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Neuroinflammatory processes are recognized key contributory factors in Parkinson’s

disease (PD) physiopathology. While the causes responsible for the progressive loss

of midbrain dopaminergic (mDA) neuronal cell bodies in the subtantia nigra pars

compacta are poorly understood, aging, genetics, environmental toxicity, and particularly

inflammation, represent prominent etiological factors in PD development. Especially,

reactive astrocytes, microglial cells, and infiltrating monocyte-derived macrophages

play dual beneficial/harmful effects, via a panel of pro- or anti-inflammatory cytokines,

chemokines, neurotrophic and neurogenic transcription factors. Notably, with age,

microglia may adopt a potent neurotoxic, pro-inflammatory “primed” (M1) phenotype

when challenged with inflammatory or neurotoxic stimuli that hamper brain’s own

restorative potential and inhibit endogenous neurorepair mechanisms. In the last decade

we have provided evidence for a major role of microglial crosstalk with astrocytes,

mDA neurons and neural stem progenitor cells (NSCs) in the MPTP- (1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine-) mouse model of PD, and identified Wnt/β-catenin

signaling, a pivotal morphogen for mDA neurodevelopment, neuroprotection, and

neuroinflammatory modulation, as a critical actor in glia-neuron and glia-NSCs crosstalk.

With age however, Wnt signaling and glia-NSC-neuron crosstalk become dysfunctional

with harmful consequences for mDA neuron plasticity and repair. These findings are

of importance given the deregulation of Wnt signaling in PD and the emerging link

between most PD related genes, Wnt signaling and inflammation. Especially, in light of

the expanding field of microRNAs and inflammatory PD-related genes as modulators

of microglial-proinflammatory status, uncovering the complex molecular circuitry linking
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PD and neuroinflammation will permit the identification of new druggable targets for

the cure of the disease. Here we summarize recent findings unveiling major microglial

inflammatory and oxidative stress pathways converging in the regulation ofWnt/β-catenin

signaling, and reciprocally, the ability of Wnt signaling pathways to modulate microglial

activation in PD. Unraveling the key factors and conditons promoting the switch of

the proinflammatory M1 microglia status into a neuroprotective and regenerative M2

phenotype will have important consequences for neuroimmune interactions and neuronal

outcome under inflammatory and/or neurodegenerative conditions.

Keywords: Parkinson’s disease, neuroinflammation, Wnt/β-catenin signaling, aging, dopaminergic neurons,

neurogenesis, neurodegeneration, neuroprotection

INTRODUCTION

Aging is the leading risk factor for the development Parkinson’s
disease (PD), a most prevalent central nervous system (CNS)
movement disorder characterized by the progressive and
selective degeneration of midbrain dopaminergic neurons
(mDA) of the substantia nigra pars compacta (SNpc) and
their terminals in the striatum, the presence of intracellular
aggregated inclusions containing α-synuclein (α-Syn),
called Lewy bodies (LB), and an abnormal activation of
the astroglial cell compartment (Hornykiewicz, 1993; Di
Monte and Langston, 1995; Langston et al., 1998, 1999;
Table 1).

The chronic decrease of dopamine storage in the striatum
is responsible for the gradual impairment of motor function
leading to the classical motor features of PD, which include
bradykinesia, rest tremor, rigidity and postural instability. These
motor signs are often preceded by nonmotor manifestations
such as olfactory dysfunction, autonomic, cognitive and mood
function impairments (Langston, 2006).

The causes and mechanisms leading to the progressive
and selective mDA neuron death are ill-defined, and so far,
there is no cure for PD. Current treatments are centered on
dopamine replacement therapy, using the metabolic precursor
of dopamine, L-DOPA, or dopamine receptor agonists,
albeit they only temporally alleviate the motor symptoms
without stopping the ongoing neurodegeneration (Olanow
and Schapira, 2013; Obeso et al., 2017, for a comprehensive
review). Thus, the ideal therapeutic regimen for PD should
combine both symptomatic treatment and neurorestorative
interventions aimed at protecting or enhancing the function of
DA neurons.

The disease can be divided into sporadic and early-onset
familial PD with most (90%) PD cases being sporadic (Ferreira
and Massano, 2016) and current evidence indicates that
a complex interplay between genetic susceptibility and
a panel of environmental factors strongly contribute to
PD pathophysiology (Di Monte et al., 2002; Gao and
Hong, 2008, 2011; Gao et al., 2011, 2012; Marchetti et al.,
2011; Cannon and Greenamyre, 2013; Hirsch et al., 2013;
Table 1). Indeed, several genes and many environmental
factors impact in the regulation of crucial pathways involved
in inflammatory glial activation, mitochondrial function,

endoplasmic reticulum stress, autophagic catabolism,
protein misfolding and aggregation, that can variously
impact in the progressive demise of mDA neurons (Olanow
et al., 2003; Abou-Sleiman et al., 2006; Marchetti et al.,
2011).

Aging represents the chief risk factor for PD development.
With advancing age the function of the nigrostriatal DA system
progressively declines leading to neurochemical, morphological
and behavioral changes (Boger et al., 2010; Hindle, 2010;
de la Fuente-Fernández et al., 2011). Additionally, while
nigrostriatal DA neurons are endowed with an extraordinary
compensatory/neurorepair capacity, the aging process sharply
impair DA neuron plasticity and its ability to recover upon injury
(Collier et al., 2007).

Notably, oxidative stress and low-grade inflammation are
the hallmarks of aging, and both processes are even further
up-regulated upon injury, neurotoxin exposure, male gender
and PD genetic mutations (Table 1). With age, microglial cells
become “primed,” i.e., capable to produce exacerbated levels
of a set of pro-inflammatory mediators when challenged with
immune or neurotoxic stimuli. This microglial cell shift to the
harmful, M1 phenotype, promotes the release of an array of
factors that are detrimental for the vulnerable mDA neurons.
Nuclear factor κB (NF-κB), is a key actor and the first signal
for inflammasome induction (Codolo et al., 2013), together with
major pro-inflammatory cytokines, such as tumor necrosis factor
α (TNF-α), interleukin 1β (IL-1β) and IL-6. This inflammatory
microenvironment is also associated to oxidative stress mediators
such as reactive oxygen (ROS) and nitrogen species (RNS), that
in turn amplify microglial activation, which results in increased
mDA neuron vulnerability, and/or neuronal death (Olanow
et al., 2003; Abou-Sleiman et al., 2006; Hirsch and Hunot,
2009).

Notably, a number of genetic mutations interact with certain
risk factors, such as exposure to neurotoxins or endotoxins, then
resulting in a further exacerbation of glial activation. In this
condition, gene-environment interactions may drive a vicious
cycle of oxidative stress and inflammation, contributing to the
chronic PD progression (Di Monte et al., 2002; Marchetti and
Abbracchio, 2005; Zhang et al., 2005; Whitton, 2007, 2010;
Gao and Hong, 2008, 2011; Przedborski, 2010; Tansey and
Goldberg, 2010; Gao et al., 2011, 2012; Lastres-Becker et al., 2012;
Table 1).
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TABLE 1 | Parkinson’s disease: from hallmarks to therapy.

Hallmarks Genetic factors Environmental factors Protective factors Therapy

• Selective mDA

neurodegeneration in the

SNpc with concurrent loss of

mDA neuronal afferents to

striatum and putamen

• α-SYN aggregation (Lewy

bodies and Lewy neurites

formation) indicative of

ongoing degeneration

• Astro and microgliosis

(astrocyte hypertrophy,

M1-microglial morphological

and functional shift)

• PARK Genes (α-SYN/PARK1,

LRRK2/PARK8§◦,

PRKN/PARK2§◦,

VPS35/PARK17§,

UCH-L1/PARK5, GBA§

• MAPTau§◦

• Dopaminergic related

genes (DA-receptors,

DA-transporter, TH, COMT,

MAO)

• GSK-3β§◦

• Xenobiotic

Metabolism/Detox-related

genes (P450IID1, CYP1A1,

NAT1, HMOX1§◦, GST, NQO2)

• APOE

• Neurotrophic genes

(NURR1§, NGF, BDNF)

• Inflammatory related genes

(iNOS, TNF-α, IL-1β, IL-6,

ER-β)§◦

• Aging§◦

• Rural living herbicides and

pesticides exposure (paraquat,

rotenone, organochlorines,

carbamates)§◦, metal

exposure◦

• Head injuries

• Estrogen deficiency

(women)§◦

• Infectious diseases during

childhood§◦

• Maternal factors/ early-life

events (virus, drugs,

endotoxins, hormonal

deficits)◦

• Drug-induced

parkinsonism (drug abuse,

neuroleptics, calcium-channel

blockers)◦

• miRNAs (miR-155,

miR-7116-5p)◦

• Chronic use of NSAIDS

(reduces PD risk)§*; **

• Estrogen replacement

therapy

(post-menopausal

women, OVX animals)*

• Dietary factors/life

style (tea, polyphenols,

wine components,

curcumin, coffee,

tobacco)*

• Environment (Exercise,

social interactions)§**

• miRNA (miR-7)*

• Symptomatic: L-DOPA or DAergic

agents administration (relieve motor

symptoms, do not prevent disease

progression)

• Neuroprotective/

symptomatic (selegiline, rasagiline)

• Cell based therapies (re-

introducing DA-producing cells,

embryonic, NSCs, treated iPSCs,

to replenish DA stores and

alleviate/cure PD

• Combined therapies

(anti-oxidants, anti-inflammatories,

GSK-3β-inhibitors, protective

factors to boost endogenous

neurogenesis and mDA

neuro-restoration)

§Wnt/β-CAT dysregulation in the reported conditions.
◦Activation of microglia and pro-inflammatory mediators in animal models of PD under the reported treatments.
*Mitigation/inhibition of microglial activation in animal models of PD under the reported treatments.
**Enhanced neurogenesis/synaptic plasticity and glial proliferation.

