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Abstract 

The problem of crack localization has been tackled in the past by detecting frequency changes due to the application of a mass 
appended to the structure. However the effect of the rotary inertia of the mass on the natural frequencies of a cracked beam has 
not been deeply investigated. In this paper a novel explicit closed form solution of the governing equation of a beam with a 
concentrated mass, with rotary inertia, in the presence of multiple cracks is proposed. Furthermore, an analytical proof to show 
that the natural frequencies of a cracked beam with a roving body with a rotary inertia will generally change abruptly as the body 
passes over a crack, provided that the crack permits differential flexural rotations, is presented. Numerical results in terms of 
natural frequencies are provided and the procedure to exploit the occurrence of frequency shifts to detect and locate each crack is 
described. 
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1. Introduction 

The problem of damage identification has been efficaciously addressed in the past by using vibrational 
measurements as described in the comprehensive review by Doebling et al. [1]. Mainly natural frequencies are 
monitored and precisely changes of frequency are usually understood as damage indicators. Unfortunately 
measurable frequency changes from the healthy to the damaged structure occur only in presence of significant 
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damage and they are strongly affected by environmental noise and experimental uncertainties. With regard to beam-
like structures, mode shape measurements have been proposed as additional data for crack identification in view of 
their capability to locate discontinuities at the cracked cross sections [2,3]. Moreover, mode shape changes induced 
by the cracks have been enhanced by the use of an appended roving mass in conjunction with the wavelet 
coefficients when applied to the differences between the undamaged and the damaged beams [4-7]. However, the 
adoption of mode shape measurements implies both analytical and experimental complications. 

 Another major issue related to the identification of concentrated cracks on beams is the a priori knowledge of the 
total number required by the available procedures. Hence a methodology able to deliver the exact number of 
concentrated cracks, as usually required by real applications, is desirable and presented in this work.    

Precisely, the basic idea of this paper is considering a roving mass (at different positions at each test and not 
allowed to move axially during the frequency measurement) by considering the effect of its rotational inertia on 
frequency changes on a cracked beam. In fact, since a concentrated crack produces a rotation discontinuity at the 
cracked cross section, the rotational inertia of the concentrated mass induces a shift of the natural frequencies as the 
mass passes from one side to another of the crack. In order to prove the latter statement the exact solution of a beam 
with multiple cracks in presence of a concentrated mass (the translational and rotational inertia terms are both 
included) is presented. The latter solution is obtained by modelling each crack as an internal elastic rotational spring 
and making use of the distribution theory to deal with the presence of discontinuities [8,9].    

A crack detection procedure, relying on the above mentioned frequency shifts, without any a priori knowledge of 
the number of cracks, is hence proposed. The procedure does not require any test execution on the healthy beam as 
well as evaluation of its dynamic properties.  

A numerical investigation to show the performance of the proposed procedure based on the occurrence of 
frequency shifts to detect and locate each crack is finally presented. 

2. A multi-cracked beam with a roving mass with rotary inertia 

The use of generalised functions, already adopted by some of the authors for cracked beams with no additional 
masses [8,9], has been proved to be an efficient approach to deal with along axis singularities in beams. In this 
section the generalized function approach is extended to account for the presence of a roving mass with translational 
and rotary inertia on beams with multiple cracks. The solution, proposed in explicit closed form, is unique and is 
provided in terms of four (boundary conditions dependent) integration constants only, that does not require any 
additional node, or continuity condition, at the cracked sections and at the mass location. 

The proposed explicit closed form solutions allows to prove that frequency shifts occur at cracked cross sections 
induced by a concentrated roving mass with rotary inertia.  

Let us consider an Euler-Bernoulli beam, referred to a spatial abscissa x  spanning from 0  to the length L , with 
flexural stiffness EI  and distributed mass m , in presence of multiple cracks at , 1, ,ix i n , and an additional 
concentrated mass oM  with an eccentricity e  at ox . The presence of a concentrated mass oM  along a beam axis, 
besides inducing a translational inertial force, activates also a rotational contribution accounting for the rotary inertia 
effect thus providing an inertia of 2

oM e . 
The free vibration mode ( )   of the beam is governed by the following fourth order differential equation: 
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where     is the well known Dirac’s delta distribution and the apex indicates spatial differentiation with respect to 
the normalised abscissa x L  . Furthermore, in Eq.(1), 4 2 4 /mL EI   is the frequency parameter with   
circular frequency, while / ( )o om M mL  represents the concentrated mass normalised with respect to the beam 
mass density and the beam length; finally /e L

