
molecules

Review

Peptide Nucleic Acid-Based Biosensors for
Cancer Diagnosis

Roberta D’Agata 1, Maria Chiara Giuffrida 2 and Giuseppe Spoto 1,2,*
1 Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy;

dagatar@unict.it
2 Consorzio Interuniversitario “Istituto Nazionale di Biostrutture e Biosistemi”, c/o Dipartimento di Scienze

Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy; mcgiuffrida@gmail.com
* Correspondence: gspoto@unict.it; Tel.: +39-095-7385141

Received: 18 October 2017; Accepted: 9 November 2017; Published: 11 November 2017

Abstract: The monitoring of DNA and RNA biomarkers freely circulating in the blood constitutes
the basis of innovative cancer detection methods based on liquid biopsy. Such methods are expected
to provide new opportunities for a better understanding of cancer disease at the molecular level,
thus contributing to improved patient outcomes. Advanced biosensors can advance possibilities for
cancer-related nucleic acid biomarkers detection. In this context, peptide nucleic acids (PNAs) play
an important role in the fabrication of highly sensitive biosensors. This review provides an overview
of recently described PNA-based biosensors for cancer biomarker detection. One of the most striking
features of the described detection approaches is represented by the possibility to detect target nucleic
acids at the ultra-low concentration with the capability to identify single-base mutations.
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1. Introduction

Early cancer diagnosis and the frequent monitoring of cancer patients are key to achieving the
target of reducing the mortality and improving the efficacy of pharmaceutical treatment [1,2]. Different
methods are today applied to detect cancer, including biopsies, endoscopy, magnetic resonance imaging
and blood tests [3]. Such diagnostic tools are not sensitive enough to screen patients at the very early
stage of the disease progression. In addition, some of them can potentially introduce clinical risks for
the patient, are costly and patient compliance with most of such procedures is variable given their
invasive nature.

Different systems potentially acting as cancer biomarkers are present in the blood, including
circulating tumour cells (CTCs) [4], membranous structures containing molecular biomarkers such as
microvesicles and exosomes [5], circulating free nucleic acids [6] (i.e., circulating cell-free DNA, RNA
and microRNA) [7] and proteins [8]. The study of such systems could provide a molecular spectrum of
a tumour by avoiding the otherwise required sampling of tumour cells from the human body (tissue
biopsy) [4,9]. On this basis, liquid biopsy [10] has emerged as a potential complement to traditional
biopsy for early cancer diagnosis and tailor-made therapy [6].

The detection of cancer biomarkers circulating in the blood is a challenging task mostly due to
the low concentration of biomarkers in early-stage patients. Thereby, the demand for new analytical
methods for the sensitive and robust detection of molecular signatures of a tumour in the blood of
patients has significantly increased over the last few years [11].

In this context, biosensors offer attractive alternatives to conventional platforms, thanks to
presently available advanced possibilities for the sensitive target biosensing [12]. Biosensors are
ideal platforms for constructing minimally invasive diagnostic tools able to provide molecular-level
information to be used for implementation of personalised medicine [13,14].
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Biosensors are analytical devices that incorporate a biological sensing element and are based on the
conversion of molecular recognition events into a measurable signal generated by a transducer. Recent
technological progress in microfluidics [15] and nanofabrication processes [16] offer new opportunities
for the development of biosensing platforms for cost-effective, high-throughput, point-of-care (POC)
diagnostics. In particular, the performance of biosensing platforms has benefited from the design
of optimised surface chemistry [17] and detection schemes for the enhancement of the detected
signal [18–20], and from the use of nanomaterials [21,22].

Nucleic acids are essential targets in cancer diagnostics and the platform used to identify them
should be sensitive (limit of detection (LOD) down to picomolar–femtomolar concentrations) and
selective enough to ensure accurate discrimination among biomolecules dispersed in biological fluids
such as blood, urine and saliva [23]. DNA susceptibility to restriction enzymes, its reduced stability
under pH and temperature conditions can limit the advantages in designed DNA biosensors [24].

