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A B S T R A C T 

Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. The current 

treatment regimes for glioblastoma demonstrated a low efficiency and offer a poor 

prognosis.Advancements in conventional treatment strategies have only yielded modest 

improvements in overall survival. The heat shockproteins, heme oxygenase-1 (HO-1) and Hsp90, 

serve these pivotal roles in tumor cells and have been identified as effective targets for developing 

therapeutics. This topic review summarizes the current preclinical and clinical evidences and 

rationale to define the potential of HO-1 and Hsp90 in GBM progression and chemoresistance. 
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1. Introduction 

Infiltrative gliomas are the most common primary intracranial neoplasms, 

accounting for 40% of all primary and 78% of all malignant central 

nervous system tumours (1).The term “astrocytoma” is normally referred 

to “gliomas” by researchers worldwide.Glial cells have fundamental roles 

by providing essential support such as immune protection, mechanical 

support, nutrients and oxygen supply to neuronal cells. These cells also 

assist neurons to mediate complex processes as neurotransmission, signal 

transduction and providing more structures for the migration of neurons 

into their respective networks during development (2). 

Particular attention is focused on grade IV astrocytoma, synonymous of 

common name Glioblastoma Multiforme or simply Glioblastoma (GBM) 

in the current World Health Organization (WHO) scheme. The term GBM 

was introduced by Mallory in 1914 (3) and commonly accepted in the 

surgical neuropathology lexicon by Bailey and Cushing in 1926 (4). 

Distinguished features of GBM are microvascular proliferation (MVP), 

loosely defined to include endothelial hypertrophy, endothelial  

 

hyperplasia and glomeruloid vessels, and/or necrosis (5). Glioblastoma 

may arise through two distinct pathways of neoplastic progression. 

Tumours progressing from lower-grade (II or III) astrocytic tumours are 

termed secondary or type 1 GBMs, display both well-differentiated and 

poorly differentiated foci. Secondary GBMs occurring in younger patients 

(fifth to sixth decade), with time to progression from months to decades. 

In contrast, primary type 2 GBMs develop in older individuals (sixth to 

seventh decade), have short clinical histories and arise de novo without 

any evidence of a lower-grade precursor. Genetic features of primary 

GBMs are relatively high frequencies of Epithelial Growth Factor 

Receptor (EGFR) amplification, Phosphatase and tensin homolog (PTEN) 

deletion and cyclin-dependent kinase Inhibitor 2A(CDKN2A) loss, while 

secondary GBMs often contain TP53 mutations (6). GBMs comprise a 

morphologically highly heterogeneous neoplasm, as designation 

multiforme implies. In other words, the cellular composition can vary 

widely and mixed histologic features are typical (5). Three GBM variants 

are recognized as distinct pathologies in the current WHO classification: 

conventional GBM, giant cell GBM (GC-GBM) and gliosarcoma (GC).  
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2. Conventional GBM 

Its cellular composition is heterogeneous and may include fibrillary, 

gemistocytic, and/or occasional giant cells (GCs). Neoplastic fibrillary 

astrocytes contain enlarged, irregularly shaped, hyperchromatic nuclei and 

variable glia fibrillary acidic protein (GFAP)-immunoreactive processes 

that form a loose, fibrillary matrix. Gemistocytes were first described by 

Franz Nissl as glia (gemaestete glia) with voluminous cytoplasm (7). 

Gemistocytic astrocytes contain full, glazed, eosinophilic GFAP-

immunoreactive cytoplasm. Although gemistocytes may be found in all 

grades of astrocytoma, gemistocytic astrocytoma is recognized as a 

distinct variant only of diffuse astrocytoma. Gemistocytic astrocytoma is 

defined by WHO as an astrocytoma composed of more than 20% 

gemistocytes (5).Different reports have defined the percentage of 

gemystocytes present in a tumor (gemistocytic index) and correlated it 

with patient outcomes. Gemistocytic astrocytoma with greater than 5% 

gemistocytes have been reported to progress more rapidly to GBM (8).A 

rare form of this kind of tumor is Granular cell astrocytomas composed of 

large cells with a lot of glanular acid-Schiff-positive cytoplasm (5, 9-12). 

