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Abstract. A short account of recent existence and multiplicity theorems on

the Dirichlet problem for an elliptic equation with (p, q)-Laplacian in a bounded
domain is performed. Both eigenvalue problems and different types of pertur-

bation terms are briefly discussed. Special attention is paid to possibly coercive,

resonant, subcritical, critical, or asymmetric right-hand sides.

1. Introduction. Let Ω be a bounded domain in RN with a C2-boundary ∂Ω, let
1 < q ≤ p < N , and let µ ∈ R+

0 . Consider the Dirichlet problem{
−∆pu− µ∆qu = g(x, u) in Ω,
u = 0 on ∂Ω,

(1)

where ∆r, r > 1, denotes the r-Laplacian, namely

∆ru := div(|∇u|r−2∇u) ∀u ∈W 1,r
0 (Ω),

p = q iff µ = 0, while g : Ω × R → R satisfies Carathéodory’s conditions. The
non-homogeneous differential operator Au := ∆pu + µ∆qu that appears in (1) is
usually called (p, q)-Laplacian. It stems from a wide range of important applications,
including biophysics [15], plasma physics [37], reaction-diffusion equations [2, 12],
as well as models of elementary particles [3, 4, 5, 14]. That’s why the relevant
literature looks daily increasing and numerous meaningful papers on this subject
are by now available.

This survey provides a short account of some recent existence and multiplicity
results involving (1). To increase readability, we chose to report special but signifi-
cant cases of more general theorems, and our statements are often straightforward
extensions of known results. We refer to the original papers for the most up-to-date
research on this topic.

Section 2 contains basic properties of the operator

u 7→ −∆pu− µ∆qu, u ∈W 1,p
0 (Ω).

In particular, a scaling argument shows that if µ > 0 then there is no loss of
generality in assuming µ = 1, which we will make throughout the work.
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Eigenvalue problems are treated in Section 3, where, accordingly,

g(x, t) := α|t|p−2t+ β|t|q−2t ∀ (x, t) ∈ Ω× R,

with (α, β) ∈ R2. The results we present are chiefly taken from [8, 13, 24, 35, 36]
and concern bounded domains; for the whole space see, e.g., [6, 7, 18].

Section 4 collects existence and multiplicity theorems, sometimes with a precise
sign information. We shall suppose g purely autonomous as well as of the type

g(x, t) := α|t|p−2t+ β|t|q−2t+ f(t), (x, t) ∈ Ω× R,

where the perturbation f lies in C1(R) and exhibits a suitable growth rate near
±∞ and/or zero. Results are diversified according to the asymptotic behavior at
infinity, frequently under the simplified condition

−∞ < lim
|t|→+∞

f(t)

|t|r−2t
< +∞

for some r > 1. In particular, Section 4.1 concerns the (p − 1)-sublinear case
r ≤ p, possibly with coercivity and/or resonance additional assumptions. Let p∗

denote the critical Sobolev exponent. Section 4.2 treats the (p−1)-superlinear case
r > p and both subcritical, i.e., r < p∗, or critical, namely r = p∗, situations are
examined. Finally, Section 4.3 deals with asymmetric nonlinearities, meaning that
the asymptotic behavior at −∞ and +∞ is different. Due to limited space, we
relied only on [10, 13, 17], [22]–[25], [27]–[29], [31, 32], [38]–[40], where bounded
domains are considered, and refer to [7, 11, 16, 18] for the case Ω := RN .

Since the literature on the subject is very wide and our knowledge limited, signif-
icant works on the subject may have been not mentioned here, something of which
we apologize in advance.

2. Basic properties of the (p, q)-Laplacian. Let 1 < q ≤ p < N and let µ ∈ R+
0 .

We denote by p′ the dual exponent of p, i.e., p′ := p/(p− 1), while p∗ is the critical
Sobolev exponent in dimension N , namely

p∗ :=
Np

N − p
.