In this scenario, significant benefits come from the use of nucleic acid analogues in nucleic
acid biosensing [25]. DNA synthetic mimics such as peptide nucleic acids (PNAs) [26] or locked
nucleic acids (LNAs) [27] have pushed biosensors to new perspectives allowing to achieve biosensing
performances that are clinically relevant [28]. In particular, PNA displays many advantageous features
in DNA targeting, such as its neutral charge and its higher stability and selectivity compared with
nucleic acid analogues [29,30].

Here, we report an overview of recent advances in PNA-based biosensors with a specific emphasis
on cancer diagnosis. Various sensing strategies are reviewed (Table 1) according to the potential they
hold in providing a clinically relevant combination of sensitivity and selectivity.

Table 1. Overview of PNA-based biosensors for the detection of RNA or DNA cancer biomarkers.

Target Transduced Signal LOD Detection in Human
Serum or Plasma Reference

miR-21, miR-96
and miR-125b Fluorescence <1 pM No [31]

miR-21, miR-96
and miR-125b Fluorescence 10 pM No [32]

miR-18a Fluorescence - No [33]

miR-21 Fluorescence 10 nM No [34]

miR-21 QCM 400 pM Yes [35]

miR-126, miR-182
and miR-152 Optical (Lateral flow test strip) 0.6 fM No [36]

miR-145 Electrochemical (Impedimetric and
square-wave voltammetry) 0.37 fM No [37]

miR let-7a, let-7b, let-7c Electrochemical (Impedimetric) 0.50 fM No [38]

miR let-7b, let-7c and miR 21 Electric
(Graphene field-effect transistor) <10 fM Yes [39]

E542K, E545K, methylation
in PIK3CA gene

Optical
(Localized surface plasmon resonance) 50 fM Yes [40]

HPV type 16 DNA,
HPV types 18, 31 and 33

Electrochemical
(Square-wave voltammetry) 4nM No [41]

DNA HPV type 16, type 18,
type 31, and type 33 Electrochemical (Impedimetric) 2.3 nM No [42]

BRAF and KRAS
DNA mutations Electrochemical 1 fg µL−1 Yes [43]

BRAF and KRAS
DNA mutations Electrochemical 1 fg µL−1 Yes [44]

2. PNA-Based Biosensors

PNA [45] is a non-natural nucleic acid analogue whose backbone is composed by
N-(2-aminoethyl)glycine motifs linked via peptide bonds [46]. The uncharged backbone makes
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PNA/DNA and PNA/RNA complexes more stable than the corresponding DNA/DNA and
DNA/RNA systems. In addition, PNA exhibits chemical and thermal stability in conditions where
DNA/RNA would undergo degradation [47]. PNAs are insensitive to ionic strength and pH
changes and are resistant to enzymatic cleavage inside living cells. A single mismatch in PNA/DNA
heteroduplexes decreases the melting temperature more than in DNA/DNA duplexes (about 15 ◦C
compared with 4 ◦C) [48] thus demonstrating the higher level of selectivity of PNA compared with
DNA [49].

PNAs are synthesized using standard peptide solid-phase synthetic protocols [50]. PNA
oligomers are cleaved from the solid-state support using conventional chemical procedures, purified
by reverse-phase high-performance liquid chromatography and characterised by mass spectrometry.
PNAs are also commercially available, but the cost is still higher than DNA oligonucleotides. In general,
pure PNAs are neutral compounds with a tendency for self-aggregation and limited water solubility.
The latter properties are strongly dependent on pH and the buffer used. The introduction of charged
groups in the PNA structure (e.g., a C-terminal lysine amide), improves PNAs’ general properties by
minimising their tendency to aggregate [47].

The biophysical properties of PNA make it an excellent candidate for use in biosensing
applications, particularly when used as the capture probe [51]. PNA probes capture complementary
target sequences with higher efficiency than DNA probes thus contributing to enhance the
assay sensitivity.

