refers to region, REGIONj is a vector of regional 

dummies, and ε is the composed error term.  The latter have two components: ν is 

an error term and μ is a vector of inefficiency terms with non-negative values. 

                                                           
8 In the empirical literature there is a large debate on which functional form is the most 
appropriate. The Translog production function is generally recognized to be more flexible 
than the Cobb-Douglas one, though it can also result in incorrect efficiency results for 
observations that are not close to the mean scale (Kumbhakar and Lovell, 2000). 
Furthermore, the Cobb–Douglas specification allows interpreting coefficients as output 
elasticities as the covariates are all expressed in logs.  
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All the variables included in the model, except for the regional dummies, are in 

logarithms. 

Results from OLS regression are reported in Table 4 for the specification 

without (1) and with (2) regional fixed effects. These are included to account for 

the potential effects of differences in regional regulatory contexts on hospital 

production, and are intended to control for the effects of common (geographical 

and institutional) factors affecting technical efficiency of hospitals.  

 

- TABLE 4 about here – 

 

Overall, the results confirm the validity of the Cobb-Douglas functional 

form. For both specifications, the intercept (though positive) and all covariates are 

highly significant (at the 1% level), the R-squared is high (around 0.86) and the 

first-order homogeneity condition of the production function in inputs is verified. 

Comparing the two specifications, regional fixed effects seem to play a relevant 

role in explaining the hospitals’ production process as shown by both the joint 

significance of the F-test and the slightly lower AIC value. 

 

- GRAPH 3 about here – 

 

To check for the validity of our models’ stochastic frontier specifications, 

we test the (negative) skewness of residuals. In Graph 3, the histograms of the 

OLS residuals of both our models are plotted compared to a normal density. The 

skewness test (Schmidt and Lin, 1984) does not reject the null hypothesis of no 

skewness but is not statistically significant. However, the M3T statistic suggested 

by Coelli (1995) provides highly statistically significant evidence of negative 

skewness for both models (-9.3929 and -9.6655, respectively). For both our 

models, Graph 3 also depicts the histograms of the corrected OLS (COLS) and 

corrected Median Absolute Deviation (CMAD) efficiency estimates. In both cases 



15 

 

and for both models, the mean efficiency values are quite similar (between 0.25 

and 0.28) and dispersions of efficiencies are not very reasonable. 

To assess the technical efficiency of hospitals, an output-oriented stochastic 

frontier model is estimated9 under the hypothesis of half normal distribution of 

residuals (Kumbhakar, 1990). As shown in columns (1) and (2) of Table 5, where 

a Cobb Douglas functional form is used to mimic the hospital production function 

(without and with regional dummies, respectively), the SFA parameters are quite 

similar to those arising from the baseline OLS model while the intercepts continue 

to be positive but slightly increase in absolute value. This is consistent with the 

fact that the production function has been shifted from the average values to 

efficient ones without affecting the relationship between output and inputs (Vidoli 

et al., 2016). Moreover, for both specifications, the highly significance (at the 1% 

level) of the likelihood ratio (LR) test confirms the goodness-of-fit of the SFA 

model. As a robustness check for these findings, we also use a Translog functional 

form that imposes less restrictions then the Cobb-Douglas one. The results from 

(3) and (4) of Table 5 further confirm the previous conclusions concerning the 

validity of the SFA model. Again, under both assumptions on the functional form, 

the SFA specification with regional fixed effects is proved to be slightly better 

than that without fixed effects. From Table 5, the estimates of the gamma 

parameter (γ) 10  range from 0.67 to 0.73, meaning that the variation in the 

composite error term is largely due to the inefficiency component. As for the 

mean efficiency score, it varies from 0.70 to 0.72, depending on the model and the 

specification. Therefore, there is room for around 30% average improvement in 

hospital output, keeping constant inputs and technology. 

 

- TABLE 5 about here – 

- GRAPH 4 about here – 

 

                                                           
9 All estimates are performed with the R package ‘ssfa’ (Fusco and Vidoli, 2015). 
10 The gamma parameter (γ) can take values from 0 to 1. When the value is close to zero, 
all deviations from the frontier are attributed to noise. Instead, when the value is equal to 
unity, all deviations are caused by technical inefficiency of the DMUs. 
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Graph 4 displays histograms, the pairwise correlation matrix and the 

geographical distribution of the SFA efficiency estimates presented in Table 5. On 

the whole, the four histogram pictures look very similar with regard to the shape 

of their distribution, thus telling the same story. The covariance matrix further 

confirms that the distributions are highly correlated between them (r>0.9). 