Furthermore, crosstalks between central and peripheral
inflammation together with changes in hormonal background
with age, may well have further important roles in
shaping the final glial response with consequences for
neuroprotection/degeneration upon injury (Baba et al., 2005;
Marchetti and Abbracchio, 2005; Brochard et al., 2009; Marchetti
et al., 2011; Collins et al., 2012; Kannarkat et al., 2013; Chen et al.,
2015).

We recently provided evidence that the Wnt/β-catenin
signaling pathway, a chief player in neurodevelopmental
processes (Ciani and Salinas, 2005; Clevers, 2006; Prakash and
Wurst, 2006; Salinas, 2012; Joksimovic and Awatramani, 2014;
Wurst and Prakash, 2014; Zhang et al., 2015), is crucially
involved in the physiopathology of nigrostriatal DA neurons
(L’Episcopo et al., 2011a,b; Marchetti et al., 2013; Harvey and
Marchetti, 2014). Furthermore, growing evidence indicates the
contribution ofWnt signaling in themodulation of inflammation
via bidirectional glia-neuron crosstalk in PD (L’Episcopo et al.,
2011a,b, 2014a,b; Marchetti and Pluchino, 2013; Marchetti et al.,
2013; Figure 1). Then, astrocytes and macrophage/microglial
cells in the brain, and immune cells in the periphery express
Wnts and harbor a panel of Wnt’s receptors thereby modulating
in an autocrine/paracrine fashion immune responses both at
central and peripheral levels (Staal et al., 2008; Pereira et al.,
2009; Neumann et al., 2010; Halleskog et al., 2011, 2012;
Kilander et al., 2011; L’Episcopo et al., 2011a, 2012, 2013, 2014a;
Halleskog and Schulte, 2013a,b; Marchetti and Pluchino, 2013).
In turn, Wnt receptors are present in mDA neurons and Wnt/β-
catenin signaling activation exert robust neuroprotective effects
(L’Episcopo et al., 2011a,b, 2012, 2013, 2014a,b; Harvey and
Marchetti, 2014; Figures 1, 2).

Microglia and astrocyte-microglia crosstalk also modulate the
brain’own regenerative/neurorestorative potential, regulating
adult neural stem/progenitor cell (NSC) plasticity in neurogenic
niches (Pluchino et al., 2005; Jakubs et al., 2008; Ekdahl
et al., 2009; Schwartz et al., 2009; Ehninger et al., 2011;
Ekdhal, 2012; Kokaia et al., 2012; L’Episcopo et al., 2012,
2013; Marchetti and Pluchino, 2013). However, aging,
inflammation and PD, exacerbating microglia M1 phenotype
impair NSCs proliferation and neuronal differentiation
and inhibit Wnt/β-catenin signaling (Freundlieb et al.,
2006; Okamoto et al., 2011; L’Episcopo et al., 2012, 2013),
with harmful consequences for mDA neuron recovery
and repair upon injury (L’Episcopo et al., 2013, 2014a,b;
Figure 3).

Recently, in several neurodegenerative diseases, including
PD, a dysregulation of non-coding RNAs (ncRNAs)
levels has been reported (Sonntag, 2010). MicroRNAs
(miRNAs) are the most studied class of ncRNAs, which
play key roles in normal cellular physiology as well
as in pathogenesis, including PD pathogenesis (Bartel,
2004; Soifer et al., 2007; Bian and Sun, 2011). Of special
importance for the present work, different miRNAs are
increasingly being appreciated for their ability to modulate
the microglial inflammatory response in PD, with novel
potential therapeutic implications for regulating the
inflammatory response during PD progression (Thome et al.,
2016).

In this work we will first introduce the role of
neuroinflammation in PD, with a specific focus on
microglia-astrocyte-neuron crosstalk. Particularly, the role
of gene-environment interactions such as aging, neurotoxins
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and inflammogen exposure and their influence in microglial
polarization and Wnt signaling together with the interplay
between mRNAs and miRNA modulatory effects will be next
addressed.

NEUROINFLAMMATION AND PD: THE KEY
ROLE OF
MICROGLIAL-ASTROCYTE-NEURON
TRIPARTITE CROSSTALK

A body of evidence from epidemiological and post-mortem
studies in human PD brains, coupled to accumulating data in
experimental models of PD in either non-human primates and
rodent PD models, clearly indicates that neuroinflammatory
glial-mediated mechanisms are chiefly involved in PD
pathophysiology, playing a dual benefical/harmful role
(Marchetti and Abbracchio, 2005; Marchetti et al., 2005a,b,c;
McGeer and McGeer, 2008).

Although the “primum movens” initiating the inflammatory
response and the causal relationship between the two phenomena
remain to be fully clarified, it is recognized that neuronal
degeneration itself, particularly aggregated α-Syn (a core feature
of both sporadic and familial forms of PD) (Bendor et al.,
2013), released early in the disease process by the injured
DA neurons, may act as an endogenous disease-related signal,
activating glial cells to release a variety of pro-inflammatory
molecules, promoting microglia exacerbation and neuronal cell
death (Zhang et al., 2005; Whitton, 2007; Gao et al., 2011;
Codolo et al., 2013; Sanchez-Guajardo et al., 2013). In turn,
neuroinflammatory glial activation has been suggested also
to contribute via the promotion of a prion-like behavior of
misfolded α-Syn propagation (Lema Tomé et al., 2012).

The possibility that an early dysregulated microglial pro-
inflammatory phenotype contributes to progressive nigrostriatal
degeneration in PD has received increasing attention in the light
of the implications for preventive and therapeutic strategies
for PD (Marchetti and Abbracchio, 2005; Zhang et al., 2005;
Whitton, 2007, 2010; Gao and Hong, 2008; Koprich et al., 2008;
Hirsch and Hunot, 2009; Deleidi et al., 2010; L’Episcopo et al.,
2010a,b, 2011c). Hence, positron emission tomography imaging
studies employing microglia-specific markers support an early
involvement and cerebral propagation of neuroinflammation
in PD (Gerhard et al., 2006; Ouchi et al., 2009; Pradhan
and Andreasson, 2013). Prospective studies suggest that
inflammatory processes can modulate PD risk in humans, as
higher plasma concentrations of the pro-inflammatory cytokine
interleukin-6 (IL-6) increased the risk of developing PD whereas
chronic nonsteroidal anti-inflammatory drug (NSAID) regimens
reduced the incidence of PD by 46% (Chen et al., 2003, 2005;
Schiess, 2003). Importantly, the association of late-onset sporadic
PD with certain genetic variants in the region of chromosome
6 that specifies the human leukocyte antigens (HLAs), which
are crucial for immune function in humans (Hamza et al.,
2010), have been further strengthened using Genome-wide
association studies (GWAS) (Latourelle et al., 2012). Especially,
meta-analyses by the International Parkinson Disease Genomics

FIGURE 1 | Schematic illustration of gene-environment interactions impacting

in mDA neuron survival/protection in the adult midbrain via Wnt1/β-catenin

signaling. Major environmental factors including aging, inflammation,

neurotoxin exposure including PD neurotoxins (MPTP/MPP+, 6-OHDA),

pesticides (rotenone), increased oxidative load as a result of gowth factors

(GFs) deprivation in synergy with genetic mutations (see Table 1), may

antagonize Wnt/β-catenin signaling (“Wnt off”) in mDA neurons. Up-regulation

of active GSK-3β, then lead to β-catenin degradation and increased DA neuron

vulnerability/degeneration/apoptosis. By contrast, in the intact midbrain

canonical Wnt agonists, such as Wnt1, Rspo or Norrin, and activation of Fzd-1

receptors also via exogenous Wnt/β-catenin activation such as GSK-3β

antagonist, NO-NSAIDs treatments tors (“Wnt on”), contribute to maintain the

integrity of mDA neurons via blockade of GSK-3β-induced phosphorylation (P)

and proteosomal degradation of the neuronal pool of β-catenin. Stabilized

β-catenin can translocate into the nucleus and associate with a family of

transcription factors and regulate the expression of Wnt target genes involved

in DA neuron survival/plasticity, neuroprotection and repair. β-catenin may also

function as a pivotal defense molecule against oxidative stress, and can act as

a coactivator for several nuclear receptors involved in the

maintenance/protection of DA neurons. The hypothetical contribution of

various endogenous Wnt agonists (Respondin, Rspo, Norrin) or antagonists

(Dkkopf, Dkk1, Wif, frizzled-related proteins, SFRp) are also indicated.

Consortium et al. (2011), supported the evidence for association
of five previously reported risk loci near the genes for alpha-
synuclein (SNCA), microtubule associated protein tau (MAPT),
cyclin G-associated kinase (GAK), beta-glucocerebrosidase
(GBA), and HLA locus (HLA).