PNA hybridizes to complementary oligonucleotide sequences in agreement with the Watson-Crick
base-pairing rules by establishing hydrogen bonds between complementary nucleobases. PNA
exhibits superior hybridization features, and the different molecular structure of PNA/DNA duplexes
compared with the DNA/DNA structure provide a range of chemical signatures that can be potentially
detected after the hybridization, thus enabling the design of novel detection protocols. The use
of neutral PNA probes offers new opportunities for the design of advanced biosensing platforms
exploiting the variation of the charge conditions occurring after the hybridization of the complementary
DNA or RNA negatively charged sequences. Similar approaches have been proposed in combination
with the use of functionalized nanoparticles, redox indicators or the polymerization of oligomers to
enhance the sensitivity of the assay [52].

PNA oligomers are able to invade dsDNA by a mechanism known as ‘strand invasion’ leading
to the formation of a triplex structure [53]. Such a property is exploited for antisense or antigene
strategy [54].

PNA oligomers have been used to detect tumour cells and to deliver small molecules acting as
drugs [55,56]. However, PNA’s poor solubility in water and its low cellular uptake still represent
essential obstacles to the use of unmodified PNAs for similar applications [57]. The chemical
modification of the PNA backbone or its conjugation with charged peptides has been proposed
to address such issues. A variety of different changes to the PNA structure have been investigated with
the aim to enhance its binding properties, directionality in hybridization and selectivity. These include
the displacement of glycine with a chiral amino acid. Such chemical modifications of the structure of
PNAs provide different opportunities to modulate properties of PNA useful in facilitating the design
of a biosensor.

Efforts have been paid in designing modified PNA structures showing enhanced binding
features [58,59] to provide additional possibilities to modulate properties of PNA probes that facilitate
the fabrication of new diagnostic biosensing platforms.

PNA is not a substrate for DNA polymerases and for this reason PNA clamps are used to inhibit
PCR amplification of wild-type DNA templates [60]. The specificity of PNA-mediated PCR clamping
is good enough to allow the discrimination of alleles differing by one single nucleotide polymorphism
(SNP). PNA-clamp technology has been adopted in reactions known as ‘PCR Clamping’ and has been
used to identify occult micrometastases in colorectal cancer (CRC) patients [61] and to detect KRAS
point mutations in peripheral blood samples of CRC patients [62].



Molecules 2017, 22, 1951 4 of 15

Numerous examples of PNA-based electrochemical [52], piezoelectric [63,64], surface plasmon
resonance [65–67] and microarray [68,69] biosensors have been described. Here, we will focus only on
biosensors using PNA probes to detect DNA or RNA analytes relevant to cancer diagnosis.

2.1. PNA-Based Biosensors for RNA Detection

The growing list of non-coding RNA species involved in critical biological functions makes RNA
an attractive target for molecular recognition [70,71]. In particular, prominent examples of RNAs
implicated in several cancers are microRNA (miR) [72], messenger RNA (mRNA) [73], circulating
RNAs [74] and long non-coding RNAs (lncRNAs) [75,76].

miRs are among the most studied RNAs present in eukaryotic cells. miRs are short
(19–25 nucleotides long) RNA sequences acting as regulators [77,78]. They are involved in transcription
and also translational repression and gene silencing. The complex formed when miR binds an enzyme,
known as RISC (RNA-induced silencing complex), can interact with the complementary mRNA
sequences. mRNA is then silenced after its enzymatic cleavage [79]. Mutations in miR sequences
may result in a dysfunction or deregulation of their biogenesis, thus triggering a broad spectrum of
diseases [80,81].

High-throughput detection of miRs is performed using microarrays [82–84]. Other methods
for miR detection include reverse transcriptase (RT) PCR [85,86], surface-enhanced Raman
scattering [87–89], droplet microfluidics [90] and surface plasmon resonance (SPR) [91].

The intrinsic small size, the sequence homology and the low concentration of miR make the
detection of miR a challenging task [92]. When dealing with cancer diagnosis, miR biomarkers are
upregulated or downregulated in distinct types of cancer, and some miRs are also linked to different
cytogenetic abnormalities [93].

Chemical and physical properties of nanostructures and nanomaterials have often been exploited
to enhance the sensitivity for miRs’ detection [94]. In particular, efforts have been paid to developing
different kinds of functional nanomaterials, such as noble metal nanoparticles, magnetic nanoparticles,
quantum dots, carbon-based nanomaterials, with the aim to push the LOD further down to
picomolar [95]. In this context, the optical detection of fluorescence signals produced by labelled
probes is often exploited.