Looking at the geographical distribution of the efficiency scores, in all the 

estimated models hospitals located in the Centre and North of Italy tend on 

average to be slightly more efficient than those operating in the South, also 

showing a lower dispersion of values around the mean. 

 

4.2 Spatial Stochastic Frontier Analysis  

Traditional SFA model assumes that the DMUs are mutually independent, thus 

ruling out the possibility of their performance being affected by neighbours’ 

behaviours. To account for hospital efficiency interactions across space we 

perform some preliminary tests based on the global Moran’s I statistic (Moran, 

1950). To this purpose, a contiguity symmetric spatial weights matrix based on 

the Euclidean distance between hospitals is employed (see Section 3.1 for details). 

Graph 5 displays the global Moran’s I statistic for the four SFA models presented 

in Table 5. The global Moran’s I statistic is never statistically significant, 

implying no spatial autocorrelation between SFA efficiency estimates.  

 

- GRAPH 5 about here – 

 

Furthermore, a common visual tool to explore spatial data is the Moran’s 

scatterplot, where the (standardized) values for each DMU on the x-axis are 

plotted against the respective spatial lag values on the y-axis. Graph 5 displays the 

Moran’s scatterplots for the residuals of each of the SFA models in Table 5. The 

Moran’s scatterplot allows identifying four different quadrants, each of which 

presents a different type of spatial association between a hospital and its 

neighbours. In the Graph, residuals are almost uniformly distributed in the four 



17 

 

quadrants and mainly aligned along the x-axis. This distribution suggests neither 

positive nor negative spatial dependence for SFA residuals. 

Then, we test the absence of spatial effects for our data by employing the 

SSFA approach firstly proposed by Fusco and Vidoli (2013). Therefore, by 

separating the spatial component from the individual efficiency of the DMUs, the 

SSFA allows us to estimate robustly the efficiency of each DMU and to test for 

the presence of spatial interactions in efficiency (Vidoli et al., 2016). The results 

from estimations of the previous four models are reported in Table 6, using an 

Euclidean distance-based spatial weights matrix. In all of the cases, the input 

coefficients are similar to those obtained from the SFA. Looking at the gamma 

parameter (γ) for each SSFA model, it is worth noting that they are fairly equal to 

those for the non-spatial SFA models in Table 5. This suggests that the spatial 

autoregressive component in the SSFA has not contributed a lot to explain the 

variance of hospitals’ performance (Vidoli et al., 2016). Furthermore, the "IJ'$  

exhibit high values, further confirming that the inefficiency variance is almost 

entirely due to DMUs’ specificities.  

As a robustness check for our spatial estimates, we employ an extension of 

the Spatial Error Model (SEM; Anselin, 1988) to the SFA model, proposed by 

Pavlyuk (2015). More specifically, the SEM model allows for spatial correlation 

of the random term values. In the simplest first-order autoregressive case, the 

error term can be expressed as:  

0 = �@0 + 0̃                                                                �6� 

where � is an unknown coefficient describing spatial heterogeneity, W is a spatial 

weights matrix and 0̃~��05, "M$N5�. The approach proposed by Pavlyuk, (2015) is 

simply a direct extension of the SEM model to stochastic frontier models that 

account for the presence of spatial heterogeneity: 

O = �@O + OP                  (7) 

Being the structure of spatial dependence expressed by a non-spherical error 

covariance matrix, OLS remains unbiased, but it is no longer efficient and the 

classical estimators for standard errors will be biased. Therefore, Maximum 
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Likelihood Estimation (MLE) is used in Table 6.11 All in all, previous estimation 

results as well as main conclusions about the limited role of spatial effects in 

explaining the variance of DMUs’ efficiency levels are confirmed. 