 
 is the eccentricity of the mass normalised with respect to the beam 

length. 
Eq.(1) has been specially deviced to account for the influence of rotary inertia and translational inertia of the mass 
oM  by means of the terms    4 2
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damage and they are strongly affected by environmental noise and experimental uncertainties. With regard to beam-
like structures, mode shape measurements have been proposed as additional data for crack identification in view of 
their capability to locate discontinuities at the cracked cross sections [2,3]. Moreover, mode shape changes induced 
by the cracks have been enhanced by the use of an appended roving mass in conjunction with the wavelet 
coefficients when applied to the differences between the undamaged and the damaged beams [4-7]. However, the 
adoption of mode shape measurements implies both analytical and experimental complications. 

 Another major issue related to the identification of concentrated cracks on beams is the a priori knowledge of the 
total number required by the available procedures. Hence a methodology able to deliver the exact number of 
concentrated cracks, as usually required by real applications, is desirable and presented in this work.    

Precisely, the basic idea of this paper is considering a roving mass (at different positions at each test and not 
allowed to move axially during the frequency measurement) by considering the effect of its rotational inertia on 
frequency changes on a cracked beam. In fact, since a concentrated crack produces a rotation discontinuity at the 
cracked cross section, the rotational inertia of the concentrated mass induces a shift of the natural frequencies as the 
mass passes from one side to another of the crack. In order to prove the latter statement the exact solution of a beam 
with multiple cracks in presence of a concentrated mass (the translational and rotational inertia terms are both 
included) is presented. The latter solution is obtained by modelling each crack as an internal elastic rotational spring 
and making use of the distribution theory to deal with the presence of discontinuities [8,9].    

A crack detection procedure, relying on the above mentioned frequency shifts, without any a priori knowledge of 
the number of cracks, is hence proposed. The procedure does not require any test execution on the healthy beam as 
well as evaluation of its dynamic properties.  

A numerical investigation to show the performance of the proposed procedure based on the occurrence of 
frequency shifts to detect and locate each crack is finally presented. 

2. A multi-cracked beam with a roving mass with rotary inertia 

The use of generalised functions, already adopted by some of the authors for cracked beams with no additional 
masses [8,9], has been proved to be an efficient approach to deal with along axis singularities in beams. In this 
section the generalized function approach is extended to account for the presence of a roving mass with translational 
and rotary inertia on beams with multiple cracks. The solution, proposed in explicit closed form, is unique and is 
provided in terms of four (boundary conditions dependent) integration constants only, that does not require any 
additional node, or continuity condition, at the cracked sections and at the mass location. 

The proposed explicit closed form solutions allows to prove that frequency shifts occur at cracked cross sections 
induced by a concentrated roving mass with rotary inertia.  

Let us consider an Euler-Bernoulli beam, referred to a spatial abscissa x  spanning from 0  to the length L , with 
flexural stiffness EI  and distributed mass m , in presence of multiple cracks at , 1, ,ix i n , and an additional 
concentrated mass oM  with an eccentricity e  at ox . The presence of a concentrated mass oM  along a beam axis, 
besides inducing a translational inertial force, activates also a rotational contribution accounting for the rotary inertia 
effect thus providing an inertia of 2

oM e . 
The free vibration mode ( )   of the beam is governed by the following fourth order differential equation: 

               4 4 4 2
0 0 0 0

1

n
IV

o o i i i
i

m m                      


            (1) 

where     is the well known Dirac’s delta distribution and the apex indicates spatial differentiation with respect to 
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summation term on the right side of Eq.(1) is due to the influence of the unknown rotational discontinuities 
( ) ( )i i i       at the cracked cross sections with / ( )i iEI K L   being the normalised crack compliance that 

accounts for the spring rotational stiffness iK  equivalent to the i-th crack severity. 
Eq.(1) can be straightforwardly and efficaciously integrated by employing the Laplace transform procedure to 

deal with the terms containing generalised functions. The solution is provided in an explicit form as follows: 
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In particular, the functions 1 2 3 4( , ), ( , ), ( , ), ( , )h h h h        , represent the solution of the homogeneous beam, 
while ( , ), ( , ), ( , ), 1, , ,o kRh h h k n        represent additional functions able to account for the presence of the 
translational mass, the rotary inertia, and the cracks, respectively.  