Consistent with the inflammation hypothesis, experimental
evidences in different PD rodent models indicate significant
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FIGURE 2 | Wnt/β-catenin signaling-induced switch in proinflammatory microglial M1 phenotype in concert with gene-environment interactions in PD. Upon activation

by neurotoxins, endotoxins or brain injury and aging, macrophage/microglia produce a panel of pro-inflammatory cytokines (TNF-α and IL-1β) and chemokines (CCL3,

CXCl10 and CXCL11), of which Wnt5a constitutes one part of a self-perpetrating cycle, via autocrine Wnt5A/CamKII activation and paracrine stimulation of Th-1-

cytokines, iNOS and COX2 (Pereira et al., 2009; Neumann et al., 2010; Halleskog et al., 2012). Up-regulation of microglial PHOX-derived ROS, iNOS-derived NO, and

GSK-3β, a known regulator of NF-kB-dependent gene transcription, further exacerbate microglia reaction (Beurel et al., 2010; L’Episcopo et al., 2012, 2013). In

addition, astrocyte-derived growth/neurotrophic and anti-oxidant factors including Wnt1, can mitigate the inflammatory milieu and favor a progressive neurorescue

program for mDA neurons (Marchetti et al., 2013). However, an exaggerated M1 microglial pro-inflammatory status as observed with age, MPTP exposure, and

synergy with different gene and environmental risk factors can impair astrocyte anti-inflammatory and neuroprotective functions also via inhibition of Wnt1 expression

and downregulation of anti-oxidant/anti-inflammatory cytoprotective proteins in astrocytes (L’Episcopo et al., 2013). Modified from Marchetti and Pluchino (2013), with

permission.

neuroprotective effects exerted by different immunomodulatory
drugs including non steroidal anti-inflammatory drugs
(NSAIDs). However, there are some conflicting results in
the ability of the different NSAIDs to effectively protect
mDA neurons against neurotoxic insults, likely due to the
dual (beneficial/harmful) effects of inflammation, the timing
of the NSAID treatment (i.e., before or after mDA neuron
injury), and the specific properties of the different NSAIDs
(reviewed by Marchetti and Abbracchio, 2005; Fiorucci and
Antonelli, 2006; Esposito et al., 2007; Whitton, 2007, 2010;
L’Episcopo et al., 2010a,b, 2011c; Pradhan and Andreasson,
2013).

Within this scenario the major players are the microglial cells,
the reactive astrocytes, and the infiltrating monocyte-derived
macrophages (Depboylu et al., 2012). Notably, microglia are
highly pleiotropic cells and dynamically shift between a quiescent
(termedM2)-to moderate or highly activated (termedM1) states,
depending on the triggering mechanisms and the duration of
the insult (Kreutzberg, 1996; Streit, 2002; Perry and Teeling,
2013). In the basal M2 state, microglia have anti-inflammatory
and neuron-reparative roles, protecting neighboring cells by
removing cell debris and releasing trophic factors for brain
repair. Upon injury or immune challenges, activated M1
microglia proliferate and participate in clearing cell debris at
early stages, but may exacerbate brain injury by producing

neurotoxic substances, especially when overactivated for
prolonged times (Perry and Teeling, 2013). In these conditions,
microglia release a variety of pro-inflammatory mediators that
can become detrimental to neuronal survival. Major players are
the transcription factor NF-κB and activator protein-1 (AP-1)
chiefly involved in the induction of multiple inflammatory genes
involved in the inflammatory response. Particularly, among glial
cytotoxic molecules, inducible NO synthase (iNOS)-derived
NO, superoxide from the plasma membrane NADPH oxidase,
cyclooxygenase 2 (COX2)-derived prostaglandin E2, associated
with a number of potent inflammatory cytokines, including
TNF-α, IL-1β, IL-6, and IFN-γ shown to exert detrimental effects
in mDA neurons (Sriram et al., 2002, 2006; Teismann et al., 2003;
Whitton, 2007, 2010; Gao and Hong, 2008; Hirsch and Hunot,
2009).

As astrocytes are concerned, they are prominent players
both in health and disease (Sofroniew and Vinters, 2010). They
contribute to a panel of key functions in the CNS, including the
provision of trophic support to neurons, clearance of debris, as
well as themodulation of synapse formation and function, energy
metabolism, and in particular the defense against oxidative stress
(see Bélanger and Magistretti, 2009). For example, efflux of GSH
from astrocytes mediated by the ATP-dependent transporter,
multidrug-resistance associated protein (Mrp1) is involved in
the dynamic response to the changing redox mileu (Gennuso
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FIGURE 3 | Aging-induced M1 proinflammatory phenotype promotes Nrf2-ARE pathway disruption in the subventricular zone (SVZ) driving neurogenic impairment in

parkinsonian mice via PI3K-Wnt/β-catenin dysregulation. In young mice a regulatory circuit linking microglial activation and pro-inflammatory cytokine to Nrf2-ARE

protective pathway in SVZ, provides an efficient self-adaptive mechanism against inflammatory/neurotoxin-induced oxidative stress. In addition to govern the redox

balance within the SVZ niche, Nrf2-induced Hmox target gene may simultaneously protect astrocytes, thereby up-regulating the expression of vital Wnt signaling

elements switching-on key components required for maintaining SVZ cells in a proliferative state, promote differentiation and/or for exerting neuroprotective effects.

Crosstalk between two pivotal pathways, the PI3-K/Akt/GSK-3β and Wnt/β-catenin signaling cascades appear to cooperate to finely control the transcriptional

activator, β-catenin, in turn representing a point of convergence to direct proliferation/differentiation/survival in SVZ stem niche. Importantly, SVZ “rejuvenation” may

have beneficial consequences for DAergic neuroprotection, and viceversa. Astrocytes (blue), neuroblasts (red), transit-aplifying cells (yellow) and ependymal (purple)

cells in SVZ niche are schematically illustrated (modified from L’Episcopo et al., 2013, with permission).

et al., 2004). The expression and activation of anti-oxidant
response element (ARE) represent a key feature of astrocyte
neuroprotective effects. Oxidative stress can up-regulate enhance
expression and binding of astrocytic NF-E2-related factor 2
(Nrf2), which translocates to the nucleus and binds to ARE.
Importantly, binding to ARE up-regulates a cluster of anti-
oxidant genes, including those for GSH, as well as anti-oxidant,

anti-inflammatory and cytoprotective genes, such as Heme
oxygenase1 (Hmox) (Chen et al., 2009).

Astrocytes’ modulation of the local microenvironment is
complemented by the expression and release of a variety of
growth and neurotrophic factors and a number of pro/anti-
inflammatory mediators and anti-oxidant molecules (see
Marchetti et al., 2013). Furthermore, astrocytes can contribute to
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cell genesis both as stem cells and as important cellular elements
of the neurogenic microenvironment, with implications for
self-recovery/neurorepair (Alvarez-Buylla et al., 2001). Upon
injury, astrocytes can transform into “reactive” astrocytes (Ras),
that can fulfill both neuroprotective or neurotoxic functions.
Ras are characterized by up-regulation of several molecules
including GFAP and S100, they express receptors involved in
innate immunity (e.g., Toll-like receptors), participating in
the regulation of astrocyte response to injury. In addition, Ras
express receptors for growth factors, chemokines, hormones,
and produce a wide array of chemokines and cytokines that act
as immune mediators in cooperation with those produced by
microglia (Marchetti et al., 2005a,b).

Thanks to the shared receptors for neurotransmitters,
hormones, neuromodulators, neuropeptides and immune
regulatory molecules, neurons, astrocyte and microglial cells can
talk with each other and sense the changing microenvironment.
Then, glial-neuron crosstalk is essential for maintaining CNS
homeostasis during physiological, and particularly under
neurodegenerative and inflammatory conditions. Especially,
astrocyte-microglia crosstalk plays a pivotal role, aimed at
reducing or inhibiting any exacerbated inflammatory/oxidative
response in the brain (Bélanger and Magistretti, 2009; Marchetti
and Pluchino, 2013). This appears of particular importance
given that microglial cells in the SNpc are more abundant
(about 4.5-fold) as compared to any other brain region, while
SNpc-DA neurons have reduced anti-oxidant potential, and the
redox chemistry of dopamine present in the cytoplasm could
be enhanced by an exacerbation of ROS production, leading
to the formation of toxic dopamine metabolites. All together
these conditions predispose mDA neurons to vulnerability to
inflammatory/oxidative attacks (Abou-Sleiman et al., 2006;
Whitton, 2007, 2010; McGeer and McGeer, 2008; Tansey and
Goldberg, 2010; Taylor et al., 2013).

Consequently, the microglial M1 proinflammatory status is
tightly linked to astrocyte-microglia and neuron-glia interactions
through a number of mechanisms and a panel of inhibitory
receptors that restrain microglial activation. For example,
CD200, a transmembrane glycoprotein expressed on neurons,
can survey glial activation status via its binding to CD200R
(Wang et al., 2011; Zhang S. et al., 2011). When CD200-CD200R
engagement is disrupted, this can lead to an abnormal activation
of microglia and consequent pathological changes. Importantly,
microglia harbor hormonal receptors (i.e., for glucocorticoid
hormones, GRs, and for estrogens, ERs) contributing to
limit microglial overactivation via the blockade of principal
inflammatory pathways, particularly NFκB signaling and the
iNOS-NO pathway generating elevated concentrations of
proinflammatory cytokines and RNS (Marchetti et al., 2002,
2005a,b, 2011; Vegeto et al., 2003; Morale et al., 2004, 2006, 2008;
L’Episcopo et al., 2010a).