 

- TABLE 6 about here – 

 

4.3 Robustness checks 

Thus far, in all our testing strategies for the presence of spatial dependence in 

efficiency we have emphasized the standard spatial contiguity as the form of 

interdependence among hospitals. However, one could reasonably argue that in 

our specific application the interdependence among hospitals might come from 

other social and/or institutional forces than the spatial proximity. For instance, it 

could be expected that sharing the same LHA might induce hospitals to pay 

attention to the efficiency behaviour of other hospitals under the same authority 

regulation. Therefore, to further test the presence of interdependence in the 

efficiency behaviour of hospitals, in the following we run two robustness checks 

by considering two different specifications of the spatial weights matrix. In 

particular, as a first robustness check, we specify the spatial weights matrix (not 

based on the geographical contiguity but) based on belonging to the same LHA, in 

order to test the form of interdependence discussed above. Specifically, the row-

standardized spatial weights are as follows: 

��F =  Q 1HRST  −  1      �
 *UV� = *UVF
0                     WXℎZ[��\Z                                                                         �7� 

where HRST  indicates the total number of LHAs. In Eq. (4) the efficiency 

behaviour of hospitals is correlated with that of other hospitals under the same 

LHA regardless of the geographical contiguity, thus emphasizing the primary role 

of institutions in affecting hospitals’ behaviour (Atella et al., 2014; Guccio and 

Lisi, 2016). Finally, we run a similar robustness check at the province level, 

                                                           
11 All estimates are performed with the R package ‘spfrontier’ (Pavlyuk, 2016). 
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implying that the efficiency behaviour of hospitals is correlated with that of other 

hospitals within the same province. 

Table 7 shows the results of our SSFA estimates with the spatial weights of 

Eq. (7) at the LHA level. Overall, compared to the previous results, fairly nothing 

changes both in the parameters of the production function and in the sigma 

parameters of the SSFA model. In particular, looking at the gamma parameters 

�^� in Table 7, it can be seen again that they are fairly equal to those for the non-

spatial SFA models in Table 5. As presented in Table 8, a similar picture can be 

seen also for the SSFA estimates with the spatial weights at the province level. 

Therefore, these robustness checks further support our conclusion of an 

insignificant role of spatial dependence in the efficiency behaviour of hospitals, 

regardless of the specific form of spatial dependence implicit in the weights 

matrix. 

 

- TABLE 7 about here – 

- TABLE 8 about here – 

 

5. Concluding remarks 

This paper explores the presence of spatial dependence in the technical efficiency 

of Italian hospitals. With respect to previous approaches, we employ the SSFA 

model proposed by Fusco and Vidoli (2013) that allows us to get hospital 

efficiency scores robust to the presence of spatial dependence and, then, to 

robustly infer the significant presence of spatial dependence in the technical 

efficiency of hospitals. Overall, our findings suggest an insignificant role for 

spatial dependence in the efficiency of Italian hospitals, irrespective of the 

functional form of the production function (i.e. Cobb-Douglas and Translog) and 

of the specific form of spatial dependence implicit in the weights matrix (i.e. 

spatial contiguity, institutional contiguity). Therefore, we conclude that it does not 

seem to be a significant presence of spatial dependence in the efficiency 
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behaviour of hospitals, consistently with the economic theory (Longo et al., 

2017). 

Comparing our results with the previous evidence on this issue, they are in 

line with those provided by Longo et al. (2017) for hospitals in the UK. However, 

our findings are in contrast to the evidence in Herwartz and Strumann (2012) that, 

employing a two-stage approach, find a significant negative spatial 

interdependence among German hospitals, presumably due to the competition 

induced by the introduction of a DRG-based prospective reimbursement system. 

Since in the Italian NHS, as well as in the UK, the main hospital reimbursement 

mechanism, though with a few differences, is also a DRG-based prospective 

system, such difference in the results would not seem to depend strongly on the 

different institutional contexts, but rather is supposed to depend on the robustness 

of the empirical approach to incorporate spatial dependence in the efficiency 

analysis. Under this perspective, the methodological approach employed in this 

paper provides a more consistent way to estimate the efficiency of hospitals in 

presence of spatial dependence and, in turn, to test its significant role in affecting 

the efficiency behaviour of hospitals. Indeed, apart from offering a more accurate 

description of hospitals’ behaviour, the robust estimation of the presence of spatial 

dependence in hospital efficiency has also important policy implications in terms 

of the effects of competition and merging policies in the healthcare market (e.g., 

Brekke et al., 2016; Longo et al., 2017), underlining the importance of the 

proposed robust approach. 
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Tables and Graphs 

  
 

Graph 1. Geographical distribution of Italian hospitals by average number of beds 
(year 2010) 

Average number of beds per hospital (only 
public) 

Average number of beds per hospital (public and 
accredited private) 

  

Source: our elaboration on data provided by the Italian Department of Healthcare (Ministero della Salute, 2013) .  
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Graph 2. Geographical distribution of Italian hospitals by average number of 
discharged acute patients and case-mix index (year 2010) 

Average number of discharged acute patients per 
hospital (public and accredited private) 

Average case-mix index (public and accredited 
private) 

 
 

Source: our elaboration on data provided by the Italian Department of Healthcare (Ministero della Salute, 2012).  