The integration constants 1 2 3 4, , ,C C C C appearing in the solution in Eq.(1) can be obtained by imposing the 
relevant boundary conditions. In particular, for the case of a clamped-clamped beam, fully analyzed in the following 
applications, the following frequency characteristic equation is derived: 

               3 1 4 2 4 2 3 11, 1, 1 1, 1, 1, 1, 1, 0f f f f f f f f                               (3) 

Eq.(3) can be solved numerically in terms of the frequency parameter  . The roots of the equation provide the 
fundamental frequencies of the beam, and allow to compute the integration constants and to derive the 
corresponding mode shapes.  
Based on Eq.(3), it can be proved that the frequency equation of a cracked beam undergoes an abrupt change when a 
concentrated mass with rotary inertia crosses a crack, that implies the occurrence of a frequency jump.    
In fact, for the case of a clamped-clamped beam with a single crack ( 1n  ) at 1 , the (1, ), 1, ,4,jf j   
functions and their first derivatives appearing in Eq.(3) can be written as: 
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where ( , ), ( , ), ( , )j o j o j of f f        depend on whether the mass is located on the left (i.e. 1o   ) or on the right 
(i.e. 1o   ) of the crack. In particular the latter terms take the following form for 1o   : 
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while they take the following form for 1o   : 
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Comparing Eqs.(5) and (6), accounting for the definitions in Eq.(2), reveals that the functions 1( , ), ( , )j o jf f      
change in view of additional terms, depending on whether the mass is on the left or the right side of the crack. 
Hence, the discontinuous form of the frequency equation (3), when the mass crosses a crack position, is strictly due 
to the presence of the rotary inertia and leads to the occurrence of frequency shifts. 
Without loss of generality, the boundary conditions relative to clamped-clamped beams are those employed in this 
paper; however the achieved conclusions do not depend on the considered boundary conditions. 
 

3. Numerical evidence for crack localization 

The frequency shift due to the presence of a concentrated rotary inertia, as shown in the previous section, applies 
to any natural frequency of the damaged beam. However it is reasonable to state that the frequency shift amplitude 
varies with the monitored frequency. In this section the explicit expression of the characteristic equation (3) is 
adopted to provide numerical evidence that frequencies higher than the first enhance the presence of cracks since 
they are affected by higher frequency shift amplitudes. The numerical results presented in this section provide the 
basis for a crack localization procedure by detecting the existence of jumps of natural frequencies to be measured by 
free vibration tests as the concentrated mass with rotary inertia changes its position along the beam span.       

3.1. Single crack 

The case of a clamped-clamped beam with a single crack, with compliance parameter (severity) 1 1  , located 
at 1 0.7   is presented. The appended concentrated mass 0.05om   with eccentricity 0.1  , is considered. In 
Fig.1 the first three fundamental frequencies (in terms of the frequency parameter 2 ) are plotted vs the roving 
mass position o . Three different cases are considered: 1. beam without any additional roving body (dash-dot line); 
2. beam with an additional roving body with rotary inertia effect neglected (dashed line); 3. beam with an additional 
roving body accounting for the rotary inertia effect (continuous line).  

 

 

Fig. 1. Single-cracked beam: frequency parameter 2  vs mass position for the first three frequencies. 

From Fig.1 it may be noted that the crack has caused a reduction in the natural frequencies for the considered 
modes, independently of the mass location. Furthermore, the frequency curve obtained when the rotary inertia effect 
of the roving mass is neglected is bounded by the cases with no additional mass and that when the rotary inertia of 
the roving mass is included. 

In particular, the presence of the translational mass with rotary inertia neglected causes a first derivative 
discontinuity in the frequency curve as the mass position coincides with the crack location. However, the latter 
property is hardly recognizable and is not definitely suggested for crack location purposes unless wavelet transform 
is applied to the measured signal to enhance any sort of irregularity [5, 10]. 

The novel results shown in Fig.1 is that there is a sudden jump in the first three frequencies as the mass 
possessing rotary inertia passes the crack.  

In order to gain more information, the above mentioned frequency jump is plotted as function of various 
parameters in Fig.2 to assess their influence on the dynamic behaviour of the beam under study. In particular, by 
considering the i-th frequency parameter at the left 2( )i

  and right 2( )i
  sides of the crack (located at 1 ), and the 
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summation term on the right side of Eq.(1) is due to the influence of the unknown rotational discontinuities 
( ) ( )i i i       at the cracked cross sections with / ( )i iEI K L   being the normalised crack compliance that 

accounts for the spring rotational stiffness iK  equivalent to the i-th crack severity. 
Eq.(1) can be straightforwardly and efficaciously integrated by employing the Laplace transform procedure to 

deal with the terms containing generalised functions. The solution is provided in an explicit form as follows: 
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In particular, the functions 1 2 3 4( , ), ( , ), ( , ), ( , )h h h h        , represent the solution of the homogeneous beam, 
while ( , ), ( , ), ( , ), 1, , ,o kRh h h k n        represent additional functions able to account for the presence of the 
translational mass, the rotary inertia, and the cracks, respectively.  

