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Abstract

The electro-thermal transport in silicon carbide semiconductors can be described by

an extended hydrodynamic model, obtained by taking moments from kinetic equations,

and using the Maximum Entropy Principle. By performing appropriate scaling, one can

obtain reduced transport models such as the Energy transport and the drift-diffusion

ones, where the transport coefficients are explicitly determined.
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1. Introduction

Silicon carbide (SiC) is a wide-bandgap semiconductor considered to
be one of the major enabling materials for advanced high power and high
temperature electronics applications. In addition to its wide bandgap, SiC
also has a high critical electric field strength and a high saturation drift ve-
locity, making it able to sustain higher voltages with lower conduction loss.
SiC-based electronics are now superior for power conversion than current
silicon-based electronics, especially for high temperature, high-power, and
high-frequency applications. Although the performances of SiC are very
promising, SiC devices may suffer from severe self-heating effects which im-
pose a limitation on both the output power and the power density of the
devices. Self heating results in a higher lattice temperature in the transistor
channel which can significantly deteriorate the current-voltage characteris-
tics because of the reduction in the device parameters such as mobility and
electron saturation velocity. For these reasons, electro-thermal simulations
are necessary in order to predict the behaviour of such devices.
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The Bloch-Boltzmann-Peierls kinetic equations (BBP) for the coupled
system formed by the electrons and the phonons, together with the Poisson
equation, is the natural framework for describing electro-thermal transport
phenomena. To solve the BBP equations is not an easy task also from
the numerical point of view, because they form a set of partial integro-
differential equations. Particle-based solvers [1–6] of the BBP system can
be proposed but with a huge computational effort. For engineering purposes,
one has to introduce hydrodynamic models, which are obtained by taking
the moments of the BBP equations and by using a suitable truncation pro-
cedure. This problem can be solved with the help of the variational method
known as Maximum Entropy Principle (MEP) [7,8], which allows the de-
termination of the nonequilibrium distribution function, and consequently,
of the constitutive relations. Recently, this methodology as been applied
to SiC [9] obtaining a closed set of balance equation of hyperbolic-type.
The aim of this paper is to obtain, from this hydrodynamic model, simpler
transport models, such as the energy transport and the drift-diffusion ones
which are useful to devise efficient numerical schemes [10].

2. Kinetic and hydrodynamic equations

The main contribution to the charge transport phenomenon in semi-
conductors, is due to the electrons which occupy states around the lowest
minima of the lowest conduction bands. The neighbors of these minima are
called valleys which are analytically approximated by a parabolic dispersion
relation. The band structure depends on the crystal. In the following we
have considered the 4H-SiC polytype (having a hexagonal lattice) which is
the least anisotropic among the SiC polytypes. Different band structures
can be found in the literature, and we have used that in [11]. We have
considered the valleys around the minima at the symmetry point M of
the two lowest conduction bands. Due to the crystal symmetries, for each
conduction band there are three equivalent valleys.

Let fA(t, x, k) be the probability density to find an electron in the A-th
valley, at time t, position x = (x1, x2, x3), with wave vector k=(k1, k2, k3)
and energy εA(k), gη = gη(t, x, q) the probability density to find a phonon
of type η at time t, position x with wave vector q=(q1, q2, q3) and energy
~ωη(q). These probability densities obey to the Bloch-Boltzmann-Peierls
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kinetics equations [12]

∂fA
∂t

+ vA(k) · ∇xfA −
e

~
E · ∇kfA =

Cim[fA] +
∑
η

C[fA, gη] +
∑
η

∑
B 6=A
CAB[fA, fB, gη](1)

∂gη
∂t

+ uη(q) · ∇xgη =
∑
A

D[fA, gη] +
∑
A 6=B

∑
B

DAB[fA, fB, gη](2)

where e is the absolute value of the electron charge, v, u the electron and
phonon group velocity respectively

vA =
~k
m∗A

, uη(q) = ∇qωη(3)

and m∗A is the effective mass of the A-th valley. The right-hand-sides of
eqs.(1),(2) are the collisional operators, governing the collisions suffered by
the electron/phonon in the semiconductor. In particular we have considered
scattering of electrons with ionized impurities (im), intravalley acoustic
phonons (ac), intravalley polar optical phonons (p), intervalley non-polar
phonons (n) [9]. The previous BBP equations must be coupled to the Pois-
son equation for the self-consistent electric field E, i.e.