 

 

Table 1. Sample composition by geographical area – year 2010 

Geographical area 

Hospitals Discharges  
Average discharges 

(acute patients) N. obs. % 
Discharges  

(number of acute patients) 
% 

             North 255 29.45 3,025,431.79 43.55 11,864.44 

             Centre 188 21.71 1,414,961.64 20.37 7,526.39 

South and islands 423 48.85 2,506,288.18 36.08 5,925.03 

All sample 866 100.00 6,946,681.61 100.00 8,021.57 

Source: our elaboration on data provided by the Italian Department of Healthcare. 

 

 

 

Table 2. Sample statistics of virtual revenue composition by geographical area – year 2010 

Geographical area N. obs. Average estimated revenue S.D. 

             North 255 48,687,322.24 52,317,365.70 

             Centre 188 30,046,264.46 44,645,848.96 

             South and islands 423 21,010,405.28 28,206,740.75 

All sample 866 31,121,670.12 41,999,995.80 

Source: our elaboration on data provided by the Italian Department of Healthcare. 
Notes: virtual revenue estimated using the national DRG system (Decreto del Ministero della Salute del 18 dicembre 

2008) and the tariffs system agreement for interregional mobility (TUC 2012) for all discharged acute patients at 
hospital level (in euro). 

(7916.44,12064.9]
(5887.53,7916.44]
(4771.38,5887.53]
[3145.88,4771.38]

(1.07,1.17]
(1.025,1.07]
(.98,1.025]
[.92,.98]



28 

 

 

Table 3. Descriptive Statistics of the employed variables 

Variables Meaning 
Descriptive Statistics 

Obs. Mean S.D. 

DRG_W_REVENUE Revenue weighted by TUC tariff for basic one point DRG (2,490 euro) 866 12,498.76 16,866.53 

BEDS Number of beds, at hospital level 866 205.20 248.15 

PHYSICIANS  Number of full time equivalent physicians, at hospital level 866 135.34 171.95 

NURSES  Number of full time equivalent nurses, at hospital level 866 287.10 404.46 

O_PERS Number of full time equivalent other personnel, at hospital level 866 247.65 379.65 

Source: our elaboration on data provided by the Italian Department of Healthcare. 

 

Table 4. OLS estimates  

VARIABLES 
 Dependent variable DRG_W_REVENUE (log) 

(1) (2) 

Constant 
3.7260*** 3.8399*** 

(0.0789) (0.1726) 

BEDS (log) 
0.4902*** 0.4877*** 

(0.0383) (0.0381) 

PHYSICIANS (log) 
0.2855*** 0.2694*** 

(0.0314) (0.0321) 

NURSES (log) 
0.1807*** 0.1845*** 

(0.0315) (0.0318) 

O_PERS (log) 
0.1142*** 0.1227*** 

(0.0373) (0.0397) 

Observations 866 866 

Regional dummies no yes 

F (p-value) 0.0000 0.0000 

AIC 1151.105 1119.719 

R-squared 0.8611 0.8712 

Adj R-squared 0.8605 0.8679 

F-test (a) (p-value) - 3.76*** (0.000) 

Source: our elaboration on data provided by the Italian Department of Healthcare. 
*** p<0.01, ** p<0.05, * p<0.1.     
(a) F-test = F-test for joint significance of regional fixed effects. 
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Graph 3. Histograms of OLS residuals, COLS and CMAD efficiency estimates - Cobb-Douglas 
production function 

Mod (1) 

OLS residuals COLS CMAD 

   
Skewness                             -0.7818 Obs.                                         866 Obs.                                         866 

Skewness test (p-value)        0.0000  Mean efficiency                          0.2778 Mean efficiency                          0.2613 

M3T test - Coelli (1995)     -9.3929*** St. dev.                                        0.1368 St. dev.                                        0.1323 

Mod (2) 

OLS residuals COLS CMAD 

   
Skewness                             -0.8050 Obs.                                         866 Obs.                                         866 

Skewness test (p-value)        0.0000  Mean efficiency                          0.2511 Mean efficiency                          0.2605 

M3T test - Coelli (1995)     -9.6655*** St. dev.                                        0.1169 St. dev.                                        0.1239 

Source: our elaboration on data provided by the Italian Department of Healthcare. 
*** p<0.01, ** p<0.05, * p<0.1.   