Upon exposure to the PD neurotoxins including 6-OHDA-
or MPTP, glia-neuron and astrocyte-microglia crosstalk play
decisive roles in dicating the severity of the nigrostriatal lesion
and the repair capacity of the dysfunctional mDA neurons,
according to the SNpc microenviroment, the age and sex of the
host. In humans and non-human primates exposed to MPTP,

the presence of Ras in the SN lasts for 1–16 years following
the initial insult, but the biological significance of Ras is not
completely understood (Collier et al., 2007; Barcia et al., 2013).
Of note, however, in the presence of chronic microglia over-
activation, Ras can loose both neuroprotective and neurorepair
properties with harmfull consequences for the dysfunctional
mDA neurons. Hence, a prolonged dysfunction of astrocytes and
activation of microglia can accelerate the degeneration of SNpc
DA neurons, blocking the compensatory mechanisms of mDA
neuron repair during early dysfunction induced by 6-OHDA
lesion in rats, thus underlying the important role of astrocytes
in early degeneration of mDA neurons (Kuter et al., 2017).
Importantly enough, in analogy to the M1/M2 macrophage
nomenclature, neuroinflammation and brain injury were shown
to promote two different types of Ras termed A1 and A2, with
the A1-Ras phenotype promoting destructive effects, and the
A2 state exerting neuroprotective roles (Liddelow et al., 2017).
Then, when stimulated by LPS, activated M1 microglia secreting
proinflammatory cytokines, such as IL-1β and TNF- α, contribute
to the promotion of the Ras A1 phenotype leading to the
inhibition of astrocyte’s ability to promote neuronal survival,
outgrowth, synaptogenesis and phagocytosis, and to induce the
death of neurons and oligodendrocytes (Liddelow et al., 2017).

As far as the cytotoxic mechanism(s) involved in mDA
neuron death, of specific mention, when iNOS and NADPH
oxidase are present together, then a potent toxin, peroxynitrite
(ONOO-), is produced which promotes the nitration of proteins,
like tyrosine, with further production of hydroxyl radicals.
For example, the production of the free radical NO together
peroxynitrite are sought to be involved in mDA neuron demise
(Gao and Hong, 2008; Hirsch and Hunot, 2009; Taylor et al.,
2013). Regarding the cytokines, TNF-α can directly activate TNF
receptors (TNF-Rs) present on mDA neurons and trigger a
pro-apoptotic cell death pathway. Also, the TNF-α-dependent
proinflammatory microenvironment within the SN is further
amplified by increased oxidative stress through activation of
PHOX, the expression of COX-2 and the stimulation of iNOS.
The resulting production of ROS, RNS, excitotoxic mediators,
such as glutamate and a panel of reactive molecules, further
amplify the inflammatory reaction engendering a vicious cycle,
resulting in the exacerbation of the neurodegenerative process
(Whitton, 2007; More et al., 2013).

Importantly enough, both microglia and astrocytes are
dysfunctional with advancing age. Hence both cell types
show region-specific changes in morphology such as
structural deterioration or dystrophy, decreased expression
of growth/neurotrophic factors and an impaired phagocytic
activity in face of increased marker expression and up-regulation
of pro-inflammatory molecules, all of which are associated
to a gradual loss of astrocyte and microglia neuroprotective
capacity (Mouton et al., 2002; Streit et al., 2004; Morale
et al., 2006; Damani et al., 2010; L’Episcopo et al., 2011c;
Njie et al., 2012). Reportedly, microglial switch to a so-called
“primed” status, endowed with a strong neurotoxic, pro-
inflammatory M1 phenotype (Streit, 2010; Njie et al., 2012) with
cytotoxic influences for mDA neuron health (L’Episcopo et al.,
2011c).
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Especially, work from our laboratory indicates that age-
dependent changes in the glial compartment results in a
dysregulation of glia-neuron crosstalk and play key roles in
the impairment of nigrostriatal DA plasticity (L’Episcopo et al.,
2011a,b,c). In fact, increased vulnerability and mDA neuron
death are observed after exposure of aging mice to neurotoxin or
inflammatory triggers, supporting that glia dysfunction with age
represents a primary risk factor and a common final pathway for
neurodegenerative disorders in general and for PD in particular
(L’Episcopo et al., 2010a,b). Notably, mDA neuron numbers and
striatal innervation as well as DA release and motor deficits
show a remarkable ability to recover after acute or chronic
administration of MPTP or 6-OHDA in young rodents and
non-human primates, but this adaptive capacity is lost with age
(Collier et al., 2007; Boger et al., 2010; Hindle, 2010; de la Fuente-
Fernández et al., 2011; L’Episcopo et al., 2011a,b; Blandini and
Armentero, 2012; Bové and Perier, 2012).

In addition to glial cells, other cells may also participate in
the neuroinflammatory processes in PD, as increasing evidence
demonstrates the involvement of both innate and adaptive
immune responses in the pathophysiology of PD (Baba et al.,
2005; Orr et al., 2005; Brochard et al., 2009; Collins et al., 2012;
Kannarkat et al., 2013; Chen et al., 2015). The infiltration of
CD4/CD8 T-cells has been reported both in the SN of PD patients
and in animal models of PD, together with alterations in the
peripheral T-cell pool is altered in PD, with potential interactions
with the local SN microglial environment promoting further
exacerbation ofM1 phenotype (Brochard et al., 2009; Barcia et al.,
2013; reviewed by Sanchez-Guajardo et al., 2013). Cytokine and
chemokine expression are also upregulated in peripheral blood
mononuclear cells (PBMCs) in PD patients.

Of specific mention, with age, there is an up-regulation
of several inflammatory markers in the periphery associated
to a dysfunctional blood-brain barrier (BBB), resulting in
increased crosstalk between the CNS and peripheral immune
system (Cunningham et al., 2005). This increased sytemic
proinflammatory status may then trigger inflammatory glial
responses, associated to an exaggerated production of various
inflammatory molecules such as TNF-α, IL-1β, coupled to
production of high levels of ROS and RNS, promoting a
vicious cycle of oxidative stress and inflammation leading to
neuronal death (Streit et al., 2004; Cunningham et al., 2005;
Flanary, 2005; Godbout et al., 2005; Flanary et al., 2007; Hu
et al., 2008; Pott Godoy et al., 2008; Henry et al., 2009;
Damani et al., 2010; L’Episcopo et al., 2010a,b, 2011c; Streit,
2010; Njie et al., 2012). Hence, young adult and aging mice
respond in a strikingly different way when an acute subthreshold
dose of LPS was systemically administrated, as a single LPS
injection in old mice resulted in exacerbated production of
pro-inflammatory markers both at central and peripheral levels.
This general proinflammatory status then triggered a slow but
progressive mDA neuron loss during the entire lifespan of the
mice (L’Episcopo et al., 2011c). By contrast, the concomitant
treatment with the NO-releasing NSAID, Flurbiprofen (NO-
Flurbi) (Fiorucci and Antonelli, 2006) was capable to mitigate the
exacerbated M1 microglia pro-inflammatory phenotype induced
by the systemic neurotoxic challenge, resulting in a lifelong

protection of SNpc DA neurons (L’Episcopo et al., 2011c;
Figure 2).

All together these findings support the contention that
glia-neuron crosstalk in the brain, complemented by a
proinflammatory status at peripheral levels, may represent
a major risk factor and final common pathway for mDA
neuron vulnerability to PD degeneration. Additionally, they
provide a mechanistic link between microglial M1 pro-
inflammatory status of aging mice, microglia-DA neuron
crosstalk and DA cell demise, and offer a therapeutical window
of opportunity to rescue mDA neurons from inflammation-
mediated neurodegeneration of old mice by targeting the
microglial pro-inflammatory phenotype (Figures 1, 2). Within
this frame, the role of astrocytes clearly appear decisive, since
they can either cooperate with microglia to exacerbate M1
phenotype and the consequent neurotoxicity, or in the contrary,
they can downregulate microglia activation, to support the
imperiled/dysfunctional mDA neurons and activate intrinsic
cues for DA neuroprepair/neurorestoration (Marchetti et al.,
2013; L’Episcopo et al., 2014a,b).

THE WNT/β-CATENIN SIGNALING
PATHWAY: A “NEW ENTRY” IN
GLIA-NEURON DIALOGUE

Emerging evidence of the last decades points to Wingless-type
MMTV integration site (Wnt) signaling, a highly conserved
pathway across species, as a crucial regulator of a multitude
of CNS functions both during development and in the adult
brain. Here we will first introduce briefly Wnt signaling and
the pathways operating at the mDA neurons, astrocytes and
microglial levels.