∆x(εsε0φ) = e [n(t, x)−ND(x) +NA(x)] , E = −∇xφ(4)

where φ(t, x) is the electric potential, ND and NA, respectively are the donor
and acceptor densities, and n the total electron density.

By multiplying the kinetic equations (1),(2) by suitable weight func-
tions, one can obtain balance equations for the macroscopic quantities as-
sociated to the flow of the electrons and phonons. For the electron flow, by
introducing the weight functions

ψγ(k) = (1, vA, εA, εAvA)

one obtains a 8-moments model, with the following balance equations for
the A-th valley

∂nA
∂t

+
∂(nAV

i
A)

∂xi
= nACnA(5)

∂(nAV
i
A)

∂t
+
∂(nAU

ij
A )

∂xj
+ enAEjG

ij
A = nAC

i
VA

(6)

∂(nAWA)

∂t
+
∂(nAS

i
A)

∂xi
+ enAV

i
AEi = nACWA

(7)

∂(nAS
i
A)

∂t
+
∂(nAF

ij
A )

∂xj
+ eEjnAH

ij
A = nAC

i
SA

(8)
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where nA is the electron density, V i
A the average electron velocity,

WA the average electron energy, SiA the average electron energy flux,

U ijA , G
ij
A , F

ij
A , H

ij
A the higher-order fluxes, CnA , C

i
VA
, CWA

, CiSA
the produc-

tion terms. For the assigned weight function ψγ(k) and the corresponding
moment, the production term represents the rate of change of the function
ψ due to the scattering mechanism (electron/phonon or electron/impurity)
taking place in the position x.

Now we have to introduce balance equations for the phonon population.
The polar optical phonons in the Einstein approximation have zero group
velocity (3)2, and since they are created/destroyed in an intravalley process,
then the transport equation (2) reduces to

∂gp
∂t

=
∑
A

D[fA, gp] .(9)

Since the phonon energy does not depend on the phonon momentum, it
has no sense to consider a balance equation for this quantity and we shall
consider just a one moment model (the energy), which is obtained by mul-
tiplying for ~ωp and integrating over q, i.e.

∂Wp

∂t
=
∑
A

Pp(fA)(10)

where Wp is the energy density of polar optical phonons, Pp(fA) the polar
optical energy density production due to the scattering with the electrons
in the A valley.

The non-polar optical Phonons are produced in an intervalley process,
and due to the zero group velocity argument, from eq.(2) we have

∂gn
∂t

=
∑
A

∑
B 6=A
D[fA, fB, gn](11)

and, as in the previous case, we shall consider just one moment model

∂Wn

∂t
=
∑
A

Pn(fA)(12)

where Wn is the energy density of non-polar optical phonons, Pn(fA) the
non-polar optical energy density production due to the scattering with the
electrons in the A valley.

The acoustic phonons, in the Debye approximation, have ωac(q) =
vs|q|, where vs is the sound speed, and hence they have not vanishing
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group velocity uac. We have chosen a 2-moments model which comprises
the energy (~ωac) and the energy-flux (~ωacuac). The weight functions are:

ϕβ(q) = (~vs|q|, ~v2sqi)

and the corresponding balance equations read

∂Wac

∂t
+
∂Qi

∂xi
=
∑
A

Pac(fA)(13)

∂Qi

∂t
+ v2s

∂N ij

∂xj
= v2s

∑
A

P iac(fA)(14)

where Wac is the acoustic phonon energy density, Qi the acoustic phonon
energy-flux density, N ij the acoustic phonon flux of energy-flux density,
Pac the total production of acoustic phonon energy density, P iac the total
production of acoustic phonon energy-flux density.