0
.5

1
1
.5

2
D

e
n

s
it
y

-2 -1.5 -1 -.5 0 .5 1 1.5 2

Model 1: OLS

0
2

4
6

8
D

e
n

s
it
y

0 .2 .4 .6 .8 1

Model 1: COLS

0
2

4
6

8
D

e
n

s
it
y

0 .2 .4 .6 .8 1

Model 1: CMAD

0
.5

1
1
.5

2
D

e
n

s
it
y

-2 -1.5 -1 -.5 0 .5 1 1.5 2

Model 2: OLS

0
2

4
6

8
D

e
n

s
it
y

0 .2 .4 .6 .8 1

Model 2: COLS

0
2

4
6

8
D

e
n

s
it
y

0 .2 .4 .6 .8 1

Model 2: CMAD



30 

 

Table 5. SFA estimates – Cobb-Douglas and Translog production functions (ui half normal) 

VARIABLES 
 Dependent variable DRG_W_REVENUE (log) 

(1) (2) (3) (4) 

Constant 
4.2643*** 4.3154*** 3.8244*** 4.0048*** 

(0.0959) (0.1713) (0.2853) (0.3145) 

BEDS (log) 
0.4939*** 0.4820*** 0.8072*** 0.6848*** 

(0.0378) (0.0370) (0.1996) (0.1957) 

PHYSICIANS (log) 
0.2389*** 0.2148*** 0.5360*** 0.5505*** 

(0.0305) (0.0300) (0.1490) (0.1459) 

NURSES (log) 
0.1695*** 0.1740*** 0.0157 0.1117 

(0.0311) (0.0310) (0.1517) (0.1502) 

O_PERS (log) 
0.1345*** 0.1538*** -0.1111 -0.1247 

(0.0363) (0.0380) (0.1693) (0.1693) 

BEDS_SQR (log) 
- - -0.2557*** -0.2018** 

- - (0.0924) (0.0908) 

PHYSICIANS_SQR (log) 
- - 0.2644*** 0.2216*** 

- - (0.0579) (0.0572) 

NURSES_SQR (log) 
- - -0.2101*** -0.2701*** 

- - (0.0696) (0.0688) 

O_PERS_SQR (log) 
- - 0.1487 0.1385 

- - (0.0998) (0.0989) 

BEDS_PHYSICIANS (log) 
- - -0.6703*** -0.6469*** 

- - (0.1232) (0.1206) 

BEDS_NURSES (log) 
- - 0.6855*** 0.6331*** 

- - (0.1473) (0.1480) 

BEDS_O_PERS (log) 
- - 0.2783* 0.2607* 

- - (0.1437) (0.1410) 

PHYSICIANS_NURSES (log) 
- - 0.2060 0.2595** 

- - (0.1338) (0.1313) 

PHYSICIANS_O_PERS (log) 
- - -0.0843 -0.1035 

- - (0.1400) (0.1367) 

NURSES_O_PERS (log) 
- - -0.4046*** -0.3292*** 

- - (0.1155) (0.1137) 

Observations 866 866 866 866 

Regional dummies No yes no yes 

σu
2 0.2595*** (0.0396) 0.2730*** (0.0366) 0.2248*** (0.0344) 0.2317*** (0.0324) 

σv
2 0.1207*** (0.0129) 0.0992*** (0.0112) 0.1118*** (0.0113) 0.0960*** (0.0102) 

σ2 0.3816 0.3722 0.3365 0.3277 

γ 0.6825 0.7334 0.6679 0.7071 

LR test  32.0882*** 40.8907*** 32.4449*** 38.7179*** 

AIC 1123.017 1083.044 1052.426 1022.522 

Mean efficiency 0.7002 0.6956 0.7164 0.7139 

Source: our elaboration on data provided by the Italian Department of Healthcare. 