Wnts are secreted lipid-modified glycoproteins that
regulate stem cell self-renewal, differentiation, and cell-to-
cell communication during embryonic development and in adult
tissues. The activation of Wnt signaling is a complex and well
regulated process that relies on the expression of a specific Wnt
ligand, the concomitant presence of endogenous/exogenous Wnt
signaling regulators, the expression of a particular subtype of
Frizzled (Fzd) family receptors, the coreceptors, and the specific
cellular context (Gordon and Nusse, 2006; Angers and Moon,
2009; Salinas, 2012; van Amerongen, 2012; Willert and Nusse,
2012; and Wnt homepage: http://www.stanford.edu/~rnusse/
wntwindow.html). There are 19 mammalian Wnt genes and
15 receptors and co-receptors distributed over seven protein
families inmammals (Niehrs, 2012).Wnt proteins are recognized
to activate two major branches of Wnt signaling pathways, the
so called “canonical” Wnt/β-catenin (activated by the Wnt1
class of ligands, Wnt2, Wnt3, Wnt3a, Wnt8, and Wnt8a) and
the “non-canonical” that includes the Wnt/PCP and Wnt/Ca2+

pathways (activated by Wnt5a class, that includes Wnt4, Wnt5a,
Wnt5b, Wnt6, Wnt7a, and Wnt11) (Willert and Nusse, 2012).
However, such description appears an oversimplification, since
in some instances a same Wnt ligand can activate different
pathways depending on the presence of the receptors and
coreceptors, the endogenous activators or inhibitors, as well as
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the specific cellular context. While a detailed discussion of Wnt
signaling components is beyond the scope of this work (see
Marchetti and Pluchino, 2013), we will summarize the principal
actors of Wnt/β-catenin pathway, the most well-characterized
Wnt pathway that plays a vital role in mDA neurodevelopment,
mDA neuroprotection and regeneration (Harvey and Marchetti,
2014; Figure 1).

Notably, in the canonical Wnt pathway, β-catenin and GSK3β
(glycogen synthase kinase 3β) are the key players (Clevers and
Nusse, 2012). When specific Wnt1-like ligands are absent (i.e.,
in the “Wnt off” state), the concentration of cytoplasmic β-
catenin is maintained at low levels via the constant targeting by
a multiprotein destruction complex, composed of two scaffold
proteins, Axin and APC (adenomatous polyposis coli), which
support the phosphorylation of β-catenin by CK1α (casein kinase
1 α) and GSK3β. As a next step, the phosphorylation of β-catenin
results in its recognition and ubiquitination by the E3 ubiquitin
ligase β-TrCP (β-transducin repeats containing protein), leading
to β-catenin proteasomal degradation. Under such conditions,
the nuclear transcription factor lymphoid enhancer-binding
factor/T cell-specific (LEF/TCF) is associated with Groucho and
represses target gene expression (Roose et al., 1998). In the “Wnt
off ” state, the phosphorylation of β-catenin in mDA neurons
negatively impact both in the survival and protection against a
variety of noxious insults (L’Episcopo et al., 2011a,b; Figure 1,
and next section).

By contrast, binding of Wnt1-like ligands to Fzd receptor
and its co-receptor to the low-density LRP (lipoprotein receptor-
related protein)5/6 (i.e., in the “Wnt on” state), this results in
the formation of large multiprotein aggregates (Bilic et al., 2007),
called signalosomes, that are involved in the prevention of β-
catenin proteasomal degradation (Zeng et al., 2008). Hence, the
kinase activity of GSK3-β is inhibited, leading to the stabilization
of cytosolic β-catenin, which then accumulates and translocates
to the nucleus to regulate transcription via transcription factor
then the TCF/LEF family (Clevers, 2006). Nuclear β-catenin
then displaces Groucho and forms a complex with tissue-
specific transcriptional activators, and converts LEF/TCF from
a transcriptional repressor to an activator that turns on Wnt-
dependent gene expression in a very cell-type-specific manner
(Mosimann et al., 2009; Cadigan and Waterman, 2012). In mDA
neurons, nuclear β-catenin activates Wnt1-dependent genes
involved in mDA neuron specification, survival and protection
(L’Episcopo et al., 2011a,b, 2012, 2013, 2014a,b; Wei et al., 2012;
Figure 1).

Notably, GSK-3β is a serine/threonine protein kinase,
that besides its central role in the Wnt/β-catenin pathway, is
recognized to play key roles in a variety of cellular processes via
a panel of signaling pathways that are crucial for inflammation
and oxidative stress, cell proliferation, stem cell renewal and
apoptosis/neuronal survival, amongst others (Grimes and Jope,
2001; Jope et al., 2007; Kim et al., 2009; Beurel et al., 2010; Phukan
et al., 2010; Beurel, 2011; Kim and Snider, 2011; King et al.,
2013). Especially, in the “Wnt off” state, activation of GSK-3β
in mDA neurons represents a critical step in SNpc neuron
demise upon MPTP-induced neuronal cell death both in vitro
and in vivo (Chen et al., 2004; Duka et al., 2009; Petit-Paitel
et al., 2009; L’Episcopo et al., 2011a,b). Additionally, in glial

cells, Wn/β-catenin antagonism results in GSK-3β activation
and exacerbation of glia activation associated to the production
of proinflammatory mediators with consequent glial-dependent
neurotoxicity (L’Episcopo et al., 2016 and discussed in next
sections).

The β-catenin independent, so called “non canonical” Wnts
ligands, signal through Fzd receptors as well as members of
the receptor tyrosine kinase-like orphan receptor (Ror) family
and the Wnt modifier, receptor-like tyrosine kinase (Ryk). This
pathway leads to changes in cell polarity and migration and
is mediated by Ca2+influx as well as activation of the small
GTPases, RhoA, Cdc42 and Rac (van Amerongen et al., 2008;
Angers and Moon, 2009; van Amerongen, 2012). However, such
classifications are not rigid since these pathways can overlap or
influence/crosstalk or antagonize β-catenin-dependent signaling,
thereby constituting a further regulatory step in the control of
Wnt signaling (Angers and Moon, 2009; Glinka et al., 2011).

Remarkably, approximately 400 genes involved in cell growth,
differentiation, apoptosis, survival and immune functions are
regulated by the Wnt/β-catenin signaling, and in view of its
multifunctional roles, this pathway is counter-modulated by
different endogenous regulators which include the Dickkopf
(Dkk) family (Dkk-1, -2, -3, and -4 and soggy), and secreted
frizzled-related proteins (Sfrps) considered as both negative and
positive Wnt signaling regulators (Bovolenta et al., 2008; van
Amerongen et al., 2008; Angers and Moon, 2009).

All together, potential interactions between Wnt ligands,
their receptors and downstream effectors, coupled to crosstalks
between the canonical and non-canonical branches of Wnt
signaling anticipates the level complexity of the Wnt signaling
machinery. Furthermore, given the in involvement of Wnt
signaling in a multitude of developmental processes and the
maintenance of adult tissue homeostasis, not surprisingly,
an aberrant regulation of this pathway has been linked
with a variety of diseases, including cancer, inflammatory,
metabolic, or neurodegenerative diseases (Clevers and Nusse,
2012).

THE WNT1/β-CATENIN-INFLAMMATORY
CONNECTION FOR mDA
NEUROPROTECTION, NEUROREPAIR AND
NEURORESTORATION

Wnt1 is a unique critical morphogen for mDA
neurodevelopment and activation of the Wnt1/β-catenin
signaling is required for mDA neuron specification (Arenas,
2014; Joksimovic and Awatramani, 2014; Wurst and Prakash,
2014; Toledo et al., 2017). This chief role of Wnt1 is maintained
throught life in the adult midbrain, where Wnt1 contributes
to the maintenance of SNpc DA neuron survival, neuronal
function and synaptic integrity, in promoting the activation
of Nurr1+ post-mitotic mDA neuroprecursors, in favoring
neuroprotection and neurorestoration in the injured PD
midbrain and up-regulating adult neurogenesis in neurogenic
niches, via glia-neuron and glia-NSCs crosstalk (Inestrosa and
Arenas, 2010; L’Episcopo et al., 2011a,b, 2012, 2013, 2014a; Galli
et al., 2014; Harvey and Marchetti, 2014; Zhang et al., 2015).
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Indeed, astroglial cells are a major source of Wnts and harbor
a panel Fzd receptors, that play roles in bidirectional astrocyte-
neuron and astrocyte-microglia crosstalk. Work from our
laboratory obtained in vivo in rodent models of PD, as well as in
vitro, in primary mesencephalic neuron-astrocyte and astrocyte-
microglia coculture systems, indicates that during MPTP injury,
in the inflammed midbrain, microglial-derived chemokines
induceWnt1 in astrocytes, and this Wnt1 up-regulation activates
canonical Wnt/β-catenin signaling in mDA neurons (L’Episcopo
et al., 2011a; Figure 1), as an intrinsic neurorescue response, in
turn responsible for mDA neuroprotection against a variety of
insults, such as oxidative stress and PD neuroxins (i.e., MPP+
or 6-OHDA) (L’Episcopo et al., 2011a,b; Marchetti et al., 2013).
Astrocyte-derived Wnt1 ability to promote neuroprotection
is mimicked by specific GSK-3β antagonists and efficiently
counteracted by down-regulating Wnt1 expression in astrocytes
or inhibitingWnt/β-catenin pathway activation in mDA neurons
with either molecular (short hairpin RNA silencing Wnt1 in
astrocytes, Fzd1-knock down with antisense-RNAs, β-catenin
silencing in mDA neurons) or pharmacological approaches
(inhibiton ofWnt/β-catenin signaling withDkk1, Sfrps, orWnt1-
Abs, L’Episcopo et al., 2011a,b; Marchetti et al., 2013).