Graphene and graphene-like two-dimensional (2D) nanomaterials used in fluorescence resonance
energy transfer assays hold great potential for use in biosensing [96]. In particular, graphene oxide (GO)
represents the basis for the sensitive detection of miR in living cells based on the use of dye-labelled
PNAs and nanosized GO (NGO) [31]. NGO quenches the fluorescence emitted by labelled PNA.
In this case, PNA is preferred to DNA as the probe because of the lower fluorescence background
generated and the more stable binding with NGO. The sensing approach is based on the recovery of
the fluorescence of labelled PNA upon addition of miR. The use of three different PNA probes labelled
with carboxy fluorescein (FAM)-PNA21, 6-carboxy-X-rhodamine (ROX)-PNA125b and cyanine 5
(Cy5)-PNA96, allowed the parallel detection of three different miRs expressed in cancer cell lines:
miR-21, miR-125b and miR-96, respectively. The detection limit for the parallel detection of miRs was
about 1 pM.

Nanoporous metal-organic frameworks (MOFs) [97,98] exhibit an inherent fluorescence quenching
capacity that can be exploited for miR detection by labelled PNA probes [32]. Labelled PNA bonded to
the nano-MOF (NMOF) is released in the presence of target miR. The resulting hybridization between
the PNA probe and complementary miR target allows the recovery of the fluorescence. In addition,
in this case, the assay has been tested against three miRs expressed in cancer cell lines (miR-21, miR-96
and miR-125b) using complementary PNA probes labelled with different fluorophores. The lowest
detected concentration of target miRs was about 10 pM.

Graphitic carbon nitride (g-C3N4) nanosheet can be used to design assays similar to those
discussed below and exploiting the quenching of labelled PNA probes [96,99]. Carbon nitride
nanosheet (CNNS) can be exfoliated from bulk g-C3N4 and directly dispersed in aqueous solution [100].
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In addition, in this case, the recovery of the fluorescence emitted by labelled PNA probes adsorbed
on CNNS when in contact with complementary miR sequences is used to assay miR in the complex
medium [33].

Considerable attention is today devoted to the fabrication of biosensing devices using low-cost
and flexible materials for applications also in resource-limited settings [101]. In this perspective,
a poly(vinylidene fluoride) thin sheet impregnated with poly(3-alkoxy-4-methylthiophene) (PT) and
modified with a PNA probe can be used for the optical detection of miR [34]. The assay has been
designed to perform a naked eye detection of miR-21 associated with lung cancer. Different optical
signatures are generated when the non-specific adsorption of miR on the polymeric sheet or the specific
interaction with the complementary PNA probe are established. In particular, an orange fluorescence
signal is generated when the triplex system PT–PNA–miR-21 is formed. The assay shows a linear
correlation in the 10 nM–10 mM concentration range as well as a successful mismatch detection.

Cationic polythiophene derivatives can be used as the active layer for a quartz crystal microbalance
(QCM) surface modification to detect miR-21 spiked in plasma samples [35]. Negatively charged miR
adsorbs on cationic polythiophene. The specific capture of miRs in complex media can be performed
using biotinylated PNA sequence complementary to the miR target. Avidin-coated nanoparticles
have been used to bind the biotinylated PNA/miR complex that has been subsequently adsorbed
on polythiophene-modified QCM surface for signal amplification and to yield responses at clinically
relevant concentrations (400 pM).