Most granular cell astrocytomas are GFAP positive and may show non-

specifically cytoplasmic epithelial membrane antigen but they do not have 

a cytokeratin immunoreactivity (9, 10). These tumours may also have 

TP53 mutations, high-frequency loss of heterozygosis at 9p, 10q and 17p, 

and less frequent loss of heterozygosis at 1p and 19q(11). Furthermore, 

Brat at al. found that these tumours were more aggressive than non-

granular cell astrocytoma of the same grade (9).  

 

3. Giant cell GBM (GC-GBM) 

Giant cell GBM constitutes approximately 5% of GBMs and it is 

recognized as a distinct pathology in the WHO 2000 classification (5). 

The tumor cells are considerably enlarged and bizarre, often appearing 

multinucleated. Giant cell GBMs are typically well-circumscribed masses 

that appear in younger patients.  

Whereas EGFR amplification and CDKN2A deletion are rare in 

comparison to conventional GBMs, the molecular genetic features include 

relatively high frequencies of TP53 mutations (75%-90%) and PTEN 

deletion (5%-30%); thus, GC-GBMs contain clinical and molecular 

genetic characteristics of primary and secondary GBMs and occupy and 

intermediate position between these two (5, 13, 14). Fujita et al. and 

Maeda et al have described a potential molecular mechanism for GC 

formation (15, 16). Investigators have demonstrated that the molecular 

alteration causing collapse of cytoplasmic rift in cultured multinucleated 

GCs is loss of Aurora-B kinase function. It is demonstrated that Aurora-B 

kinase is overexpressed in astrocytomas in general, with mRNA and 

protein levels correlating with WHO grade (17). 

 

4. Gliosarcoma (GS) 

Gliosarcoma constitutes approximately 2% of GBMs and is equally 

recognized ad a distinct pathology in the WHO 2000 classification(5). 

Main features of these tumours are circumscribed, biphasic growth pattern 

with clearly identifiable glial and metaplastic mesenchymal components. 

The glial component of GS may show any previously described 

cytological characteristic and is typically immunoreactive for GFAP. The 

mesenchymal component may show a high variety of morphologic 

appearances with differentiation along fibroblastic, cartilagineous, 

osseous, smooth and striated muscle, and adipose lines (5). In addition to 

sarcomatous differentiation, an epithelial metaplasia may also occur in GS 

or conventional GBM, including cases of keratinizing squamous or 

glandular differentiation. These features allow establishing a differential 

diagnosis of metastatic carcinoma.  

The metaplastic component in GS is neoplastic and frequently allows 

cytogenetic and molecular abnormalities similar to those found in the glial 

component. GSs are genetically similar to primary GBMs with TP53 

mutations, PTEN and CDKN2A deletions demonstrated for 20-40% of 

tumours. An exception is the relative infrequency of EGFR amplification 

in these tumours (5, 18).  

 

5. Other variants of GBM 

It is possible to identify additional variants of GBM that have been 

published in WHO 2000 classification scheme. These include small cell 

astrocytomas (SCAs), glioblastoma with oligodendroglial features (GBM-

O) and GBM with primary neuronal feature (primitive neuroectodermal 

tumor [PNET]-like)(5). These variant tumours demonstrated a significant 

morphologic junction with other recognized pathologies: to make and 

accurate histophatologic and molecular genetic characterization, it is 

important an identification of molecular genetic alterations and its 

association with responsiveness to therapy and an improved 

prognosis.Small cell astrocytoma is a variant of GBM with an important 

overlap with anaplastic oligodendroglioma (AO) carrying out a classical 

hematoxylin-eosin-stained sections(19, 20).The histopathologic features 

of this tumor are its bland nuclear cytology and bizarre mitotic activity. It 

is composed of a large number of astrocytes with small, uniformly oval 

nuclei with mild hyperchromasia and minimal distinguishable cytoplasm. 

Furthermore, SCA can show cortical infiltration and secondary structures, 

including perineuronal satellitosis.  

 

6. Management and therapy 

To date no current treatment is curative and it consists in maximal surgical 

resection, radiotherapy and concomitant adjuvant chemotherapy with 

temozolomide (21, 22).The use of radiotherapy is now widespread and, in 

particular, the addition to surgery increases the survival of patients (23, 

24); nevertheless the responsiveness of GBM to radiotherapy varies.  

Furthermore, radiosensitizer (drug that makes tumor cells more sensitive 

to radiation therapy) such as newer chemotherapeutic agents (25), targeted 

molecular agents (26, 27) and antiangiogenic agents may increase the 

therapeutic effect of radiotherapy (15, 28). However, the useof 

radiotherapy for recurrent GBM is controversial. 