If r ∈ [1,+∞) then

‖u‖r :=

(∫
Ω

|∇u|r dx
)1/r

∀u ∈W 1,r
0 (Ω), |u|r :=

(∫
Ω

|u|r dx
)1/r

∀u ∈ Lr(Ω).

Write Aµp,q for the differential of the C1, strictly convex functional

u 7→ 1

p
‖u‖pp +

µ

q
‖u‖qq, u ∈W 1,p

0 (Ω).

Hence,

〈Aµp,q(u), v〉 =

∫
Ω

(
|∇u|p−2∇u · ∇v + µ|∇u|q−2∇u · ∇v

)
dx ∀u, v ∈W 1,p

0 (Ω),

where, as usual, 〈·, ·〉 indicates the duality coupling between W 1,p
0 (Ω) and its to-

pological dual W−1,p′(Ω). Setting µ = 0 we obtain the p-Laplacian Ap while µ = 1
produces the so-called (p, q)-Laplacian. Let us now discuss some features of Aµp,q.
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2.1. Scaling. The case q = 2, µ→ 0+ naturally gives an elliptic regularization pro-
cedure for solutions ū ∈ W 1,p

0 (Ω) of the equation Ap(u) = g, with g ∈ W−1,p′(Ω),
in the sense that solutions uµ to Aµp,2(u) = g usually posses better regularity prop-

erties for µ > 0 than for µ = 0 but, at the same time, uµ → ū strongly as µ→ 0+.
A scaling argument shows that the solutions of Aµp,q(u) = g actually solve an equa-

tion of the type A1
p,q(v) = h, with explicit v and h. So, the perturbation parameter

µ can be avoided. To see this, for every u ∈W 1,p
0 (Ω) and λ > 0 we set

(u)λ(x) := u(λx), x ∈ λ−1Ω,

where λ−1Ω := {λ−1x : x ∈ Ω}. Evidently, (u)λ ∈ W 1,p
0 (λ−1Ω). By duality, given

any g ∈W−1,p′(Ω), one defines

〈(g)λ, v〉 := 〈g, (v)λ−1〉 ∀ v ∈W 1,p
0 (λ−1Ω),

whence (g)λ ∈ W−1,p′(λ−1Ω). Now, if Aµp,q(u) = g for some u ∈ W 1,p
0 (Ω) and

g ∈W−1,p′(Ω) then, through a direct computation changing variables,

A1
p,q((u)λ) = λp

(
Ap(u)

)
λ

+ λq
(
Aq(u)

)
λ

= λp
(
Aλ

q−p

p,q (u)
)
λ
,

so that, letting λ := µ1/(q−p), it holds

Aµp,q(u) = g ⇔ A1
p,q((u)µ1/(q−p)) = µp/(q−p)(g)µ1/(q−p) .

Therefore, henceforth,

we shall pick µ = 1 and, to simplify notation, put Ap,q := A1
p,q.

2.2. Homogeneity. The operator Aµp,q is not homogeneous whenever p 6= q. This
prevents to apply, in a simple way, available tools from critical point theory. How-
ever, a reasoning analogous to the one exploited before allows to take advantage
from such a trouble. Indeed, if u ∈W 1,p(Ω) is a solution of the quasilinear equation
Aµp,q(u) = g(·, u) then

Ap,q(ku) = kp−1Ap(u) + kq−1Aq(u) = kp−1Ak
q−p

p,q (u).

Setting µ := kq−p, the function v := µ1/(q−p)u solves

Ap,q(v) = µ
p−1
q−p g(·, u) = gµ(·, v), with gµ(x, t) := µ

p−1
q−p g(x, µ

1
p−q t).

We thus achieve an equation for Ap,q where the reaction exhibits a different asymp-
totic behavior both at zero and at infinity.

2.3. Eigenvalues of Ap. Eigenvalues of Ap play a key role in solving quasilinear
equations where Ap,q appears. So, some basic properties will be recalled. Denote

by σ(Ap,W
1,p
0 (Ω)) the spectrum of Ap with (zero) Dirichlet boundary conditions.