The integration constants 1 2 3 4, , ,C C C C appearing in the solution in Eq.(1) can be obtained by imposing the 
relevant boundary conditions. In particular, for the case of a clamped-clamped beam, fully analyzed in the following 
applications, the following frequency characteristic equation is derived: 
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Eq.(3) can be solved numerically in terms of the frequency parameter  . The roots of the equation provide the 
fundamental frequencies of the beam, and allow to compute the integration constants and to derive the 
corresponding mode shapes.  
Based on Eq.(3), it can be proved that the frequency equation of a cracked beam undergoes an abrupt change when a 
concentrated mass with rotary inertia crosses a crack, that implies the occurrence of a frequency jump.    
In fact, for the case of a clamped-clamped beam with a single crack ( 1n  ) at 1 , the (1, ), 1, ,4,jf j   
functions and their first derivatives appearing in Eq.(3) can be written as: 

               
               

4 4 2
0 1 1 1

4 4 2
0 1 1 1

1, 1, 1, , 1, , 1, ,

1, 1, 1, , 1, , 1, ,

j j o o j o R j o j

j j o o j o R j o j

f h h m f h m f h f

f h h m f h m f h f

              

              

    

         
 

 
(4) 

where ( , ), ( , ), ( , )j o j o j of f f        depend on whether the mass is located on the left (i.e. 1o   ) or on the right 
(i.e. 1o   ) of the crack. In particular the latter terms take the following form for 1o   : 
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while they take the following form for 1o   : 
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Comparing Eqs.(5) and (6), accounting for the definitions in Eq.(2), reveals that the functions 1( , ), ( , )j o jf f      
change in view of additional terms, depending on whether the mass is on the left or the right side of the crack. 
Hence, the discontinuous form of the frequency equation (3), when the mass crosses a crack position, is strictly due 
to the presence of the rotary inertia and leads to the occurrence of frequency shifts. 
Without loss of generality, the boundary conditions relative to clamped-clamped beams are those employed in this 
paper; however the achieved conclusions do not depend on the considered boundary conditions. 
 

3. Numerical evidence for crack localization 

The frequency shift due to the presence of a concentrated rotary inertia, as shown in the previous section, applies 
to any natural frequency of the damaged beam. However it is reasonable to state that the frequency shift amplitude 
varies with the monitored frequency. In this section the explicit expression of the characteristic equation (3) is 
adopted to provide numerical evidence that frequencies higher than the first enhance the presence of cracks since 
they are affected by higher frequency shift amplitudes. The numerical results presented in this section provide the 
basis for a crack localization procedure by detecting the existence of jumps of natural frequencies to be measured by 
free vibration tests as the concentrated mass with rotary inertia changes its position along the beam span.       

3.1. Single crack 

The case of a clamped-clamped beam with a single crack, with compliance parameter (severity) 1 1  , located 
at 1 0.7   is presented. The appended concentrated mass 0.05om   with eccentricity 0.1  , is considered. In 
Fig.1 the first three fundamental frequencies (in terms of the frequency parameter 2 ) are plotted vs the roving 
mass position o . Three different cases are considered: 1. beam without any additional roving body (dash-dot line); 
2. beam with an additional roving body with rotary inertia effect neglected (dashed line); 3. beam with an additional 
roving body accounting for the rotary inertia effect (continuous line).  

 

 

Fig. 1. Single-cracked beam: frequency parameter 2  vs mass position for the first three frequencies. 

From Fig.1 it may be noted that the crack has caused a reduction in the natural frequencies for the considered 
modes, independently of the mass location. Furthermore, the frequency curve obtained when the rotary inertia effect 
of the roving mass is neglected is bounded by the cases with no additional mass and that when the rotary inertia of 
the roving mass is included. 

In particular, the presence of the translational mass with rotary inertia neglected causes a first derivative 
discontinuity in the frequency curve as the mass position coincides with the crack location. However, the latter 
property is hardly recognizable and is not definitely suggested for crack location purposes unless wavelet transform 
is applied to the measured signal to enhance any sort of irregularity [5, 10]. 

The novel results shown in Fig.1 is that there is a sudden jump in the first three frequencies as the mass 
possessing rotary inertia passes the crack.  