However with the aging process, Wnt signaling declines,
leading to dysfunctional neuron-astrocyte and astrocyte-
microglia crosstalk (L’Episcopo et al., 2011a,b,c, 2013, 2014a;
Okamoto et al., 2011; Marchetti et al., 2013; Seib et al., 2013).
Hence, the aged microglia proinflammatory status coupled to the
exposure to PD neurotoxins markedly inhibit Wnt1 expression
in midbrain astrocytes, with a concomitant downregulation
of β-catenin and Fzd-1 receptors in mDA neurons, thereby
counteracting both the neurotrophic and proneurogenic
potential of astrocytes (L’Episcopo et al., 2011a,b,c, 2012, 2013,
2014a,b).

Of special importance, activation of Wnt signaling also
impact in glia functionality, given that Wnt signaling may
both promote or down-modulate macrophage/microglial
activation and the production of proinflammatory mediators.
For example, the “canonical” Wnt-3a ligand, and the “non
canonical” Wnt-5a, can both induce a pro-inflammatory
response in primary mouse microglia, in vitro (Halleskog
et al., 2012; Halleskog and Schulte, 2013a). On the other
hand, after LPS- induced proinflammatory transformation of
microglia, both Wnt-3a and Wnt-5a exerted a dose-dependent
decrease in the pro-inflammatory marker, COX2 (Halleskog
and Schulte, 2013a), thereby suggesting that the inflammatory
microenvironment plays an important role in dictating the
outcome of microglial response to Wnts (Marchetti and
Pluchino, 2013).

Likewise, in peripheral macrophages, both Wnt-3a and
Wnt-5a can drive a pro-inflammatory transformation with
increased production of pro-inflammatory cytokines, such as
TNF-α (Pereira et al., 2009). Of special interest, however, in
mycobacterium- infected macrophages, Wnt-3a can reduce the
exacerbated TNF-α levels through an autoregulatory feedback
mechanism involving increased Fzd-1 receptors and activation
of the Wnt/β-catenin pathway (Pereira et al., 2009; Neumann
et al., 2010; Schaale et al., 2011). Additionally, Wnt-3a also

promotes the expression of Arginase 1 in M. tuberculosis-
infected macrophages, which has been associated with the anti-
inflammatory M2 phenotype (Neumann et al., 2010).

Especially, crosstalk with inflammatory and oxidative stress
pathways for the modulation of immune responses now
highlights Wnt signaling as a critical modulator of M1/M2
pro/anti-inflammatory glial phenotype via both autocrine and
paracrine effects (Chong and Maiese, 2007; Chong et al., 2010)
(Figure 2). Work from our laboratory showed that during the
acute mDA degeneration phase resulting from exposure to
MPTP, microglia switches to M1 activated phenotype associated
with up-regulated expression of NFκB and release of TNF-α
and IL-1β cytokines, the up-regulation of PHOX-derived ROS
and iNOS-derived NO and RNS, alltogether contributing to
the acute loss of mDA cell bodies (L’Episcopo et al., 2011a;
Figure 2). Another actor in glial activation cycle is represented by
activation of the proinflammatory GSK-3β, leading to a vicious
cycle of microglial activation (Jope et al., 2007; Beurel et al.,
2010; Beurel, 2011; L’Episcopo et al., 2011a,b, 2016; Marchetti
et al., 2013). Hence, NFκB and the Wnt/β-catenin pathway
interact to differentially regulate inflammation: in a “Wnt off”
condition, the activation GSK-3β positively regulates NFκB by
targeting IkB (i.e., the major inhibitor of NFκB) to proteasomal
degradation, which results in NFκB nuclear translocation and
the induction of a proinflammatory genetic cascade, finally
exacerbating microglia M1 phenotype (see Beurel et al., 2010;
Neumann et al., 2010; Beurel, 2011). By contrast, in the “Wnt On”
condition, cytosolic β-catenin accumulation can form a complex
with the p50 subunit of NFκB, resulting in the prevention
NF-kB transcriptional activity with consequent switch to the
M2 microglia phenotype and downregulation of inflammation
(Figure 2).

It seems important to note that the harmful M1 phenotype
can itself promote an intrinsic Wnt/β-catenin rescue program
both in neurons and glia. Hence, through glial expression of
specific chemokines, such as CCL3, CXCl10, and CXCL11,
astrocyte-derived Wnt1 is significantly up-modulated, both a
mRNA and protein levels, and a progressive time-dependent
neurorepair of nigrostriatal DA neurons and downregulation
ofinflammation is observed (L’Episcopo et al., 2011a). Then,
via astrocyte-microglia crosstalk and the release of Wnt1-like
proteins in astrocytes, the resulting Wnt/β-catenin activation
in microglial cells can inhibit GSK-3β activation, resulting
in a downregulation of proinflammatory mediators (Chong
and Maiese, 2007; Maiese et al., 2008; L’Episcopo et al.,
2011a,b, 2013, 2014b; Schaale et al., 2011; Wang et al.,
2012; Marchetti and Pluchino, 2013; Figure 2). In fact, the
pharmacologic antagonism of GSK-3β restrain inflammatory
microglial activation via the inhibition of proinflammatory
cytokines through interactions at the level of NFκB (Beurel et al.,
2010; Beurel, 2011; L’Episcopo et al., 2011a,b; Marchetti et al.,
2013; Figure 2).

All together, an exaggerated microglial pro-inflammatory
M1 status as observed with age and MPTP exposure,
can impair astrocyte anti-inflammatory functions and
mDA neurorescue (L’Episcopo et al., 2011a,b,c), via
inhibition of Wnt1 expression and downregulation of
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anti-oxidant/anti-inflammatory cytoprotective proteins in
astrocytes (L’Episcopo et al., 2013; Marchetti et al., 2013;
Figures 1, 2).

ASTROCYTE-MICROGLIA CROSSTALK
AND NEURAL/STEM PROGENITOR CELL
(NSC) PLASTICITY: WNT SIGNALING AND
INFLAMMATORY PATHWAYS SHAPE THE
SVZ RESPONSE TO ADVANCING
AGE AND PD

With age, the brain homeostatic and regenerative capacities
progressively decline, at least in part as a result of a reduced
tissue-specific self-adaptive potential and an impairment and/or a
dysregulation of stem cell activity. Hence, a common hallmark in
a number of age-dependent neurodegenerative diseases appears
to be an alteration of adult neurogenesis (Curtis et al., 2007; He
and Shen, 2009; Winner and Winkler, 2015). In mammals, one
area where neuroblasts that give rise to adult-born neurons are
generated is the subventricular zone (SVZ) (Lim and Alvarez-
Buylla, 1999; Alvarez-Buylla et al., 2001; Kazanis, 2009; Ernst
et al., 2014). In PD, a number of studies reported an impairment
of the SVZ, where loss of the neurotransmitter dopamine, from
mDA cell bodies innervating Type C cells in the SVZ, was causally
related to the decreased neurogenic potential (Baker et al., 2004;
Höglinger et al., 2004, 2012; Freundlieb et al., 2006; Borta and
Höglinger, 2007; O’Keeffe et al., 2009a; Lennington et al., 2011).
In addition, certain dopamine agonist therapies were reported to
rescue NSC proliferation in PD (O’Keeffe et al., 2009a,b; Winner
et al., 2009).

Notably, within the SVZ microenvironment (i.e., the
“stem cell niche”), NSCs are in close contact with astroglial
cells that modulate stem cell proliferation, migration and/or
neuron differentiation, through the release of a panel of factors
including morphogens, growth/neurotrophic factors and
immunoregulatory molecules, thus implicating their active
participation in NSC homeostatic regulation (Lim and Alvarez-
Buylla, 1999; Alvarez-Buylla et al., 2001). Amongst others,
Wnts are important modulators of adult neurogenesis, and
Wnt/β-catenin is a vital pathway regulating self-renewal and
differentiation of neural stem progenitor cells, NSCs (Adachi
et al., 2007; Kalani et al., 2008; Kuwabara et al., 2009; Zhang
L. et al., 2011; Shruster et al., 2012). Of special importance,
inflammatory mechanisms both at the CNS and peripheral levels
play an important role in the modulation of neurogenesis in the
adult, aged and injured brain (Ekdahl et al., 2003, 2009; Jakubs
et al., 2008; Pluchino et al., 2008; Thored et al., 2009; Martino
et al., 2011; Tepavcević et al., 2011; Villeda et al., 2011; Cusimano
et al., 2012; Ekdhal, 2012; Kokaia et al., 2012; L’Episcopo et al.,
2012; Wallenquist et al., 2012; Wadhwa et al., 2017).