A whole sequence of variational eigenvalues

σp := {λk(p)} ⊆ σ(Ap,W
1,p
0 (Ω))

can be constructed via the Ljusternik-Schnirelmann minimax scheme with Z2 co-
homological index [1, Section 4.2]. If p = 2 it reduces to the usual spectrum of
(−∆, H1

0 (Ω)), while for general p > 1 one has

0 < λ1(p) = inf
u∈W 1,p

0 (Ω)\{0}

‖u‖pp
|u|pp

< λ2(p) = inf{λ ∈ σp : λ 6= λ1(p)}.
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Moreover, as long as Ω is connected, the eigenspace corresponding to λ1(p) is one-
dimensional and spanned by a positive function u1,p ∈ C1,α(Ω), whereas eigenfunc-
tions relative to higher eigenvalues must be nodal.

2.4. Regularity. The regularity theory for Ap,q is well established after the works
of Lieberman in the eighties (see, e.g., [21]) and parallels that concerning Ap. In

particular, weak solutions u ∈W 1,p
0 (Ω) to the equation

Ap,q(u) = g(·, u), (2)

for some Carathéodory function g : Ω× R→ R obeying

|g(x, t)| ≤ C(1 + |t|p
∗−1), (3)

are C1,α up to the boundary. Under natural conditions on g, a strong maximum
principle as well as the Hopf boundary point lemma hold true. Precisely, define

C1
0 (Ω) := {u ∈ C1(Ω) : ub∂Ω= 0},

Its positive cone

C+ := {u ∈ C1
0 (Ω) : u(x) ≥ 0 in Ω}

has a nonempty interior given by

int(C+) =

{
u ∈ C+ : u(x) > 0 ∀x ∈ Ω,

∂u

∂n
(x) < 0 ∀x ∈ ∂Ω

}
,

where n(x) denotes the outward unit normal to ∂Ω at x. Because of [34, Theorems
5.5.1 and 5.3.1], if there exists δ > 0, C > 0 such that

tg(x, t) ≥ −Ctq in Ω× [−δ, δ]

then, under (3), nonnegative nontrivial solutions to (2) actually lie in int(C+). A
similar statement holds true for nonpositive solutions.

3. Eigenvalue problems. In analogy with the Fučik spectrum, the eigenvalue
problem for Ap,q with homogeneous Dirichlet boundary conditions on a bounded
domain Ω consists in finding all (α, β) ∈ R2 such that the equation

Ap,q(u) = α|u|p−2u+ β|u|q−2u (4)

possesses a nontrivial weak solution u ∈ W 1,p
0 (Ω). The set of such (α, β) is called

the (p, q)-spectrum of Ap,q and denoted by σp,q. Additionally, σ+
p,q indicates the

set of (α, β) ∈ σp,q for which there exists a positive solution to (4). This problem
can evidently be recasted in the more general framework of weighted eigenvalues,
namely to the equation

Ap,q(u) = ξ|u|p−2u+ η|u|q−2u,

where ξ and η are bounded functions, and most of the results presented here have
suitable weighted (sometimes even sign-changing) variants. For the sake of simplic-
ity, we will focus on the constant coefficient case. Nevertheless, a full description
of σp,q is out of reach, since it clearly presents additional difficulties with respect
the comparatively simpler case of the spectrum of Ap, a well-known open problem
until today. Partial results on σ+

p,q are scattered in the literature, since positive
eigenfunctions turn out to be a useful tool for studying more general quasilinear
problems. One always has

]λ1(p),+∞[ × ]−∞, λ1(q)[ ∪ ]−∞, λ1(p)[ × ]λ1(q),+∞[ ⊆ σ+
p,q,
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α

β

λ1(p)

λ1(q)

t

α− β = t

γ

λ∗(t)

Figure 1. Given t ∈ R, on the thick part of the line α− β = t we
have existence and on the dashed part non-existence of a positive
eigenfunction.

with uniqueness of positive eigenfunctions in ]−∞, 0]× ]λ1(q),+∞[; cf. [8, Proposi-
tion 2.2] as regards existence and [24, Lemma 2.2], [36, Theorem 1.1] for uniqueness.
Moreover, a quite complete picture of σ+

p,q is available, according to whether the
following conjecture holds true or not.