3. Constitutive equations

At this point we notice that the number of unknowns exceeds the num-
ber of equations, the production terms are unknown, and closure rela-
tions must be introduced. The MEP gives a systematic way for obtain-
ing constitutive relations, as successfully done in silicon based semiconduc-
tors [13–20], as well as for nanometric structures [21–25]. We assume that
the electron gas is sufficiently dilute, then the entropy density can be taken
as the classical limit of the expression arising in the Fermi statistics, i.e.

Se = − 2kB
(2π)3

∑
A

∫
(fA log fA − fA)dk ,(15)

whereas phonons are Bose particles, and the corresponding entropy density
for the η-th branch is

Sη =
1

(2π)3

∫
[(1 + gη) log (1 + gη)− gη log (gη)] dq(16)

then, the total entropy density writes

Stot = Se + Sac + Sp + Sn .
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According to the MEP, if a given number of moments Mγ
A,M

β
ac,Mp,Mn

are known, the distribution functions f̂A,ĝac, ĝp, ĝn which can be used to
evaluate the unknown moments, correspond to the extremum of the total
entropy density under the constraint that they yield the known moments,
i.e.

Mγ
A =

2

(2π)3

∫
R3

ψγ(k) f̂A dk , Mβ
ac =

3

(2π)3

∫
B
ϕβ(q) ĝac dq(17)

Mp =
1

(2π)3

∫
B
ĝp dq , Mn =

1

(2π)3

∫
B
ĝn dq(18)

By introducing a set of Lagrange multipliers λγ ,Λβ,Υp,Υ0, the problem to
maximize Stot under the constraints (17),(18) is equivalent to maximize

S′ = Stot −
∑
γ,A

λγ

[
2

(2π)3

∫
R3

ψγ f̂Adk−Mψ
A

]
−
∑
β

Λβ

[
1

(2π)3

∫
B
ϕβ ĝβdq−Mβ

ac

]

−Υp

[
1

(2π)3

∫
B
ĝpdq−Mp

]
−Υn

[
1

(2π)3

∫
B
ĝndq−Mn

]
Hence, we shall obtain the following distribution functions:

• for the electrons

f̂A = exp

[
−
(

1

kB
λA + λAV · vA + λAW εA + λAS · vAεA

)]
(19)

• for the acoustic phonons

ĝac =
1

exp [ϕ0 Λ0 + ϕi Λi]− 1
(20)

• for the polar optical phonons

ĝp =
1

exp[~ωpΥp]− 1
(21)

• for the non-polar optical phonons

ĝn =
1

exp[~ωnΥn]− 1
(22)

By inserting the previous equations in (17)-(18), we obtain

Mγ
A = Mγ

A(λAγ ) , Mβ
ac = Mβ

ac(Λβ) , Mp = Mp(Υp) , Mn = Mn(Υn)

which define implicitly the Lagrange multipliers. To invert the above rela-
tions, we shall perform an expansion around the thermal equilibrium. In
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fact, at equilibrium, f̂A, ĝη must reduce to the Fermi-Dirac and the Bose-
Einstein respectively. This means

λAV |E = λAS |E = Λ|E = 0, Λ0|E =
1

kBTL
, λAW |E =

1

kBTL
(23)

where TL is the equilibrium lattice temperature. Then we consider the van-
ishing Lagrange multipliers of higher order respect to equilibrium, by in-
troducing the smallness parameter τ

λAV = τ λ̂AV , λAS = τ λ̂AS , Λi = τ Λ̂i .(24)

Then, the electron distribution function up to the first order in τ is

f̂A = exp

(
−λ

A

kB
− λAW εA

){
1− τ

(
λ̂AViv

i
A + λ̂ASi

viAεA

)}
+O(τ2)(25)

and the closures for the high-order fluxes

U ijA =
2

3m∗A
WAδ

ij , F ijA =
10

9m∗A
W 2
Aδ

ij .(26)

The acoustic phonon distribution function writes

ĝac = g(0) + τg(1) +O(τ2)(27)

where

g(0) =
1

exp (Λ0~vs|q|)− 1
(28)

g(1) = −~v2sqiΛ̂i g+, g+ =
exp (Λ0~vs|q|)

[exp (Λ0~vs|q|)− 1]2
.(29)

and the closure for the high-order flux

(30) N ij =
1

3
Wac δ

ij .