Currently, there not exists a defined optimal chemotherapeutic regimen 

for GBM, even thought adjuvant chemotherapy appears to produce a 

significant benefit in more than 25% of patients (21, 29-34). The agents 

currently used include Temozolomide, nitrosoureas (eg. Carmustine), 

O(6)-methylguanine-DNA methyltransferase (MGMT)inhibitors (eg. O6-
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benzylguanine), Cisplatin, Bevacizumab (alone or with Irinotecan for 

recurrent glioma). 

New therapies include gene therapy, peptide and dendritic cell vaccines, 

synthetic chlototoxins, radiolabeled drugs and antibody (35-40). 

From a chirurgical point of view and because GBM cannot be cured 

surgically, the surgical goals are to establish a pathologic diagnosis, to 

relieve any mass effect, to achieve a gross total resection to facilitate 

adjuvant therapy (41). The extent of surgery has been demonstrated in a 

number of studies to affect length survival; surgical options include gross 

total resection and subtotal resection: the first one has a better survival. 

 

7. Heat Shock Proteins and cancer 

In the mid 1950‟s the Nobel Prize Laureate Christian B. Anfinsen from 

his research on the folding of ribonuclease A (42), began to concentrate 

on the problem of the relationship between structure and function in 

enzymes. On the basis of studies on ribonuclease, he proposed that the 

information determining the tertiary structure of a protein resides in the 

chemistry of its amino acid sequence. He also elegantly showed that, after 

cleavage of disulfide bonds and disruption of tertiary structure, many 

proteins could spontaneously refold to their native forms (43). However, 

in the following years several studies demonstrated that this assertion is 

not valid for all synthetized proteins thus suggesting that some proteins 

may violate the Anfinsen‟s dogma (44). In fact, some highly specific 

„steric chaperones‟ do convey unique structural (steric) information onto 

proteins, which cannot be folded spontaneously. This finding changed 

dramatically the way of studying protein synthesis and their maturation 

following the translation process. In addition, further studies demonstrated 

that impairment of the chaperone machinery might lead to various 

pathologies including cancer. We will review the role of two Hsps, which 

have recently offer new insights and potential therapeutic potential. 

 

8. Role of Heme oxygenase-1 (Hsp 32) 

Heme oxygenases (HO) catalyze the degradation of heme into biliverdin, 

carbon monoxide (CO) and ferric iron (45-51). Heme functions as the 

prosthetic group in hemoproteins, e.g., nitric oxide synthase, 

cyclooxygenases, soluble guanylate cyclase, cytochrome P450, 

peroxidase, and catalase and since HO is the sole physiological pathway 

of heme degradation. It consequently plays a critical role in the regulation 

of cellular heme-dependent enzyme levels (52-56). To date, two HO 

isoforms have been shown to be catalytically active in heme degradation 

and each is encoded by a different gene (46, 57). Heme oxygenase-1 (HO-

1) is expressed at low levels under basal conditions and it is induced by 

polyphenols (58-64), statins (65), metals (66-69) and a variety of stimuli 

such as inflammation, oxidative stress, hyperoxia, hypoxia and trauma 

(50, 70-76). Such upregulation represents an intrinsic defence mechanism 

to maintain cellular homeostasis and enhance cell survival (77-80). In 

particular, HO-1 is considered to play a major role as an essential survival 

factor, protecting against chemotherapy-induced reactive oxygen species 

(ROS) increase (72, 81-85).  

 

 

In particular, HO-1 overexpression is implicated in tumor genesis, growth 

and resistance to chemo- and radiotherapy in a lot of cancers (86-90). In 

1996, Shibahara et al. demonstrated that expression level ofHO-1 mRNA 

is higher in brain tumours compared to the brain tissue (91). Furthermore, 

they showed that HO-1 mRNA expression is higher in human 

glioblastoma cell line T98G after a treatment with three types of Nitric 

Oxide (NO) donors: although this has not been shown any increase ofHO-

2 mRNA expression (92).Researchers showed that macrophages play a 

key role in angiogenesis of malignant formations through the infiltration 

process (93-96).  Leading an immunostaining on gliomas samples has 

been shown that the number of infiltrating macrophages and density of 

small blood vessels is higher in glioblastomas compared to astrocytomas 

or anaplastic astrocytomas. HO-1 is also associated with the activation of 

macrophages. In fact, the expression of mRNA coding for HO-1 correlates 

with macrophage infiltration. In addition, macrophages are positively 

stained with anti-HO-1 antibody: this result has led to the hypothesis of 

using HO-1 as a marker of macrophage infiltration and neovascularization 

in human gliomas (97). 