In order to gain more information, the above mentioned frequency jump is plotted as function of various 
parameters in Fig.2 to assess their influence on the dynamic behaviour of the beam under study. In particular, by 
considering the i-th frequency parameter at the left 2( )i

  and right 2( )i
  sides of the crack (located at 1 ), and the 
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corresponding frequency parameter 2( )o
i  in absence of any additional concentrated mass, the following normalised 

frequency jump 2 2 2 2[( ) ( ) ] / ( )o
i i i i        is plotted in Fig.2.   

 

Fig. 2. Single cracked clamped-clamped beam ( 1 1  ), relative frequency jumps for the first five frequencies vs: (a) crack position, (b) crack 
compliance, (c) mass entity and (d) eccentricity sensitivities. 

 
In Fig.2a the normalized frequency jump is shown as a function of the crack location 1 . Generally speaking the 

maximum value of the frequency shift increases as higher frequencies are considered. Furthermore, the normalized 
frequency jump crosses the zero axis for all the frequencies, for symmetric reasons, when the crack is located at 

1 0.5  .     
In Fig.2b the crack compliance has been considered variable in the range 10 1  . It is worth noting that, as the 

crack compliance increases, the frequency jump increases in magnitude except in a restricted region involving small 
cracks for the case of the fifth frequency.  

In Fig.2c the dependence of the normalised frequency jump with respect to the mass ( 0 1om  ) is considered. 
Even in this case the trend in the frequency jumps as the mass increases is not always regular, as the third and fourth 
frequencies demonstrate.  

Finally, in Fig.2d the effect of the eccentricity ( 0 1  ) is assessed. Again, the trend of the frequency jump is 
not always monotonic. 

3.2. Multiple cracks 

Finally, in order show how the proposed procedure is effective even in presence of a large number of cracks, a 
clamped-clamped beam with 10n   equally spaced cracks is investigated. All the cracks have the same severity (

0.1i  ), while the mass and eccentricity are 0.05om   and 0.1  ,  respectively. 
In Fig.3 the first three fundamental frequencies (in terms of the frequency parameter 2 ) are shown as a function 

of the mass position o  for the cracked beam. The same three different cases as in the previous applications are 
considered. 

The results in Fig.3 show how, even in presence of a considerable number of cracks, the abrupt jump due to the 
rotary inertia effect can be easily noticed at each passage of the mass over each crack. 

 

a) b) 

c) d) 
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Fig. 3. Multi-cracked beam: frequency parameter 2  vs mass position for the first three frequencies. 

4. Conclusions 

A procedure for crack localization in beams based on the use of the rotary inertia of a roving body on the natural 
frequencies of a beam has been presented in this study. Precisely, it has been shown that jumps of the vibration 
frequencies appear as a concentrated mass with rotary inertia passes a crack. The proof of such a property has been 
based on the formulation the explicit solution of the governing equation of the Euler-Bernoulli beam in presence of 
multiple cracks and a concentrated mass by accounting for the effect of the rotary inertia of the appended mass. 

 The proposed methodology does not require any a priori knowledge of the number of cracks and is able to 
deliver the exact number of concentrated cracks, as usually required by real applications. Furthermore, the procedure 
does not require any test execution on the healthy beam as well as evaluation of its dynamic properties but it relies 
exclusively on free vibration tests on the cracked beam. 

A parametric analysis conducted on a cracked beam showed the influence of both crack and mass parameters on 
the shift of the first few frequencies.  

The presented study can be considered as the theoretical basis for the future development of a proper damage 
detection technique.  
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Fig. 3. Multi-cracked beam: frequency parameter 2  vs mass position for the first three frequencies. 
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frequencies appear as a concentrated mass with rotary inertia passes a crack. The proof of such a property has been 
based on the formulation the explicit solution of the governing equation of the Euler-Bernoulli beam in presence of 
multiple cracks and a concentrated mass by accounting for the effect of the rotary inertia of the appended mass. 

 The proposed methodology does not require any a priori knowledge of the number of cracks and is able to 
deliver the exact number of concentrated cracks, as usually required by real applications. Furthermore, the procedure 
does not require any test execution on the healthy beam as well as evaluation of its dynamic properties but it relies 
exclusively on free vibration tests on the cracked beam. 

A parametric analysis conducted on a cracked beam showed the influence of both crack and mass parameters on 
the shift of the first few frequencies.  

The presented study can be considered as the theoretical basis for the future development of a proper damage 
detection technique.  
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