Let u1,p and u1,q be first eigenfunctions for Ap and Aq respectively.

If p 6= q then u1,p and u1,q are linearly independent.
(5)

Theorem 3.1 ([8], Section 2). Suppose 1 < q < p < N . Then

σp,q ⊆ {(λ1(p), λ1(q))} ∪ {(α, β) : α > λ1(p)} ∪ {(α, β) : β > λ1(q)}.
If, moreover, (5) is satisfied then there exists a continuous non-increasing function
λ∗ : R→ [λ1(q),+∞[ such that, letting γ(t) := (λ∗(t) + t, λ∗(t)),

σ+
p,q \γ(R) = {(α, β) : λ1(p) < α, β < λ∗(α−β)}∪{(α, β) : λ1(q) < β < λ∗(α−β)}.

In addition, λ∗(t) ≡ λ1(q) for any t big enough and t 7→ λ∗(t) + t is non-decreasing.

Therefore, the support of γ plays the role of a threshold for the existence of
positive eigenfunctions, as described in Figure 1. More precisely, any line

Lt := {(α, β) ∈ R2 : α− β = t}
intersects γ at a unique point Pt ≡ (λ∗(t)+t, λ∗(t)) and (α, β) ∈ Lt∩(σ+

p,q \γ(R)) iff
(α, β) lies in the part of Lt below Pt, under the constraint α > λ1(p) or β > λ1(q).

Some natural properties of λ∗ are yet to be understood. As an example, is it true
that λ∗(t)+ t ≡ λ1(p) for t sufficiently negative? Besides, while some partial results
are known on the borderline case σ+

p,q ∩ γ(R), the picture looks not complete until
today. Let us finally point out that, still in [8], the case when Conjecture (5) fails
is discussed, providing a simpler description of σ+

p,q. This is particularly meaningful
for weighted eigenvalue problems, where it may occur that (5) does not hold for
some weights.
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Regarding the set σp,q \ σ+
p,q, or simply the existence of sign-changing solutions

to (4), only partial results are available.

Theorem 3.2.

1. Let α := 0. Then (4) admits a nodal eigenfunction iff β > λ2(q). See [35,
Theorem 3] and [36, Theorem 1.2].

2. Assume α < λ1(p) and β > λ2(q). Then (4) possesses a nodal eigenfunction.
Cf. [24, Theorem 4.3].

3. Let q := 2 < p. If α /∈ σp, β /∈ σ2, and

α /∈ [λm(β)(p), λm(β)+1(p)],

where m(β) is the number of λk(2) ∈ σ2 fulfilling λk(2) < β, each counted
with its geometric multiplicity, then (α, β) ∈ σp,2. See [13, Theorem 4.2].

Let us mention that the existence results of [13, 24] actually deal with more
general equations, as we will see later. Eigenvalue problems on the whole space are
investigated in [6, 7, 18].

4. Multiplicity results. In this section we will discuss existence and multiplicity
of solutions to the general quasilinear Dirichlet problem

u ∈W 1,p
0 (Ω), Ap,q(u) = g(·, u),

where g : Ω×R→ R satisfies Carathéodory’s conditions. For the sake of simplicity,
the case g smooth and purely autonomous, i.e., g(x, t) = ĝ(t) with ĝ ∈ C1(R),
is treated. Most of the results can be recasted as perturbed eigenvalue problems,
which means

ĝ(t) := α|t|p−2t+ β|t|q−2t+ f(t),

where the behavior of f at ±∞ and/or at zero is typically negligible when compared
with the leading term α|t|p−2t+ β|t|q−2t. To fix ideas, the sample equation is

Ap,q(u) = α|u|p−2u+ β|u|q−2u+ γ|u|r−2u (6)

for various α, β, γ ∈ R and r > 1, the last term representing the perturbation.
Let 1 < q < p < N and let f ∈ C1(R). We say that the problem

u ∈W 1,p
0 (Ω), Ap,q(u) = α|u|p−2u+ β|u|q−2u+ f(u) (7)

is subcritical if f fulfills the growth rate

|f(t)| ≤ C(1 + |t|r−1) in R,

with appropriate r ∈ ]1, p∗[ and critical when this inequality holds true for r = p∗

but not for smaller r’s. Moreover, (p−1)-sublinear signifies r ≤ p, or, more generally,

lim sup
|t|→+∞

F (t)

|t|p
< +∞, where F (t) :=

∫ t

0

f(τ)dτ.