Lu et al. demonstrated a correlation between HO-1 and human gliomas, in 

particular using HO-1 as possible novel therapeutic target. They showed 

the relationship between Nuclear factor E2-Related Factor 2 (Nrf2) and 

osteopontin-stimulated HO-1 expression: briefly, Nrf2 activation is 

essential for osteopontin-stimulated HO-1 expression, based on the 

evidence that Nrf2 small interfering RNA (siRNA) inhibits the 

enhancement of osteopontin-induced migration; moreover, osteopontin 

stimulated Nrf2 accumulation in nucleus and increased Nrf2-DNA 

binding activity. Taken all together, these results propose that Nrf2 

activation is required for osteopontin-HO-1 expression and cell migration 

in human glioma. This study presents a novel mechanism of osteopontin-

directed migration and HO-1 up-regulation in human glioma cells by 

activation of Protein kinase B (Akt),Extracellular signal–Regulated 

Kinases (ERK) and Nrf2-dependent pathway (98). Pan et al. worked on 

the involvement of Nrf2-Antioxidant Responsive Element (ARE) pathway 

in regulation of apoptosis in human glioblastoma cell U251: they showed 

that after increasing expression of Nrf2, the apoptosis was reduced with an 

up-regulation of expression of HO-1, Bcl-2/Bax and a decreased 

expression and activity of Caspases 3 and 9. The apoptosis rate was 

enhanced decreasing Nrf2 expression accompanied with a down-regulated 

expression of HO-1, Bcl-2/Bax and an increased expression and activity 

of Caspases 3 and 9 (99). 

There are conflicting reports about the role of HO-1 plays in tumor 

initiation and progression, ever since it has been demonstrated that can 

play a role as tumor-promoter or inhibitor on tumor progression (86, 100). 

Gandini et al. produce strong evidence of HO-1 overexpression in human 

gliomas compared with non-malignant samples. Moreover, this expression 

was associated with a worse prognosis in patients with grade II and III 

astrocytoma. They suggested that the enzyme could be involved in tumor 

proliferation and point to a pro-tumoral role of HO-1 in glioma 

progression. (101) 

Furthermore, some studies demonstrated that HO-1 has a cytoprotective 

role in glioma and showed evidence that the enzyme could be a potential 

therapeutic target in this cancer type. (98, 102) Further, a lot of groups 

showed that a decrease (102, 103) or an increase (104, 105) in HO-1 is 

necessary for the anti-cancer effects of many compounds on human 

glioma cells (Table 1).  
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Table 1: Heat Shock Protein 32 (HSP 32) in Glioblastoma 

Multiforme (GBM) 

Expression of HSP32 

mRNA 

Activation and infiltration 

of macrophages 

Nrf2 activation 
Osteopontin-HO-1 

expression 

Osteopontin-HO-1 

expression 

Inducible cell migration and 

invasion 

Increasing expression of 

Nrf2 

Reduced apoptosis with 

HO-1 and Bcl-2/Bax 

upregulated expression, 

decreased expression and 

activity of Caspases 3 and 9 

Cytoprotective role Potential therapeutic target 

 