*** p<0.01, ** p<0.05, * p<0.1, , standard errors in parentheses.     
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Graph 4. Histograms, pairwise correlation and geographical distribution of efficiency estimates  

Cobb-Douglas production functions 

  

Translog production functions 

  
Pairwise correlation matrix 

1.0000    

0.9548 1.0000   

0.9480 0.9077 1.0000  

0.9123 0.9519 0.9604 1.0000 

Average efficiency scores distribution 

Geographical area N. obs. (1) (2) (3) (4) 

          North 255 0.7069 (0.1016) 0.7020 (0.1117) 0.7172 (0.0998) 0.7190 (0.1062) 

          Centre 188 0.7098 (0.0991) 0.6971 (0.1124) 0.7213 (0.0914) 0.7165 (0.0999) 

South and islands 423 0.6919 (0.1314) 0.6910 (0.1402) 0.7137 (0.1222) 0.7097 (0.1287) 

All sample 866 0.7002 (0.1168) 0.6956 (0.1265) 0.7164 (0.1096) 0.7139 (0.1165) 

Source: our elaboration on data provided by the Italian Department of Healthcare. 
Note: standard deviations in parentheses.  
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Graph 5. Spatial autocorrelation of the SFA residuals based on the Euclidean distance  

Model 1 

Moran I test under randomisation 

data:  residuals(Mod_1)   

weights: Mod_1$list_w   

Moran I statistic standard deviate = 0.91518, p-value = 0.18 

alternative hypothesis: greater 

sample estimates: 

Moran I statistic       Expectation          Variance  

 0.0084623361     -0.0011560694      0.0001104581  

 

Model 2 

Moran I test under randomisation 

data:  residuals(Mod_2)   

weights: Mod_2$list_w   

Moran I statistic standard deviate = -1.9687, p-value = 0.9755 

alternative hypothesis: greater 

sample estimates: 

Moran I statistic       Expectation          Variance  

-0.0218467366     -0.0011560694      0.0001104549  

 

 

Model 3 

Moran I test under randomisation 

data:  residuals(Mod_3)   

weights: Mod_3$list_w   

Moran I statistic standard deviate = 0.15903, p-value = 0.4368 

alternative hypothesis: greater 

sample estimates: 

Moran I statistic       Expectation          Variance  

0.0005139307     -0.0011560694      0.0001102742  
 

Model 4 

Moran I test under randomisation 

data:  residuals(Mod_4)   

weights: Mod_4$list_w   

Moran I statistic standard deviate = -2.0811, p-value = 0.9813 

alternative hypothesis: greater 

sample estimates: 

Moran I statistic       Expectation          Variance  

-0.0230111511     -0.0011560694      0.0001102815  
 

Source: our elaboration on data provided by the Italian Department of Healthcare. 
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Table 6. SSFA and SEM estimates using a spatial contiguity matrix based on the Euclidean distance 

VARIABLES 
SSFA SEM 

(1) (2) (3) (4) (5) (6) (7) (8) 

Constant 
4.3551*** 4.1702*** 3.8536*** 3.9092*** 3.7296*** 4.3830*** 3.3994*** 3.2557*** 

(0.1251) (0.1754) (0.2890) (0.3218) (0.3247) 0.4453 (0.4037) (0.4811) 

BEDS (log) 
0.4933*** 0.4913*** 0.7915*** 0.7123*** 0.4988*** 0.4825*** 0.6742*** 0.5152** 

(0.0378) (0.0370) (0.2019) (0.1955) (0.0379) 0.0370 (0.2085) (0.2055) 

PHYSICIANS (log) 
0.2371*** 0.2159*** 0.5410*** 0.5249*** 0.2409*** 0.2148*** 0.4799*** 0.2936* 

(0.0305) (0.0300) (0.1495) (0.1467) (0.0304) 0.0300 (0.1131) (0.1628) 

NURSES (log) 
0.1688*** 0.1697*** 0.0178 0.1234 0.1705*** 0.1738*** 0.2727 0.3443** 

(0.0314) (0.0303) (0.1504) (0.1491) (0.0311) 0.0310 (0.1653) (0.1671) 

O_PERS (log) 
0.1353*** 0.1547*** -0.1022 -0.1577 0.1236*** 0.1536*** -0.2255 0.1571 

(0.0366) (0.0379) (0.1708) (0.1688) (0.0368) 0.0380 (0.1464) (0.1891) 

BEDS_SQR (log) 
- - -0.2523*** -0.1965** - - -0.1245* -0.0490 

- - (0.0925) (0.0902) - - (0.0687) (0.1251) 

PHYSICIANS_SQR (log) 
- - 0.2606*** 0.2319*** - - 0.0525 0.2276*** 

- - (0.0584) (0.0574) - - (0.0342) (0.0581) 

NURSES_SQR (log) 
- - -0.2128*** -0.2658*** - - -0.1903*** -0.1812** 

- - (0.0699) (0.0677) - - (0.0411) (0.0799) 