Otherwise (7) is called (p− 1)-superlinear. Finally, we say that Problem (7) turns
out to be asymmetric if f (or F ) exhibits a different asymptotic behavior at ±∞.

Due to the expository nature of the present work, we won’t examine here possible
formulations of the Ambrosetti-Rabinowitz (briefly, (AR)) condition on the nonlin-
earities involved. This assumption, especially fruitful to achieve the Palais-Smale
condition for (p − 1)-superlinear problems, has been the object of many research
papers in recent years. A deep discussion of various generalizations is made in [19]
while [11, 27, 29] contain applications to (p, q)-Laplacian problems. We choose to
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somewhat oversimplify statements, substituting Condition (AR) with easier ones.
So, the theorems given below are actually true under less restrictive hypotheses
than those taken on here.

4.1. (p − 1)-sublinear problems. The present section collects some multiplicity
results devoted to the sublinear case. Accordingly, the perturbation f will fulfill

−∞ < lim
|t|→+∞

f(t)

|t|p−2t
< +∞.

4.1.1. Coercive setting. This means that the energy functional stemming from (7),
namely

u 7→ 1

p
‖u‖pp +

1

q
‖u‖qq −

α

p
|u|pp −

β

q
|u|qq −

∫
Ω

F (u(x)) dx, u ∈W 1,p
0 (Ω),

turns out to be coercive. As long as the behavior of f(t) at infinity is negligible
with respect to |t|p−1, we are thus studying (7) for α < λ1(p).

Very recently, a multiplicity result has been proved in [31] under coercivity con-
ditions. The associated sample equation is (6) with q = 2, r ∈ ]2, p[, γ > 0.

Theorem 4.1 ([31], Theorem 16). Let q := 2 < p < N and let f(0) = f ′(0) = 0. If

lim
|t|→+∞

f(t)

|t|p−2t
= 0, lim

|t|→+∞

F (t)

t2
= +∞

then there is ε > 0 such that, for every (α, β) ∈ ]λ1(p)−ε, λ1(p)[×( ]λ2(2),+∞[ \σ2),
Problem (7) admits at least four nontrivial solutions. Moreover, one of them turns
out to be positive and another negative.

The more general case 1 < q < p is treated in [24]. It corresponds to r ∈ [p, p∗[
and γ < 0 for the model equation (6).

Theorem 4.2 ([24], Theorems 4.2 and 4.4). Assume 1 < q < p < N , α < λ1(p),
β > λ2(q), f subcritical, and

lim
t→0

f(t)

|t|q−2t
= 0, lim

|t|→+∞

F (t)

|t|p
≤ 0.

Then (7) possesses at least three solutions: u1 ∈ int(C+), u2 ∈ −int(C+), and
u3 6= 0. If, moreover,

lim
|t|→+∞

f(t)

|t|p−2t
> −∞,

then u3 is nodal.

A concave perturbation is added in [25], obtaining the next multiplicity result.

Theorem 4.3 ([25], Theorem 1.1). Let 1 < s < q < p < N , let α < λ1(p),
β > λ1(q), and let f be subcritical. If

lim
t→0

f(t)

|t|q−2t
= 0, −∞ < lim

|t|→+∞

F (t)

|t|p
≤ 0

then there exists µ∗ > 0 such that for every µ ∈ ]0, µ∗[ the problem

u ∈W 1,p
0 (Ω), Ap,q(u) = α|u|p−2u+ β|u|q−2u− µ|u|s−2u+ f(u),

has at least four nontrivial solutions, u1, u2 ∈ int(C+), u3, u4 ∈ −int(C+).

