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Abstract. The Wigner transport equation is solved by Direct Simulation Monte Carlo, based
on the generation and annihilation of signed particles. In this framework, stochastic algorithms
are derived using the theory of pure jump processes with a general state space. Numerical
experiments on benchmark test cases are shown.

1. Introduction

The continuous scaling down of semiconductor devices is nowadays at a point, where active
lengths are of the order of only a few tens of nanometers. Effects such as particle tunneling
through source-to-drain potential profiles are now highly relevant and cannot be ignored. From
this perspective, only full quantum models are capable of describing the appropriate physics. A
well-known model is the Wigner equation which can be augmented by a Boltzmann-like collision
operator accounting for the process of decoherence. The Wigner equation writes [1]:
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where Vjy is the Wigner potential, and V(x) is the potential energy. The Wigner potential is
a non-local potential operator which is responsible of the quantum transport, it is real-valued,
and anti-symmetric with respect to k.

The numerical solution of the Wigner equation can be obtained using high-order finite
difference solvers [2-5]. To avoid discretization problems, particle Monte Carlo (MC) methods
can be used (see [6] for a review), despite the large computational times.

In the realm of the MC methods, the Signed particle Monte Carlo approach [7,8] seems to
be the most promising, because it can be understood in a probabilistic framework. In fact, the
quantum evolution term (1) is interpreted as a Gain term of a collisional operator in which
the Loss term is missing. But the Wigner potential (2) is not always positive and cannot be
considered a scattering term. For this reason, it can be separated into a positive and negative
parts VJ, Viv = 0 such that Vi = VVT/ — Viy- Therefore the quantum evolution term can be
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written as
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where now Q(fy ) is written as the difference of Gain and Loss terms. The corresponding
scattering mechanism is dictated by (4), where the first term represents the creation of a new
positive particle, the second the creation of a negative one and the last term means that the
initial particle is maintained. Hence a real-valued weight (or affinity) must be introduced, to
describe this pair production. The intensity of the pair creation is ruled by =, and the momentum
of the new particles generated according to the probability VV‘J;. The main drawbacks of this
procedure reside in the exponential grow of the particle number, and in the evaluation of the
and VV}L, functions because they are rapidly oscillating.

This creation process has been recently understood in terms of the ”piecewise deterministic
Markov processes” theory (PDMP) [9, 10]. Each particle is characterized by a real-valued weight
A, a position x and a wave-vector k. The particle position changes continuously, according
to the velocity determined by the wave-vector. New particles (called offspring) are created
randomly and added to the system. The main result is that appropriate functionals of this
stochastic process satisfy a weak form of the Wigner equation. Moreover, this approach has
certain advantages compared to other derivations. In particular, it suggests a variety of new
algorithms as well as some of the algorithms previously considered in the literature.

2. New generation algorithms
According to PDMP, we shall introduce a new algorithm, which based on a majorant of the
Wigner potential

Vel ) < v (@) Yok o (e = 5 [ Vi, ) dk (5)

where B = {k: eRY: ||k < c} and c is a cutoff. A splitting time step At < 1/4 is used in order
to separate the transport and the creation processes. The new algorithm performs the evolution
of the system on the time interval [0, At| according to the following steps:

1. Transport step : the particle positions change according to

h .
xj::xj—i-ﬁijt , j=1,..,N
2. Creation step : for j = 1,.., N new particles are created according to the following rules:
(a) with probability 1 — 4(z;, c)At do not create anything.
(b) Otherwise generate randomly a new k according to the probability
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(c) with probability 3
| Wiy )
Vv (xj, k)

do not create anything.
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(d) Otherwise create the particle couple

[A(Aj @ ky) g by + K] [~ A(A), @5, kg), 25, k; — K]
with A(A, z, k) = Asign Viy (z, k). Put N := N + 2.
3. Cancellation step: if N > Nggne pairs of particles with opposite affinity, which belong to
the same element of the phase-space are removed.

The particle creation rate, in this new algorithm, is dictated by the function 4 (5)2 obtaining
a gain factor 2 with respect to standard creation procedure employing the function v (3)o;
moreover, the new algorithm has the advantage that the calculation of the rate function , which
is highly oscillating, is avoided. Recently we have developed another MC algorithm (which we
shall call no-splitting), performing the particle evolution on a finite time interval [0, T] without
any time discretization error, i.e. avoiding the time step splitting error [11].

3. Benchmark studies

As benchmark, we have considered a potential barrier with the shape of a gaussian function,
centered at x=0 with dispersion ¢ = 1 nm and height a = 0.3 eV. The Wigner potential (2), in
the 1D case, writes

Vw(x, k) =
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The creation algorithm is based on the following majorant of Viy (x, k)
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The initial condition for the Wigner equation is
1 (v — mp)? 9 9
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where zg = -15 nm, ko= 0.7 nm™', 0y = 2.852 nm, and we have chosen absorption boundary

conditions. In the z-space we have considered an uniform mesh [-30, 30](nm) with N, = 200
grid-points; also in the k-space we have an uniform mesh [-10, 10](nm~!) with N,=400. The
cutoff has been fixed ¢ = 8 nm ™!, the initial particle number is Nj,; = 160000, the cancellation
parameter Ngq,. = 480000. Since for pure states the Wigner and Schrodinger equations are
completely equivalent, we have compared the MC mean density with that obtained using a
high-order deterministic Schrédinger equation solver [12]. The mean density, obtained at 20
fsec. with the two solvers, is shown in figure 1, for various time steps. We can observe that
the MC solution converge to the Schrodinger one, showing clearly the error introduced by the
time step. In figure 2 we plot the mean density obtained using the no-splitting algo (without
any time step) and the Schrédinger one: the agreement between the two mean densities is very
good. Figure 3 shows the CPU times versus the time step as well as the CPU obtained with the
no-splitting algo, and, in figure 4, the max absolute error between the MC and the Schrodinger
solutions. From these figures it is clear the advantage to use the no-splitting algorithm instead
of standard ones.

4. Conclusions

The Wigner equation has been solved by using the Signed particle Monte Carlo method where,
new pair of particles characterized by a sign, are created randomly and added to the system.
This creation mechanism has been understood in terms of the Markov jump process. Numerical
experiments have been performed successfully on a benchmark test case. Future researches will
include simulation of silicon nanowires according to the guidelines in [13-15].
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Figure 1. The mean density versus Figure 2. The mean density versus
position at simulation time 20 fsec., position at simulation time 20 fsec.,
obtained with some time steps At. obtained with the no-splitting algorithm.
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Figure 3. CPU time versus the time Figure 4. Max error versus the time
step At. step At.
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