Explicit expressions for the production terms are also obtained [9].
From the knowledge of the phonon energy densities, one can introduce

the respective temperatures

(31) dWp = cp dTp , dWn = cn dTn , dWac = cac dTac

where cp, cn, cac are the corresponding volumetric specific heats. Conse-
quently, we define the lattice temperature TL as

(32) TL =
cacTac + cpTp + cnTn

cac + cp + cn
.
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4. Hydrodynamic limits

Our system in the unknowns (nA, V
i
A,WA, S

i
A, Tac, Q

i, Tp, Tn,) in the
parabolic band approximation, writes

∂nA
∂t

+
∂(nAV

i
A)

∂xi
= nACnA(33)

∂(nAV
i
A)

∂t
+

2

3m∗A

∂(nAWA)

∂xi
+
enA
m∗A

Ei = nAC
i
VA

(34)

∂(nAWA)

∂t
+
∂(nAS

i
A)

∂xi
+ enAV

i
AEi = nACWA

(35)

∂(nAS
i
A)

∂t
+

10

9m∗A

∂(nAW
2
A)

∂xi
+

5

3m∗A
e nAWAEi = nAC

i
SA

(36)

cac
∂Tac
∂t

+
∂Qi

∂xi
=
∑
A

Pac(fA)(37)

∂Qi

∂t
+

1

3
v2scac

∂Tac
∂xi

= v2s
∑
A

P iac(fA)(38)

cp
∂Tp
∂t

=
∑
A

Pp(fA)(39)

cn
∂Tn
∂t

=
∑
A

Pn(fA)(40)

where the Poisson equation (4) must be added. The main advantage of this
model is that the transport coefficients are explicitly determined, and no
additional tuning is needed. This system is of hyperbolic type.

Simplified transport models can be obtained from the above system by
assuming reasonable scaling. By using the smallness parameter τ which
measures the deviation from thermal equilibrium, we assume the following
scaling

t =
t̂

τ2
, x =

x̂

τ
, E = τÊ, V i = τ V̂ i, Si = τ Ŝi, Qi = τQ̂i(41)

where the first relation means a long time scaling, the second one a diffusive
scaling, and the others are consistent with the hypothesis of small deviation
from thermal equilibrium.

By equating to zero the coefficients of the various powers in τ , and omit-
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ting the hat, we obtain the so-called Energy Transport model (ETM)

∂nA
∂t

+
∂(nAV

i
A)

∂xi
= nACnA(42)

∂(nAWA)

∂t
+
∂(nAS

i
A)

∂xi
+ nAeV

i
AEi = nACWA

(43)

cac
∂Tac
∂t

+
∂Qi

∂xi
=
∑
A

Pac(fA)(44)

cp
∂Tp
∂t

=
∑
A

Pp(fA) , cn
∂Tn
∂t

=
∑
A

Pn(fA)(45)

with a reduced set of unknowns (nA,WA, Tac, Tp, Tn), and the constitutive
equations

2

3

∂(nAWA)

∂xi
+ nAeE

i = −∆Q(WA,Wac)Q
i + ΣSS

i
A(46)

10

9

∂(nAW
2
A)

∂xi
+

5

3
nAeWAEi = ΦV V

i
A + ΨSS

i
A(47)

1

3
cac

∂Tac
∂xi

=
∑
A

(∆Q(WA,Wac)Q
i + ∆V (WA,Wac)V

i
A +

∆S(WA,Wac)S
i
A) .(48)