Hence, work in our laboratory focused on the potential for
inflammation and astrocyte-microglia crosstalk to modulate the
SVZ neurogenic niche, which is bordered by the corpus striatum.
Here, NSC proliferative and neuron differentiation potential
were monitored, both in vivo and ex vivo, as a function of aging
and PD-induced morphological and functional changes of the

striatal astroglial cell compartment. Additionally, we addressed
the potential role of Wnt signaling in the neuroinflammatory
regulation of SVZ neurogenesis. We thus uncovered that the
Wnt/β-catenin signaling pathway is involved in the regulation
of adult neurogenesis with advancing age and inflammation,
and suggested crosstalk between inflammatory and Wnt/β-
catenin signaling components (L’Episcopo et al., 2012). In
vivo experiments showed an inverse correlation between the
SVZ-neurogenic impairment of MPTP mice with the M1 glial
activation status in striatum, with a maximal NSC inhibition
corresponding to greatest microglia activation, as evidenced by
increased of striatal iNOS, TNF-α, and IL-1β expression both at
a mRNA and protein levels (L’Episcopo et al., 2012, 2013). These
effects were associated to a marked β-catenin downregulation
in the SVZ, in face of up-regulated levels of active pGSK-
3β, reduced NSC proliferation and neuron differentiation
(L’Episcopo et al., 2012, 2013). The observed up-regulation of
active pGSK-3β in the face of β-catenin depletion in SVZ after
MPTP exposure shown in vivo, was further supported both in
ex vivo and in vitro experiments, further implicating disruption
of β-catenin signaling in SVZ-NSC of MPTP mice (L’Episcopo
et al., 2012, 2013).

In vitro studies using different coculture systems between
young/aged glia with young/aged NSCs, and in the absence or
the presence of MPTP/MPP+, next indicated that young M2-
microglia increased NSC neurogenic potential, but upon MPP+

exposure, microglia shifted to the activated M1 phenotype
and released high levels of pro-inflammatory mediators,
inhibiting NSC proliferation, neuron differentiation and
β-catenin expression, thus underscoring crosstalk between
inflammatory and Wnt/β-catenin signaling components
(L’Episcopo et al., 2011a, 2012, 2013). Importantly, astrocyte-
microglia crosstalk was also shown to determine a further
level of glial regulation of NSC neurogenic potential, as young
astrocytes exposed to aged microglia fail to express Wnt1
and were no longer capable to promote NSC proliferation
(L’Episcopo et al., 2013), suggesting that M1 phenotype sharply
inhibits astrocyte proneurogenic capacities also via Wnt1
inhibition.

Interestingly, treatment with NO-flurbi of aged MPTP mice
had the potential to rescue aging-induced SVZ impairment
by a switch of the M1 harmful phenotype. This NO-flurbi-
induced mitigation of the inflammatory SVZ microenvironment
protected NSCs against mitochondrial impairment and cell
death, and promoted proliferation and neurogenesis in the SVZ,
which associated to a substantial striatal DA reinnervation both
in young and agedmiceMPTPmice, possibly resulting fromNO-
flurbi induced rescue of mDA neuronal cell bodies in the SN
(L’Episcopo et al., 2013).

We then looked at one key factor involved in the mechanism
by which cells combat oxidative stress and inflammation,
the Nrf2-pathway, recognized to participate to nigrostriatal
neuroprotection (Chen et al., 2009). Interestingly, we found that
the Nrf2-antioxidant system was markedly impaired in SVZ
astrocytes of aging mice, as a result of disrupted microglia-
astrocyte crosstalk. This impairment, in turn, resulted in
a failure of SVZ to adapt to the changing oxidative and
inflammatory milieu of the aged SVZ niche (“the first hit”).
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Next, exposure to the PD neurotoxin (“the second hit”)
in aging mice, further inhibited SVZ neurogenic potential
(Figure 3). Interestingly, aged microglial inhibitory effects on
NSCs proliferation and neuron formation was shown to rely
on the PI3K (phosphatidylinositol3-kinase)/Akt -pathway, and
with the intermediacy of the Wnt/β-catenin signaling cascade
(L’Episcopo et al., 2013). Hence modulating PI3K/Akt and the
Wnt/Fzd/β-catenin signaling cascades, was capable to switch
on or off the activation of GSK-3β in SVZ-NSCs. Notably,
NO-flurbi induced reversal of aging-induced SVZ impairment
also associated to normalization of these age-related changes in
Nrf2 and Wnt/β-catenin pathways (Figure 3), and significantly
counteracted MPTP neurotoxic effects at striatal and SN levels.

Together, reactive astrocytes and microglia play a prominent
role in the remodeling of the SVZ niche of PD rodents.
Interestingly, glia-NSC interactions are in part regulated by
crosstalk between inflammatory and Wnt/β-catenin signaling
cascades. While further studies are clearly needed to address the
causal relationship between the reversal of SVZ impairment and
nigrostriatal neurorepair in aged-MPTPmice, such inflammatory
modulation of SVZ neurogenesis herein described appears of
special interest in light of accumulating evidence documenting
that mitigating the inflammatory status, improving the neuronal
microenvironment, and promoting mitochondrial function all
together may represent a window of opportunity for therapeutic
strategies aimed at upregulating endogenous neurogenesis, to
favor the integration or survival of new neurons, to incite
neurorepair, and/or to ameliorate some cognitive functions
(Ehninger et al., 2011; L’Episcopo et al., 2012, 2014b; Rueger et al.,
2012; Sakata et al., 2012; Vukovic et al., 2012; Wallenquist et al.,
2012; Marchetti and Pluchino, 2013; Radad et al., 2017; Wadhwa
et al., 2017; Yang et al., 2017).

GENETIC MUTATIONS, INFLAMMATION
AND MDA NEURODEGENERATION:
mRNAs/miRNAs AND WNT SIGNALING
INTERPLAY

Finally, the crucial link between inflammation and PD is
further exemplified by the fact that key PD-associated genes,
such as α-Syn (SNCA), PARK2, deglycase (DJ-1), leucine-rich
repeat kinase 2 (LRRK2), and glucocerebrosidase (GBA) are all
expressed in immune cells, suggesting their potential to modulate
inflammation (Dzamko et al., 2015). Reciprocally, an increasing
number of PD-related genes including LRRK2, VPS35, PINK1,
UCHL-1, Parkin, ATP6AP2, and GBA modulate the canonical
Wnt pathway (Berwick et al., 2017 and Refs. therein), further
underlinying a critical Wnt/inflammatory connection in PD
(Marchetti and Pluchino, 2013).

In addition a synergy between the genetic background and
exposure to various neurotoxic or inflammatory challenges
is recognized to promote a self-perpetuating cycle of
microglial-mediated mDA neurotoxicity (Zhang et al., 2005; Gao
and Hong, 2008, 2011; Marchetti et al., 2011; Gao et al., 2012;
Lastres-Becker et al., 2012; Table 1). Notably, such feedforward
cycle of chronic activation of microglia and chronic damage of

mDA neurons are likely to play a decisive role for the severity
of nigrostriatal DA lesion and the overall detrimental effects of
SNpc neurons and consequently, their capacity for neurorepair.

A number of laboratories showed the harmful consequences
of dysfunctional α-Syn coupled to the M1 pro-inflammatory
phenotype, capable to potentiate each other and promote the
progression of mDA neuron death (Gao et al., 2011; Harms
et al., 2013; Sanchez-Guajardo et al., 2013). Notably, Lastres-
Becker et al. (2012) reported that a dysfunctional anti-oxidant
system in NRf2-deficient mice coupled to α-syn dysfunction in
early-stage of PD can synergize together resulting in exacerbated
inflammation, up-regulated protein aggregation, all together
promoting increased neuronal death. Additionally, as reported
by Frank-Cannon et al. (2008), Parkin (the product of the PARK2
gene) deficiency, increases the vulnerability of mDA neurons
to various risk factors including inflammation-dependent
degeneration. Another important connection is the one between
LRRK2 mutation and the activation of M1 proinflammatory
phenotype (Gillardon et al., 2012), acting in synergy to amplify
mDAneurotoxicity. By contrast, when LRRK2 is inhibited, this in
turn reduces the production of microglial harmful mediators and
reverses mDA neurotoxicity (Kim et al., 2012; Moehle et al., 2012;
Lee et al., 2017). Notably, a robust LRRK2 expression is present in
immune cells, including peripheral monocytes andmacrophages,
and in primary microglia (Dzamko et al., 2015). Of interest,
peripheral inflammation appears greater in a percentage of
subjects carrying LRRK2-G2019Smutation, with the cytokine IL-
1β discriminating asymptomatic LRRK2-G2019S carriers from
controls (Dzamko et al., 2017). Furthermore, the expression of
LRRK2 is modulated by immune cell-specific signals, like IFNγ

and toll-like receptor (TLR) agonists (see Moehle et al., 2012)
thereby reinforcing the LRRK2/immunological link.

Notably, LRRK2 binds three central Wnt signaling
components (Sancho et al., 2009; Berwick and Harvey,
2012a), while loss of LRRK2 and mutations of LRRK2 are
linked to Wnt signaling (Sancho et al., 2009; Berwick and
Harvey, 2012a,b, 2014; Berwick et al., 2017). Hence, pathogenic
PARK8 mutations impact upon the activity of the canonical
Wnt pathway (Berwick and Harvey, 2012a). Recent evidence
indicates that in the context of canonical Wnt signaling,
pathological LRRK2 mutations are gain-of function, enhancing
the repression of β-catenin mediated by LRRK2, thus inhibitng
canonical Wnt/β-catenin signaling (Berwick et al., 2017). Such
connection between LRRK2 and Wnt cascades in PD support
the growing body of studies highlighting dysregulated Wnt
signaling in PD (see Harvey and Marchetti, 2014 and chapters
therein).