Standard protocols for nucleic acid detection very often include the amplification of the
target sequence. PCR is the most widely used method that combines the polymerase action with
thermal cycling to amplify low abundance target sequences. Isothermal amplification methods
have emerged as a promising alternative to PCR that significantly simplifies the implementation
of amplification methods in POC diagnostic devices [102]. The integration of isothermal methods
in microfluidic apparatus reduces the risk of sample contamination and minimises the required
sample volume [90,103]. Recently, researchers succeeded in establishing bladder cancer diagnosis via
detection of miRs from urine samples using a dual-isothermal cascade assisted lateral flow assay
strategy [36]. The assay strategy combines base stacking hybridization (BSH) with exponential
isothermal amplification (EXPAR) [104] and PNA probe. EXPAR produces ssDNA copies at a constant
temperature and can be combined with various biosensing platforms. BSH results from the stability
associated with hybridization reactions wherein two strands hybridize in a contiguous tandem to a
longer complementary ssDNA. EXPAR occurs only in the presence of the target miR sequence based
on the BSH process. The sample solution with EXPAR-amplified ssDNA was adsorbed on the sample
pad of a lateral flow strip. Then, AuNPs–DNA conjugate was dispensed on the conjugate pad of the
strip onto which two biotinylated PNA probes (test and control) were previously immobilized. The
accumulation of AuNPs–DNA conjugates on the PNA probe test line produced a characteristic red
line. The assay detects miR-126, miR-182 and miR-152 extracted from urine samples of bladder cancer
patients and healthy donors down to 0.6 fM.

Several approaches exist for the electrochemical detection of nucleic acids. Many such methods
adopt specific procedures for signal enhancement, often combining nanostructured materials, enzymes
and, in some cases, PNA probes [105]. Impedimetric detection has repeatedly been used to develop
sensitive assays for miR detection. Such methods exploit the uncharged nature of PNA probes to design
assays using negative charges of hybridized miR to trigger processes leading to sensitive detection.

Jolly et al. introduced a dual-mode electrochemical biosensor using thiolated PNA probes
immobilised on the sensor gold surface to detect miR-145 [37]. After PNA probe hybridization with
the target, an amplification strategy taking advantage of the neutral charge of the PNA probe and
using positively charged AuNPs was used in combination with impedimetric detection to monitor
binding events without the need for any redox markers (Figure 1). An additional detection mode
using thiolated ferrocene was used on the same sensor. Thiolated ferrocene immobilised on AuNPs
adsorbed on the PNA–miR-145 complex produced an electrochemical signal that was recorded using
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square-wave voltammetry and that increased with miR-145 concentration. The dual-mode strategy
allows detecting miR with a 0.37 fM LOD and a wide dynamic range (1 fM–100 nM).

Another example of an assay exploiting the uncharged nature of PNA to obtain a sensitive
impedimetric detection of miR has been provided by producing a miR-guided deposition of
polyaniline [38]. miR was first hybridized onto the PNA probe previously immobilised on a gold
electrode. The negatively charged surface was then exposed to a mixture containing aniline, H2O2

and a G-quadruplex-hemin DNAzyme to obtain a hybridized miR-guided polymerisation of aniline.
The formed poly-aniline film affected the electron-transfer power that was measured to determine the
concentration of the target miR. 0.50 fM target miR was detected with this approach with the capability
also to provide mismatch discrimination.
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Figure 1. Schematic description of the dual mode electrochemical biosensor used to detect miR-145.
After the thiolated PNA probes immobilisation (a) and miR-145 hybridization (b) an amplification
strategy using positively charged gold nanoparticles was used (c). Thiolated ferrocene was adsorbed
on AuNPs (d) to produce an electrochemical signal that was recorded using square wave voltammetry.
(e) Typical features observed after the impedimetric detection (Nyquist plot) are shown. Reprinted
from Ref. [37].

Graphene-based field-effect transistors (FETs) have been widely used to perform nucleic acid
detection [106,107] including miR [39]. In the latter case, AuNPs were used to decorate the surface
of the reduced GO deposited on the surface of the FET sensor. Then, PNA probes were immobilised
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on AuNPs and utilised for miR let-7b detection. A 10 fM concentration of the target sequence was
detected with discrimination of point mutation (let-7c) and unrelated sequences (miR-21). miR let-7b
was also spiked to human serum at 1 fM and 10 fM concentration with a successful detection of the
target species.

2.2. PNA-Based Biosensors for DNA Detection

Cancer is linked to mutations that accumulate stepwise in genomic DNA, thus triggering a
network of processes responsible for carcinogenesis [108]. For this reason, clinicians use the analysis
of the tumour-linked genetic mutations for diagnostic and prognostic purposes. The detection of
mutations whose presence is linked to the reduced efficacy of specific drugs able to slow the tumour
progression is also used in patient follow-up and therapy efficacy assessment.

