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Abstract. An extended hydrodynamic model self-consistently coupled to the 2D Schrödinger
and 3D Poisson equations is introduced, to describe charge transport in Silicon Nanowires.
It is been formulated by taking the moments of the multisubband Boltzmann equation, and
the closure relations for the fluxes and production terms have been obtained by means of the
Maximum Entropy Principle. The low-field mobility for a Gate-All-Around in a SiNW transistor
has been evaluated.

1. Introduction

In the last years, the peculiar electro-thermal properties of silicon nanostructures, have attracted
an increasing interest because of the potential applications as sensors, field effect transistors, logic
gates, thermoelectric generators [1, 2]. Silicon nanowires (SiNWs) are quasi-one-dimensional
structures in which electrons are spatially confined in two directions and they are free to move
in the orthogonal direction. By shrinking the dimension of these structures, effects of quantum
confinement are observed and the wave nature of the electrons must be taken into account.
The investigation of these devices by means of numerical simulations can be very informative,
provided that a realistic and complete physical model is employed. Under reasonable hypothesis,
transport in low-dimension semiconductors can be tackled coupling quantum and semiclassical
tools. Therefore, for long channels, semiclassical formulations based on the 1-D Multiband
Boltzmann Transport Equation (MBTE) can give reliable simulation results when it is solved
self-consistently with the 3-D Poisson and 2-D Schrödinger equations in order to obtain the
self-consistent potential and subband energies. We notice that this semiclassical formulation
fails if in the channel there are potential barriers: in this case tunneling effects must be taken
into account using quantum kinetic or hydrodynamic models [3, 4].

The Monte Carlo method provides a stochastic solution of the MBTE, although affected by
statistical noise [3, 5–10]. Another alternative is to take the moments of the MBTE to obtain
hydrodynamic-like models, providing a good engineering-oriented approach. Such approach has
been successfully used in the electrical and electro-thermal [11–20] simulation of sub-micrometric
electronic devices.
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2. Quantum confinement and electronic transport

In SiNW the band structure is altered with respect to the bulk case, depending on the cross-
section wire dimension, the atomic configuration, and the crystal orientation. Tight-binding
(TB) calculations shows that the six equivalent ∆ conduction valleys of the bulk Si are split
into two groups because of the quantum confinement [21]. The subbands related to the four
unprimed valleys ∆4 ([0 ± 10] and [00 ± 1] orthogonal to the wire axis) are projected into a
unique valley in the Γ point of the one-dimensional Brillouin zone. Therefore a SiNW is a direct
band-gap semiconductor. The subbands related to the primed valleys ∆2 ([±100] along the
wire axis) are found at higher energies and exhibit a minimum, located at kx = ±0.37π/a0, and
the energy gap between the ∆4 and ∆2 bottom valley is 117 meV. The corresponding effective
masses m∗, in the parabolic spherical band approximation , are m∗

∆2
= 0.94, m∗

∆4
= 0.27 (in

rest electron mass units). For a quantum wire with linear expansion in x-direction, and confined
in the plane y − z, the normed wave function φ(x, y, z) can be written in the form

φ(x, y, z) = χµ
l (y, z)

eikxx√
Lx

(1)

where µ is the valley index (one ∆4 valley and two ∆2 valleys), l = 1, Nsub the subband index,
χµ
l (y, z) is the wave function of the l-th subband and µ-th valley, and the term eikxx/

√
Lx

describes an independent plane wave in x-direction confined to the normalization length,
0 ≤ x ≤ Lx, with wave number kx. In the Hartree approximation, a given electron feels
the total potential Vtot(x, y, z) = U(y, z) − eV (x, y, z), where V is the electrostatic potential,
e is the absolute value of the electric charge, and U(y, z) the confining potential. The spatial
confinement in the (y, z) plane is governed by the Schrödinger-Poisson system (SP)



































































H[V ]χµ
lx[V ] = εµlx[V ]χµ

lx[V ]

H[V ] = − h̄2

2m∗
µ

(

∂2

∂y2
+ ∂2

∂z2

)

+ Vtot(x, y, z)

∇ · [ǫ0ǫr∇V (x, y, z)] = −e(ND −NA − n[V ])

n[V ](x, y, z, t) =
∑

µ

∑

l ρ
µ
l (x, t)|χ

µ
lx[V ](y, z, t)|2

(2)

where (2)1 is the Schrödinger equation in the Effective Mass Approximation, (2)3 is the Poisson
equation, and ND, NA are the assigned doping profiles (due to donors and acceptors). The
electron density n[V ] is given by (2)4, where ρµl (x, t) is the linear density in the µ-valley and
l-subband which must be evaluated by the transport model (hydrodynamic/kinetic) in the free
movement direction. In the following we shall assume a quadratic cross-section of the wire
(having total dimension Ly = Lz) where the wire is surrounded by an oxide layer which
gives rise to a deep potential barrier having U = 4.05 eV. The SP system forms a coupled
nonlinear PDEs, which it is usually solved by using an adaptive iteration scheme, obtaining the
electrostatic potential V , the eigenvalues (or subband energies) εµlx, and the eigenvectors (or
electron envelope wavefunctions) χµ

lx as a function of the unconfined x direction. Then the total

electron energy in the µ-valley and l-subband is Eµ
l = εµlx +

h̄2k2x
2m∗

µ
.