O_PERS_SQR (log) 
- - 0.1500 0.1313 - - 0.3164 0.1249 

- - (0.1000) (0.0983) - - (0.2047) (0.0935) 

BEDS_PHYSICIANS (log) 
- - -0.6673*** -0.6591*** - - -0.5565*** -0.4748*** 

- - (0.1232) (0.1202) - - (0.1671) (0.1661) 

BEDS_NURSES (log) 
- - 0.6887*** 0.6087*** - - 0.5777*** 0.3579** 

- - (0.1471) (0.1468) - - (0.1242) (0.1658) 

BEDS_O_PERS (log) 
- - 0.2734* 0.2741* - - 0.0894 0.1585 

- - (0.1438) (0.1405) - - (0.0921) (0.1673) 

PHYSICIANS_NURSES (log) 
- - 0.2071 0.2602** - - 0.3256* 0.2094 

- - (0.1338) (0.1314) - - (0.1574) (0.1594) 

PHYSICIANS_O_PERS (log) 
- - -0.0851 -0.0966 - - 0.0275 -0.1184 

- - (0.1403) (0.1356) - - (0.0761) (0.1373) 

NURSES_O_PERS (log) 
- - -0.4047*** -0.3201*** - - -0.5696*** -0.3027** 

- - (0.1155) (0.1127) - - (0.1947) (0.1212) 

Observations 866 866 866 866 866 866 866 866 

Regional dummies no yes No yes no yes no yes 

σu
2 - - - - 0.1180*** (0.0003) 0.0994*** (0.0146) 0.0362*** (0.0057) 0.0953 0.0139 

σdmu
2 0.2643*** (0.0396) 0.2614*** (0.0365) 0.2266*** (0.0345) 0.2216*** (0.0321) - - - - 

σv
2 0.1187*** (0.0128) 0.1015*** (0.0113) 0.1111*** (0.0114) 0.0975*** (0.0103) 0.2665*** (0.0015) 0.2730*** (0.0243) 0.5527*** (0.0223) 0.2801 0.0238 

σ2 0.3830 0.3635 0.3378 0.3198 0.3846 0.3724 0.5890 0.3754 

γ 0.6901 0.7204 0.6710 0.6944 0.3069 0.2669 0.0615 0.2538 

ρ 0.1669 -0.3365 0.0685 -0.4108 0.0634 -0.0043 0.1032 -0.0479 

LR test  33.963*** 46.692*** 32.703*** 46.111*** - - - - 

AIC 1139.142 1131.298 1090.168 1088.744 1122.386 1085.084 1168.498 1055.312 

Source: our elaboration on data provided by the Italian Department of Healthcare.  
*** p<0.01, ** p<0.05, * p<0.1, standard errors in parentheses. 
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Table 7. Robustness checks on SSFA estimates using a spatial contiguity matrix at LHA level 

VARIABLES 
SSFA 

(1) (2) (3) (4) 

Constant 
4.4683*** 4.2778*** 3.9578*** 3.8991*** 

(0.1278) (0.1544) (0.2919) (0.3017) 

BEDS (log) 
0.4858*** 0.4865*** 0.7489*** 0.6928*** 

(0.0378) (0.0367) (0.1992) (0.1936) 

PHYSICIANS (log) 
0.2196*** 0.2241*** 0.5541*** 0.5264*** 

(0.0311) (0.0300) (0.1476) (0.1471) 

NURSES (log) 
0.1717*** 0.1739*** 0.0830 0.0715 

(0.0316) (0.0304) (0.1534) (0.1497) 

O_PERS (log) 
0.1469*** 0.1474*** -0.1402 -0.0809 

(0.0374) (0.0377) (0.1684) (0.1710) 

BEDS_SQR (log) 
- - -0.2425*** -0.1931** 

- - (0.0917) (0.0905) 

PHYSICIANS_SQR (log) 
- - 0.2425*** 0.2318*** 

- - (0.0582) (0.0569) 

NURSES_SQR (log) 
- - -0.2320*** -0.2640*** 

- - (0.0700) (0.0683) 

O_PERS_SQR (log) 
- - 0.1333 0.1441 

- - (0.0999) (0.0980) 

BEDS_PHYSICIANS (log) 
- - -0.6674*** -0.6392*** 

- - (0.1222) (0.1201) 