The detection of mutations present in DNA available from tumour cells (CTC) and tumour DNA
(ctDNA) freely circulating into the bloodstream of cancer patients offers a unique opportunity to
design new approaches for the non-invasive diagnosis and prognosis of a tumour.

CTCs are tumour cells released into the blood from the primary tumour tissue. The
detection of CTCs is challenging due to their low abundance in peripheral blood and intrinsic
heterogeneity [109,110]. ctDNA is the small fraction of circulating cell-free DNA that is derived
from tumour cells [111,112].

The identification of ctDNAs is today mostly performed using PCR-based methods including
digital PCR [113–115] and next-generation sequencing platforms [116,117]. Such technologies are
subject to limitations mainly associated with the PCR amplification. PCR is prone to sample
contamination and tends to generate artefact fragments by recombination between homologous regions
of DNA [118]. New approaches for the highly sensitive detection of ctDNAs are thus investigated
to overcome limitations of currently available technologies. Biosensors offer attractive alternatives
to presently available platforms, thanks to innovative possibilities for the sensitive, rapid and cheap
detection of nucleic acid targets [12].

Plasmonic biosensors exploiting the peculiar properties of metal nanoparticles [20,119–121] have
been used to design highly sensitive platforms for DNA detection [122,123], with specific applications
using PNA probes to demonstrate the attomolar detection of point mutations in non-amplified
human genomic DNA [124]. The coupling of plasmonic properties of AuNPs with PNA single-base
mismatch recognition capacity obtained by conjugating PNA probes with AuNPs has been combined
with anti-5-methylcytosine monoclonal antibody (mAb) capacity to detect methylated DNA for the
simultaneous identification of both tumour-specific mutations of ctDNA and epigenetic modification
(ctDNA methylation) within PIK3CA gene [40]. The assay uses AuNPs functionalized with 15-base
long PNA probes with perfect matching for two hot spots in ctDNA (E542K and E545K). AuNPs
functionalized with 5-methylcytosine monoclonal antibody (mAb) were used both to detect epigenetic
modification in the ctDNA hybridized to the AuNPs–PNA system as well as to enhance the localised
SPR shift measured after the adsorption of ctDNA on AuNPs–PNA. The mAb–AuNP enhancement
allowed the detection of 50 fM solutions of ctDNA.

Pyrrolidinyl PNA is a conformationally rigid PNA derivative with a D-prolyl-2-aminocyclo-
pentanecarboxylic acid (acpc) backbone [125]. acpcPNA exhibits a stronger directional preference
for antiparallel binding and a higher affinity towards DNA over RNA than traditional PNA while
keeping equal binding affinity and sequence selectivity. Human papillomavirus (HPV) type 16 DNA
has been detected by combining anthraquinone (AQ)-labelled acpcPNA probes with the square-wave
voltammetric biosensing [41]. acpcPNA–AQ probes were immobilized onto the chitosan layer of
modified screen-printed carbon electrodes. The conformational change of the acpcPNA–AQ probe
occurring upon the complementary DNA hybridization limited the electron transfer to the electrode
surface capability of the AQ label, thus causing a decrease of the detected signal. A linear range in the
20 nM to 12 µM range was detected for the response of the assay with a LOD down to 4 nM. The test
succeeded in identifying HPV type 16 DNA fragments in a PCR-amplified HPV infected cell line. When
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a similar detection scheme was applied by immobilising acpcPNA–AQ on graphene-polyaniline and
using electrochemical impedance spectroscopy detection a linear range in the 10–200 nM range was
obtained with LOD 2.3 nM [42]. In addition, in the latter case, the successful detection of PCR-amplified
DNA from HPV type 16 positive SiHa cells was demonstrated.

The rare and complex nature of CTCs requires new tools to be developed for a smooth and
detailed analysis of each cell [126]. In this context, the development of new platforms implementing
the whole process from CTC capture to RNA or DNA detection is critical. The combination of
microfluidics with voltammetric biosensing has been used to design a new platform integrating the
capture of CTCs by antibody-modified magnetic nanoparticles, CTCs lyses and analysis of messenger
RNA by voltammetric detection on nanostructured microelectrodes functionalized with PNA probes
complementary to mRNA targets. The assay was successfully validated using samples collected
directly from patient blood with a turn-around time of one hour useful to preserve properties of CTCs.