The electrons evolve in time under the streaming motion of external forces and spatial
gradient, and the randomizing influence of nearly point-like (in space-time) scattering events.
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For devices with a characteristic length of a few tens of nanometers, the transport of electrons
along the axis of the wire can be considered semiclassical within a good approximation [22], and
it can be modeled by the 1D MBTE. By taking moments of the MBTE, the following extended
hydrodynamic model [23–25] has been obtained

∂ρµl
∂t

+
∂(ρµl V

µ
l )

∂x
= ρµl

∑

l′

Cρ(µ, l, µ, l′) + ρµl
∑

l′,µ′ 6=µ

Cρ(µ, l, µ′, l′) (3)

∂(ρµl V
µ
l )

∂t
+

2

m∗
µ

∂(ρµl W
µ
l )

∂x
+

ρµl
m∗

µ

∂εµl
∂x

= ρµl
∑

l′

CV (µ, l, µ, l′) + ρµl
∑

l′,µ′ 6=µ

CV (µ, l, µ′, l′) (4)

∂(ρµl W
µ
l )

∂t
+

∂(ρµl S
µ
l )

∂x
+ ρµl

∂εµl
∂x

V µ
l = ρµl

∑

l′

CW (µ, l, µ, l′) + ρµl
∑

l′,µ′ 6=µ

CW (µ, l, µ′, l′) (5)

∂(ρµl S
µ
l )

∂t
+

∂(ρµl F
µ
l )

∂x
+

3ρµl
m∗

µ

∂εµl
∂x

Wµ
l = ρµl

∑

l′

CS(µ, l, µ, l′) + ρµl
∑

l′,µ′ 6=µ

CS(µ, l, µ′, l′) (6)

where (3)-(6) represent balance equations for the density (ρµl ), momentum (V µ
l ), energy (Wµ

l )
and energy-flux (Sµ

l ) respectively. This system is not closed due the presence of the high-order
moment Fµ

l as well as of the production terms (i.e. the RHS). By using the Maximum Entropy
Principle [26–29], one determines functional form of the distribution function in a neighborhood
of local thermal equilibrium, and consequently in [24], we have obtained Fµ

l = 6(Wµ
l )

2/m∗
µ

and the terms Cρ, CV , CW , CS , which have been calculated taking into account scattering with
acoustic and optical phonons, as well as surface roughness (SR). This model provides a realistic
description of the scattering rates, an useful tool to evaluate the low-field mobility and also
far-from equilibrium transport regimes.

3. Simulation results

We have considered a Gate-All-Around Silicon Nanowire transistor (SiNWT) having a
parallelepiped geometry with a metal gate wrapped around it, in such a way we have a three
contact device. Such devices have been designed during these years in order to maintain a
good electrostatic control in the channel. The channel has been homogeneously doped to ND

= 3 1017 cm−3 and it is very long (Lx = 120 nm) with respect to the transversal dimensions
(Ly = Lz = 12 nm), and the oxide thickness is 1 nm. As preliminary result, we have evaluated
the low-field mobility in this long-channel device. In order to evaluate this parameter, we fix an
uniform electric field along the channel of 1 kV/cm, and then we compute the mobility as the
ratio between the average electron velocity and the driving field, as function of the gate voltage
Vg. The average electron velocity has been obtained with the following iterative procedure: i)
we fix Vg and solve the Schrödinger-Poisson system (2); ii) once this solution has been obtained,
the energies εµl and wave functions χµ

l for each subband are exported into the hydrodynamic
model, and the linear density ρµl is used as initial condition; iii) the hydrodynamic model (3)-(6)
is solved and, in the stationary regime, the average velocity has been calculated. In Fig. 1 we
plot the electron density in a cross-section of the wire, showing the formation of the surface
inversion layer with the electron density peaked close to the oxide interface. In Fig. 2 we show
the low-field mobility as function of the gate voltage Vg, obtained by including/excluding the
SR mechanism. The inclusion of SR scattering has a strong effect on the low-field mobility
dependence, and it is a key point in the simulation of such devices.
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Figure 1. The electron density for Vg =
1V in a wire cross-section.
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Figure 2. Low-field mobility ver-
sus gate voltage, obtained with/without
Surface Roughness Scattering mecha-
nism.
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