9. Role of Hsp 90 and Glioblastoma 

Heat-shock-protein 90 (HSP90) is a molecular chaperone conserved and 

abundant in eukaryotic cell where this protein is an ubiquitous protein 

highly expressed in the cytosol, both in normal and stress conditions 

(106). This chaperones performs its “canonical” functions inside cells by 

forming cytosolic chaperoning machines (107) and is involved in the 

correct folding and conformational maturation of newly translated 

proteins, so called HSP90 client proteins, many of which are deregulated 

in glioblastomas (108, 109). Hsp90 is also involved in signal transduction 

and other key pathways critical for malignancy in several cancers (110-

112) and glioblastomas specifically (113).  Hsp90 can accumulate in 

cancer cells and is implicated in the carcinogenesis process for many 

reasons (114). This molecule favours tumorigenicity and is crucial to 

cancer cell growth and survival (115) by inhibiting programmed cell death 

and senescence (116). Hsp90 client proteins involved in its activities are 

many and varied and among them are included core mediators of 

glioblastoma‟s cellular growth like Akt kinase (117), endothelial nitric 

oxide synthase (eNOS), (109, 118) epidermal growth factor receptor 

(EGFR) and transforming growth factor-beta (TGF-beta) (119). Hsp90 

has interactions, for example, with a protein complex in which there is a 

mutant epidermal growth factor receptor, EGFRvIII, that is expressed in 

most glioblastomas and is associated with poor prognosis promoting an 

aggressive growth (120). Among the client protein of Hsp90 there are 

client kinases such as Protein Kinase C (PKC) that has been directly 

implicated in the proliferation of glioblastoma. PKC also activates Protein 

Kinase D family (PRKD), which consists of PRKD1, -2 and, -3 that could 

play a major role in glioblastoma growth (121). PKD2 regulates 

glioblastoma cell migration and invasion (122). Hsp90 also influences 

tumor neoangiogenesis because it stabilizes proteins important for the 

metabolism of endothelial cells such as Vascular Endothelial Growth 

Factor (108) and nitric oxide synthase (123).  

 

 

 

 

Indeed it is suggested that Hsp90 regulating the stability of PRKD2, is 

implicated in the formation of new blood vessel involving up-regulation 

and secretion of VEGF-A (108).  

Recent works have claimed within glioblastomas the existence of small 

population of stem cell (124, 125), which are able to enable them to self-

renew and give rise to the heterogeneous mass that characterizes these 

brain tumours (117). This set of stem cell appears also to be responsible of 

chemotherapy resistance and higher clonogenic capacity.  The origin of 

these stem cells within neoplastic mass is not very clear; in fact they may 

arise from endogenous stem cells or from glioma cells that have 

undergone a block in differentiation (109). The aldehyde dehydrogenase 

(ALDH) is considered a marker of stem cell in many cancers and in 

particular in those of glioblastomas, were the same stem cells showed also 

an high expression of Hsp90 which proves its implication in many crucial 

mechanism of cell survival (126). Heat Shock Protein 90 is involved in a 

cytoprotective mechanism against cellular stressors such as DNA damage 

(127). For this reason several studies (128) have focused on alternative 

therapies for potentiating chemotherapy and X-ray irradiation using for 

example, Hsp90-inhibitors as antitumor agents in glioblastoma‟s therapy. 

It is showed that Geldanamycin interacts with the HSP90ATP-binding site 

to interfere in its interaction with client proteins (129) and 17-allylamino-

17-demethoxygeldanamycin, an analogous of Geldanamycin, inhibits 

growth and invasion of GBM tumor(117, 130). HSP90 inhibitors promote 

the degradation of HSP90-dependent oncoproteins finally leading to cell 

cycle arrest and cell death. 

Given the high proliferative capacity of glioblastoma cells and their 

resistance to current therapy it is necessary to introduce a multitargeted 

strategy that may be more effective. The HSP90 inhibition might be a 

good therapeutic strategy given that HSP90 client protein are protein 

known to deregulated in the neoplastic process of Glioblastoma(117) 

(Table 2). 

Table 2: Heat Shock Protein 90 (Hsp 90) in Glioblastoma  

Multiforme (GBM) 

“Canonical” function 

Chaperoning machine involved in 

correct folding and conformational 

maturation of protein 

Accumulation in cancer cells 

Stimulation of tumor genesis, 

cancer cell growth by inhibiting 

programmed cell death 

Interaction with EGFRvIII 

(mutant EGFR) 

Associated with poor prognosis, 

promoting and aggressive growth 

Influence on neoangiogenesis 

Stabilization of VEGF, NOS, 

PRKD2 with formation of new 

blood vessels 

Cytoprotective mechanism 

Potential therapeutic target: 

promote the degradation of 

HSP90-dependent oncoproteins 

finally leading to cell cycle arrest 

and cell death 
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10. Conclusion 

The treatment of glioblastoma remains an open challenge for modern 

medicine. Despite the discovery of new chemotherapic agents, no drug 

showed improvement in survival in phase III clinical trials. However, the 

increased knowledge of molecular characterization of various 

glioblastomas and patient clinical management has led to an increase in 

survival over the past 10 years. Furthermore, identification of new 

molecular targets (i.e. Hsps) involved in glioblastoma progression and the 

advent of immune-oncology will further improve the prognosis of these 

patients. 
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