The equation (48) gives:

Qi = −1

3
τQcac

∂Tac
∂xi

+ τQ
∑
A

(∆V (WA,Wac)V
i
A + ∆S(WA,Wac)S

i
A)

τQ = − 1∑
A ∆Q(WA,Wac)

(49)

which is the usual Fourier law with an extra convective term, due to the
electron flow. The conductivity, i.e. the coefficient of ∂Tac/∂x

i, is similar
to that obtained by kinetic considerations [26]. If we introduce the particle
flux J iA = nAV

i
A, and the electron energy-flux J iWA

= nAS
i
A, by solving the

system (46)-(48) we obtain

J iA = a11
∂φ

∂xi
+ a12

∂nA
∂xi

+ a13
∂WA

∂xi
+ a14

∂Tac
∂xi

(50)

J iWA
= a21

∂φ

∂xi
+ a22

∂nA
∂xi

+ a23
∂WA

∂xi
+ a24

∂Tac
∂xi

(51)

Qi = a31
∂φ

∂xi
+ a32

∂nA
∂xi

+ a33
∂WA

∂xi
+ a34

∂Tac
∂xi

(52)
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where the coefficients aij = aij(nA,WA, Tac, Tp, Tn) are known functions.
The previous equations can be interpreted as constitutive linear equations
between the fluxes Jα=(J iA, J

i
WA

, Qi), and the quantities

Xβ =

(
∂φ

∂xi
,
∂nA
∂xi

,
∂WA

∂xi
,
∂Tac
∂xi

)
.

This result is similar to the linear flux-force relations introduced in the
framework of the Linear Irreversible Thermodynamics (LIT). In this con-
text, in order to introduce the thermodynamic forces, one must invoke the
Local Equilibrium Hypothesis [7] (and consequently the Gibbs relation),
which we have not introduced in our theory.

Moreover the well known drift-diffusion model can be retrieved. Since
in the parabolic approximation one can write

(53) WA =
1

2
m∗AV

2
A +

3

2
kBT

(e)
A

where T
(e)
A is the electron temperature, if we assume that the electrons and

phonons have the same temperature, i.e.

(54) T
(e)
A = Tn = Tp = Tac = TL

and by approximating

(55) WA '
3

2
kBTL

then eq.(50) reduces to

(56) J iA = nAµ
A
n

∂φ

∂xi
−DA

n

∂nA
∂xi
− SAn

∂TL
∂xi

with

(57) µAn =
1

nA
a11 , DA

n = −a12 , SAn = −
(

3

2
kBa13 + a14

)
.

The equation (56) is the closure equation used in the drift-diffusion model,
where µAn is the low-field mobility, DA

n the diffusivity and SAn the Soret
coefficient for the A-th valley. Moreover, it is possible to verify that the
Einstein relation holds [26], i.e.

(58) DA
n = µAn

kBTL
e

.
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Finally we have evaluated with our model the low-field mobility

(59) µn =

∑
A nAµ

A
n∑

A nA

versus the lattice temperature TL, and compared the obtained results with
the experimental data in [27]. In figure 1 we plot the results, showing a
good agreement.

Figure 1. Low-field mobility versus temperature

5. Conclusions

The electro-thermal phenomena in SiC semiconductors can be described
by an extended hydrodynamic model. Closure relations for the higher order
moments and production terms, involving the electron-phonon scattering,
have been obtained by means of the MEP. By introducing a diffusive scal-
ing, an Energy Transport model has been derived, where the transport
coefficients do not contain any fitting parameters, but only the physical
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constants like the coupling ones and the phonon energies that are present
in the transition rate probabilities of the scatterings between the electrons
and phonons. In the limit case when the electrons and phonons have the
same temperature, the ETM reduces to the standard non-isothermal Drift
Diffusion model. The low-field mobility we have obtained in this case, shows
a good agreement with the experimental data. The simulation of real devices
using this Energy Transport Model will be the topic of future researches.
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