Under additional hypotheses on F , a fifth solution is found in the same paper.
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4.1.2. Resonant setting. Roughly speaking, (7) is called resonant provided α ∈ σp
(or β ∈ σq) and f is negligible at ±∞ with respect to |t|p−1 (or |t|q−1, respectively).

A problem resonant at higher eigenvalues has been addressed in [29] for the
(p, 2)-Laplacian, patterned after (6) with perturbation such that q < r < p, γ > 0.

Theorem 4.4 ([29], Theorem 3.7). Suppose q := 2 < r < p < N , α := λk(p) for
some k ≥ 2, and β ∈ ]0, λ1(2)[. If f satisfies

f(0) = f ′(0) = 0, 0 < lim
|t|→+∞

f(t)

|t|r−2t
< +∞, |f ′(t)| ≤ C(1 + |t|p−2) ∀ t ∈ R

then (7) admits at least three solutions: u1 ∈ int(C+), u2 ∈ −int(C+), and u3 6= 0.

Concerning resonance at the first eigenvalue, we have the following

Theorem 4.5 ([22], Theorems 3.9 and 4.5). Let 1 < s < q < r < p < N , let
α := λ1(p), β := 0, and let f fulfill

0 < lim
t→0

f(t)

|t|s−2t
< +∞.

• Resonance from the left. Assuming

−∞ < lim
|t|→+∞

f(t)

|t|r−2t
< 0

yields three solutions: u1 ∈ int(C+), u2 ∈ −int(C+), and u3 nodal.
• Resonance from the right. On the other hand, the condition

0 < lim
|t|→+∞

f(t)

|t|r−2t
< +∞,

gives at least one nontrivial solution.

Further papers on the same subject are [7, 23, 28, 32]; see also the references
therein. In particular, [7] treats the case Ω := RN , [23, 28] deal with asymmetric
nonlinearities crossing an eigenvalue, while [32] assumes q := 2.

4.1.3. Problems neither coercive nor resonant. Let us now come to the case where f
is (p−1)-sublinear but the energy functional associated with (7) fails to be coercive
and is indefinite. This occurs when, e.g.,

lim
|t|→+∞

F (t)

|t|p
> λ1(p).

The following result has already been mentioned in Section 3 for f ≡ 0.

Theorem 4.6 ([13], Theorem 4.2). Suppose q := 2 < p, α /∈ σp, β /∈ σ2, f(0) =
f ′(0) = 0, and

lim
|t|→+∞

f ′(t)

|t|p−2
= 0.

If, moreover,
α /∈ [λm(β)(p), λm(β)+1(p)],

where m(β) is as in Theorem 3.2, then (7) possesses at least one nontrivial solution.

The next problem is not purely resonant (meaning that we cannot set α = λ1(p)
in (7)), but falls inside the so-called near resonance problems.

Theorem 4.7 ([31], Theorems 22 and 28). Let q := 2 < p < N , f(0) = f ′(0) = 0,
and f be subcritical.
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• If (α, β) ∈ ]λ1(p), λ2(p)[ × ]0, λ1(2)[ and

0 < lim
|t|→+∞

f(t)

|t|r−2t
< +∞

for appropriate 2 < r < p then (7) has a nontrivial solution.
• Under the assumptions

lim
|t|→+∞

F (t)

|t|p
< 0, |f ′(t)| ≤ C(1 + |t|p−2) ∀ t ∈ R,

there is ε > 0 such that for each (α, β) ∈]λ1(p), λ1(p) + ε[×( ]λ2(2),+∞[\σ2)
Problem (7) possesses at least four solutions: u1 ∈ int(C+), u2 ∈ −int(C+),
and u3, u4 nodal.

Analogous results on the whole space, which causes further difficulties, are es-
tablished in [7, 18]. Finally, we refer to the survey paper [26] for non-variational
problems involving the (p, q)-Laplace operator.