BEDS_NURSES (log) 
- - 0.6694*** 0.6185*** 

- - (0.1474) (0.1472) 

BEDS_O_PERS (log) 
- - 0.2957** 0.2446* 

- - (0.1422) (0.1414) 

PHYSICIANS_NURSES (log) 
- - 0.2238* 0.2774** 

- - (0.1333) (0.1304) 

PHYSICIANS_O_PERS (log) 
- - -0.0732 -0.1294 

- - (0.1387) (0.1366) 

NURSES_O_PERS (log) 
- - -0.3834*** -0.3240*** 

- - (0.1162) (0.1123) 

Observations 866 866 866 866 

Regional dummies No yes no yes 

σdmu
2 0.2755*** (0.0398) 0.2614*** (0.0365) 0.2338*** (0.0345) 0.2215*** (0.0321) 

σv
2 0.1127*** (0.0126) 0.1017*** (0.0114) 0.1073*** 0.0112 0.0979*** (0.0103) 

σ2 0.3887 0.3634 0.3413 0.3198 

γ 0.7096 0.7200 0.6854 0.6935 

ρ 0.2551 -0.2081 0.2124 -0.2407 

LR test  43.378 46.102*** 39.403*** 44.654*** 

AIC 1129.728 1131.889 1083.468 1090.202 

Source: our elaboration on data provided by the Italian Department of Healthcare.  
*** p<0.01, ** p<0.05, * p<0.1, standard errors in parentheses.   



35 

 

Table 8. Robustness checks of SSFA estimates using a spatial contiguity matrix at provincial level 

VARIABLES 
SSFA 

(1) (2) (3) (4) 

Constant 
4.4872*** 4.2663*** 3.9823*** 3.9125*** 

(0.1323) (0.1398) (0.2907) (0.2979) 

BEDS (log) 
0.4887*** 0.4850*** 0.7422*** 0.6946*** 

(0.0376) (0.0366) (0.1985) (0.1934) 

PHYSICIANS (log) 
0.2214*** 0.2221*** 0.5421*** 0.5468*** 

(0.0310) (0.0297) (0.1462) (0.1464) 

NURSES (log) 
0.1704*** 0.1759*** 0.0943 0.0640 

(0.0315) (0.0303) (0.1530) (0.1494) 

O_PERS (log) 
0.1457*** 0.1476*** -0.1305 -0.1006 

(0.0372) (0.0378) (0.1678) (0.1691) 

BEDS_SQR (log) 
- - -0.2480*** -0.1803** 

- - (0.0920) (0.0909) 

PHYSICIANS_SQR (log) 
- - 0.2447*** 0.2254*** 

- - (0.0578) (0.0567) 

NURSES_SQR (log) 
- - -0.2369*** -0.2642*** 

- - (0.0701) (0.0680) 

O_PERS_SQR (log) 
- - 0.1282 0.1461 

- - (0.0995) (0.0985) 

BEDS_PHYSICIANS (log) 
- - -0.6550*** -0.6605*** 

- - (0.1211) (0.1202) 

BEDS_NURSES (log) 
- - 0.6576*** 0.6270*** 

- - (0.1478) (0.1472) 

BEDS_O_PERS (log) 
- - 0.3111** 0.2287 

- - (0.1410) (0.1414) 

PHYSICIANS_NURSES (log) 
- - 0.2233 0.2725** 

- - (0.1331) (0.1295) 

PHYSICIANS_O_PERS (log) 
- - -0.0914 -0.1053 

- - (0.1375) (0.1357) 

NURSES_O_PERS (log) 
- - -0.3767*** -0.3231*** 

- - (0.1162) (0.1120) 

Observations 866 866 866 866 

Regional dummies No yes no yes 

σdmu
2 0.2755*** (0.0396) 0.2585*** (0.0364) 0.2331 0.0342 0.2223*** (0.0322) 

σv
2 0.1124*** (0.0125) 0.1019*** (0.0114) 0.1070 0.0111 0.0973*** (0.0103) 

σ2 0.3884 0.3609 0.3404 0.3200 

γ 0.7102 0.7172 0.6854 0.6956 

ρ 0.2917 -0.2947 0.2702 -0.3117 

LR test  44.745*** 48.887*** 42.021*** 46.266*** 

AIC 1128.360 1129.103 1080.850 1088.589 

Source: our elaboration on data provided by the Italian Department of Healthcare.  
*** p<0.01, ** p<0.05, * p<0.1, standard errors in parentheses. 
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