PARK17 encodes the vacuolar protein sortin 35 homolog gene,
VPS3, and its mutation is linked to autosomal dominant late-
onset PD, with an involvement in iron up-take and Wnt/β-
catenin signaling (Deng et al., 2013). Of note iron together with
other risk factors, such as exposure to paraquat, may interact to
aggravate neuroinflammation and age-dependent mDA neuron
death (Peng et al., 2007).

Further compelling evidences from the last few years implicate
certain miRNAs in the counter-regulation of microglia M1
phenotype associated to robust activation (Table 2). For example
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TABLE 2 | M1 pro-inflammatory phenotype and miRNA dysregulation in PD.

miRNAs Expression levels Outcomes References

let-7b, let-7g, miR-103, miR-155,

miR-16-5p, miR-17, miR-204,

miR-27, miR-98

↑ Upregulation following TNF-α treatment

in SH-SY5Y cells

Prajapati et al., 2015

let-7a, miR-128, miR-145, miR-181a,

miR23a, miR-23b, miR-320◦
↓ Downregulation following TNF-α

treatment in SH-SY5Y cells

miR-155, miR-27 ↑ Upregulation following TNF-α treatment

in SH-SY5Y cells

ATP5G3 (F1-ATP synthase subunit)

downregulation in mitochondria of

SH-SY5Y cells

miR-155 ↓ Downregulation following

antago-miR-155 administration in

TNF-α-treated SH-SY5Y cells

Increased SH-SY5Y cells survival following

TNF-α treatment

miR-155 ↑ Upregulation following LPS, IFN-γ or

TNF-α treatments in THP-1 cells

Downregulation of FADD, SOC1, IKK,

IL13Rα1 and SMAD2

Louafi et al., 2010; Liu and

Abraham, 2013; Ponomarev

et al., 2013; Yang et al., 2015

↓ Downregulation following

antago-miR-155 administration in

atherosclerosis mouse model

Downregulation of TNF-α, IL-1β, CCL2,

CCL4, and CCL7 secretion in serum and

vascular tissues

Yang et al., 2015

↑ Upregulation in PD mice overexpressing

α-SYN

Inflammatory response to α-SYN fibrils

and reactive microgliosis

Thome et al., 2016

miR-7 ↓ Downregulation in neurons of

MPTP-treated mice

α-SYN upregulation Junn et al., 2009; Zhou et al.,

2016

↑ Upregulation following miR-7 mimic

injection in MPTP-treated mice

Downregulation of α-SYN and

downregulation of NRLP3 in DA neurons

with suppression of

inflammasome-mediated

neuroinflammation and attenuated DA

neurodegeneration

↓ Downregulation following antago-miR-7

administration in MSU or ATP treated BV2

cells

Upregulation of NLRP3 expression and

aggravated inflammasome activation

in vitro

miR-135b ↓ Downregulation in MPP+-treated

SH-SY5Y cells

GSK3β upregulation§ Wang et al., 2007; L’Episcopo

et al., 2011a,b; Zhang et al.,

2017

↑ Upregulation following miR-135b mimic

administration in SH-SY5Y cells

GSK3β downregulation, TNF-α and IL-1β

reduction, MPP+-induced apoptosis

rescue§

miR-7116-5p ↓ Downregulation in microglia of

MPTP-treated mice

miR-7116-5p directly targets and inhibits

TNF-α expression. In MPTP mice

miR-7116-5p is downregulated,

consequently TNF-α production is boosted

He et al., 2017

↑ Upregulation following lentiviral-mediated

miR-7116-5b overexpression in microglia

of MPTP-treated mice

Downregulation of TNF-α, reduction of

TNF-α-mediated inflammatory activation

and prevention of DAergic neuronal loss

§ Wnt/β-Catenin dysregulation in the reported conditions.

the group of Prajapati in 2015 found that TNF-α was able to
both trigger cell death and sensitize to apoptosis the DA cell
line SH-SY5Y, in the presence of different PD neurotoxins—such
as MPP+, 6-OHDA and Rotenone—via miRNA deregulation
(Prajapati et al., 2015). Following the treatment with TNF-
α, 9 miRNAs were found upregulated (let-7b, let-7g, miR-
103, miR-155, miR-16-5p, miR-17, miR-204, miR-27, and miR-
98) and 7 downregulated (let-7a, miR-128, miR-145, miR-
181a, miR23a, miR-23b, and miR-320a). Interestingly, the
upregulated miRNAs were predicted to target mRNAs involved

in both neuronal-specific pathways (i.e., neuronal differentiation,
axonal guidance and nerve projection development) and
mitochondrial respiratory subunits. In particular, the authors
demonstrated that, in the presence of TNF-α, both miR-
155 and miR-27 were able to downregulate ATP5G3, a
subunit of F1-ATP synthase. This study strongly supports the
role of TNF-α as a critical regulator of miRNAs targeting
mitochondrial functions, which in turn may cause DA neuronal
loss (L’Episcopo et al., 2010a,b, 2011c; Prajapati et al.,
2015).
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Notably, miR-155 was previously shown to be involved in
the regulation of inflammatory processes. The induction of miR-
155 (via LPS, IFN-γ, and TNF-α) is able to target key regulators
of inflammation, such as FADD, SOC1, IKK, IL13Rα1, and
SMAD2, while miR-155 inhibition results in the upregulation of
the proinflammatory molecules IL-1β, IL-6, TNF-α, and iNOS
(Louafi et al., 2010; Liu and Abraham, 2013; Ponomarev et al.,
2013; Yang et al., 2015).

The relevance of miR-155 in PD was confirmed in 2016 by
Thome and colleagues that observed miR-155 upregulation in a
PDmousemodel overexpressing α-SYN. They demonstrated that
miR-155 is crucial to mediate the inflammatory response to α-
SYN fibrils, responsible of reactive microgliosis and accounting
for the loss of DA neurons, triggered by the overexpression of
α-SYN (Thome et al., 2016).

Other miRNAs are recently emerging as important regulators
of M1 microglial pro-inflammatory phenotype, such as miR-
7, previously reported to target α-SYN in DA neurons (Junn
et al., 2009). In 2016 miR-7 was demonstrated to directly
target microglial nod-like receptor protein 3 gene (NRLP3),
suppressing inflammasome-mediated neuroinflammation and
thus suggesting a potential therapeutic role of this miRNAs in the
context of PD (Zhou et al., 2016).

There are also interesting clues linking Wnt/β-catenin
pathway to miRNA-modulation of DA neuronal survival
and inflammation (Table 2). In fact, the role of miR-135b
as GSK3β regulator was recently investigated in MPP+-
treated SH-SY5Y cells (Zhang et al., 2017). The specific
pharmacological inhibition of GSK3β reversed MPTP-
induced neuron injury and also improves MPTP-induced
behavioral impairment (Wang et al., 2007; L’Episcopo et al.,
2011a,b). Interestingly, miR-135b was reduced in face of
GSK3β upregulation in MPP+-treated cells, in a dose- and a
time-dependent manner. Importantly, the overexpression of
miR-135b was able to directly target GSK3β, and to reduce
the levels of pro-inflammatory cytokines TNF-α and IL-1β,
thus rescuing the MPP+-induced apoptosis (Zhang et al.,
2017).

The same year, also miR-7116-5p was suggested to be
a key player in neuroinflammation. Specifically in microglia
of an MPTP mouse model, miR-7116-5p was found to be
downregulated, while TNF-α increased. This miRNA was
demonstrated to directly target TNF-α transcript, thus reducing
TNF-α-mediated inflammatory activation and finally preventing
DAergic neuronal loss in MPTP mice (He et al., 2017).

Together, gene-environment interactions crucially impact
in switching microglia status to the M1 neuron destructive
phenotype, with the contribution of both mRNAs and miRNAs,
and Wnt/β-catenin signaling interplay.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

In this work we have highlighted the evidences documenting
a major role of gene-environment interactions directing the
polarization of microglia toward an harmful M1 phenotype,

that may predispose the brain to reach a critical threshold
of inflammation, triggering a self-perpetuating cycle of
inflammation and neuronal death. Especially, we pinpointed the
role of Wnt signaling in each of the steps involved in both the
neuroprotective/destructive glial-mediated neuronal outcome
in PD.

Aging is a critical period for the vulnerability to PD.
Importantly, aging reduces the degree of DAergic neuron
plasticity, diminishesmDAneuron adaptive capacity, exacerbates
inflammation and impair neurogenesis, at least in part via
a dysfunction Wnt/β-catenin signaling and the crosstalk with
inflammatory pathways. The inflammatory involvement in
the regulation of adult neurogenesis suggest that harnessing
inflammatory responses through targeted modulation of innate
immunity during the pre-motor phase of PD may have potential
therapeutic implications to incite endogenous neurogenesis and
neurorepair in PD. Finally, aging, inflammation and major
genetic mutations, together with a set of recently uncovered
inflammation-dependent miRNA, all together impact on Wnt/β-
catenin signaling pathway, with potential consequences for PD
degeneration.

All together, unraveling the complex molecular circuity
linking key molecular genetic and environmental drivers in PD
with microglia polarization will permit to identify new drugable
targets for the cure of PD.
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