4.2. (p−1)-superlinear problems. This section contains some multiplicity results
concerning the superlinear framework. So, the perturbation f will fulfill

lim
|t|→+∞

f(t)

|t|p−2t
= +∞.

4.2.1. Subcritical setting. Through the Nehari manifold approach, a ground state
solution (namely a positive solution, which minimizes the associated energy func-
tional) has been obtained in [17].

Theorem 4.8 ([17], Corollary 2.1). Let 1 < q < p < N , let α := β := 0, and let f
be a subcritical function such that

lim
t→0

f(t)

|t|q−2t
= 0, t 7→ f(t)

tp−1
is increasing on R+.

Then (7) possesses a ground state solution.

When q ≤ 2 ≤ p we have the following

Theorem 4.9 ([27], Theorem 10). Suppose 1 < q ≤ 2 ≤ p < N , α < λ1(p), β := 0.
If f satisfies

−∞ < lim
t→0

f(t)

|t|p−2t
< 0, 0 < lim

t→+∞

f(t)

|t|r−2t
< +∞

with appropriate r ∈ ]p, p∗[, then (7) has at least three solutions: u1 ∈ int(C+),
u2 ∈ −int(C+), and u3 6= 0.

A more sophisticated result is proved in [29].

Theorem 4.10 ([29], Theorem 4.12 and 4.11). Let q := 2 < p < N , let f be a
subcritical function, and let (α, β) ∈ R2 satisfy

α|c+|p−2c+ +βc+ +f(c+) ≤ 0 ≤ α|c−|p−2c−+βc−+f(c−) for some c− < 0 < c+.

Assume also that

f(0) = f ′(0) = 0, lim
|t|→+∞

f(t)

|t|r−2t
> 0, |f ′(t)| ≤ C(1 + |t|r−2) ∀ t ∈ R,

where p < r < p∗. Then Problem (7) admits:
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• Five solutions, u1, u2 ∈ int(C+), u3, u4 ∈ −int(C+), and u5 6= 0, provided
β ∈ ]λ1(2), λ2(2)[.

• Six solutions, two positive, two negative, and the remaining nodal, if β ∈
]λ2(2),+∞[ \σ2.

For additional results on the whole space, see [7, 11].

4.2.2. Critical setting. In this framework, the most relevant term behaves as |u|p∗−2u.
Thus, we shall be concerned with equations of the type

Ap,q(u) = |u|p
∗−2u+ h(u),

where the perturbation h is strictly subcritical. All the results we will present involve
odd nonlinearities, so that any positive solution directly gives rise to a negative one.
Under the hypothesis 1 < r < q < p < N , a first result on the sample problem

u ∈W 1,p
0 (Ω), Ap,q(u) = |u|p

∗−2u+ γ|u|r−2u (8)

has been obtained in [20] and then generalized as follows.

Theorem 4.11 ([39], Theorem 1.1). Let 1 < r < q < p < N and let f ∈ C1(R) be
odd. If f(t)t > 0 in R \ {0}, there exists s ∈ ]1, p[ such that

0 < lim
|t|→+∞

f(t)

|t|s−2t
< +∞,

and γ, λ > 0 are sufficiently small then the problem

u ∈W 1,p
0 (Ω), Ap,q(u) = |u|p

∗−2u+ γ|u|r−2u+ λf(u) (9)

possesses infinitely many solutions.

Superlinear perturbations of the purely critical equation are treated in [40].

Theorem 4.12 ([40], Theorems 1.1 and 1.2). Suppose 1 < q < p < r < p∗ and
p < N . Then:

• (8) admits a nontrivial solution provided γ > 0 is large enough.
• Let cat(Ω) denote the Ljusternik–Schnirelmann category of Ω in itself. If

N > p2, p∗ − r < q

p− 1
< 1∗,

then (8) has at least cat(Ω) positive solutions for every sufficiently small γ > 0.

Let us note that Theorem 4.11 actually extends to more general equations of the
form (9), still for r ∈ ]p, p∗[; cf. [39, Theorem 4.3–4.4].

Finally, the borderline case of an eigenvalue problem with critical nonlinearity is
investigated by the following result.

Theorem 4.13 ([10], Theorem 1.3). Let 1 < q < p < min{N, q∗} and let β ∈ R.
Then, for every α > 0 large enough, the problem

u ∈W 1,p
0 (Ω), Ap,q(u) = α|u|p−2u+ β|u|q−2u+ |u|p

∗−2u

possesses a nontrivial solution, which is strictly positive provided β < λ1(q).

The paper [10] contains further existence results concerning the situation

1 < q < p < q∗ < N.

It should be noted that, even for the sample problem (8), the intermediate case
q < r < p is, as far as we know, still open. Finally, the existence of ground states
for critical equations on the whole space is studied in [16].
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4.3. Asymmetric nonlinearities. We now discuss quasilinear Dirichlet problems
with reactions having different asymptotic behaviors at −∞ and +∞. The sample
equation stems from the Fučik spectrum theory, and is of the type

Ap,q(u) = α+u
p−1
+ − α−up−1

− + β|u|q−2u+ f(u), α±, β ∈ R, (10)

where t± := max{0,±t}, while f exhibits suitable (possibly asymmetric as well)
growth rates at zero and ±∞. For the sake of simplicity, we singled out the Fučik
structure only on the higher order term of the reaction with respect to which res-
onance can occur, but, as before, most of the theorems can be recasted in a more
general setting.

A first result in this framework is obtained provided 1 < q < p := 2, both for
subcritical and critical nonlinearities.

Theorem 4.14 ([38], Theorems 1.1 and 1.2). Suppose 1 < q < s < p := 2 < r ≤ 2∗,
α ∈ ]λ1(2),+∞[ \σ2, and λ > 0. Then the problem

u ∈W 1,2
0 (Ω), A2,q(u) = αu− λ|u|s−2u+ µur−1

+

admits at least three nontrivial solutions if µ > 0 is sufficiently small and either
r < 2∗, N ≥ 3 or r = 2∗, N ≥ 4.

The next result allows a full resonance (from the left) at +∞ with respect to
λ1(p).

Theorem 4.15 ([28], Theorems 3.4 and 4.3). Let 1 < q := 2 < r < p < N , let
α− ≤ λ1(p) < α+, and let β ∈ ]λ2(2),+∞[ \σ2. If f(0) = f ′(0) = 0,

−∞ < lim
t→−∞

f(t)

|t|r−2t
< 0 < lim

t→+∞

f(t)

tr−1
< +∞, and |f ′(t)| ≤ C(1 + |t|p−2) ∀ t ∈ R

then (10) possesses at least two nontrivial solutions, one of which is negative. A
third solution exists once α− 6= λ1(p).

When the perturbation in (10) contains a parametric concave term we have the
following

Theorem 4.16 ([23], Theorem 4.2). Suppose 1 < s < q < p < N and α− ≤
λ1(p) ≤ α+. If, moreover,

0 < lim
t→0

f(t)

|t|q−2t
< λ1(q), −∞ < lim

t→−∞

f(t)

|t|p−2t
< 0 < lim

t→+∞

f(t)

tp−1
< +∞,

then there exists λ∗ > 0 such that, for every λ ∈ ]0, λ∗[, the problem

u ∈W 1,p
0 (Ω), Ap,q(u) = α+u

p−1
+ − α−up−1

− + λ|u|s−2u+ f(u),

admits at least four solutions, u1, u2 ∈ int(C+), u3 ∈ −int(C+), and u4 nodal.

Let us finally point out that infinitely many solutions are also obtained in [23]
under a symmetry condition near zero. For further results concerning asymmetric
nonlinearities, see [30, 33].

Note added in proof
While this manuscript was under review, V. Bobkov told us that Conjecture (5)
holds true. The proof is contained in a joint work in progress with M. Tanaka. He
kindly pointed out also the interesting paper [9], whose results should have been
mentioned in Section 3.
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