A remarkable application of electrochemical biosensing to cancer diagnosis has been obtained by
developing a voltammetric clamp assay for the screening of KRAS mutations in ctDNA from serum
samples of cancer patients (Figure 2) [43]. A universal PNA probe complementary to the mutated
KRAS gene target associated with lung, colorectal and ovarian cancers [127] has been immobilized
on nanostructured gold microelectrodes. A mixture of PNA clamps was instead added to the human
serum sample to hybridize sequences closely related to the target KRAS, thus favouring the interaction
of the PNA probe with only the KRAS-mutated sequence. After KRAS target hybridization, the
electrocatalytic reporter pair of [Ru(NH3)6]3+ and [Fe(CN)6]3− was applied to read out the presence of
target single-stranded ctDNA. More recently, an evolution of the assay has been proposed [44]. In this
case, DNA clutch probes are used as ssDNA molecules to prevent the re-association of denatured
ctDNA. The proposed electrochemical method can detect ctDNA within 30 min and displays excellent
sensitivity and selectivity, being able to catch the target mutated allele at 1 fg µL−1 concentration in a
background of wild-type alleles at concentration 100 pg µL−1. The detection of mutation in ctDNA
obtained from the plasma of lung cancer and melanoma patients has been demonstrated using the
above-described electrochemical biosensing approach.
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Figure 2. Schematic representation of the clamp assay used to detect KRAS mutations. (a) The sample
(1) was mixed with PNA clamp sequences (2) to sequester the wild-type sequence and all of the mutated
sequences different from the target KRAS sequence (3) (134A—green in the shown example). (b) The
sample was then adsorbed onto the PNA probe-modified microelectrode and only the target KRAS
sequence hybridized to the PNA probe. The other six mutants and wild-type nucleic acids were not
able to bind and were washed away. Adapted with permission from Ref. [43].
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The striking features of PNA help in better detection of SNPs linked to several types of cancer.
In particular, recent applications of PNA biosensing have considered SNPs within KRAS or EGFR genes.
Itogana et al. [128] recently demonstrated the rapid detection of KRAS mutations using Loop-Mediated
Isothermal Amplification (LAMP) in combination with PNA clamp. LAMP amplification was
performed in the presence of a PNA probe designed to clamp the KRAS gene wild-type sequence and
LNA primers complementary to the mutated KRAS sequence. The LAMP amplification of wild-type
KRAS DNA sequence was blocked by the PNA clamp, while the mutated KRAS was amplified within
50 min.

PNA clamping is also useful to detect EGFR mutated gene in patients with non-small cell lung
cancer [129]. In particular, PNA clamping combined with direct sequencing enables the detection of
EGFR gene mutations in samples containing as few as 1% mutant alleles.

3. Conclusions

The development of a sensitive, rapid, and robust bioanalytical platform for the detection of
cancer-related DNA or RNA sequences is required to improve current possibilities for early cancer
detection and patient follow-up. In this review, we summarised possibilities offered by PNA when
used in combination with biosensing platforms for the sensitive discovery of nucleic acid biomarkers.
Our purpose is to demonstrate how PNA probes used in biosensing can push down the selectivity
and sensitivity of nucleic acid assays. The direct discrimination between closely related nucleic acid
sequences can be achieved using PNA probes also in the presence of large non-target molecules, thus
making available applications in cancer diagnostics.

In this review, we reported an overview of recent advances in the development of PNA-based
biosensors with a particular emphasis on applications dealing with cancer diagnostics. The role
of PNAs, when used in this specific domain, is discussed. Different established optical and
electrochemical biosensors for the detection of clinically relevant DNAs and RNAs greatly benefit from
PNA’s enhanced capability to detect sequences bringing point mutations. Electrochemical biosensors
using PNA probes have been recently used to identify microRNA sequences. Results obtained propose
such biosensors as promising platforms for the development of POC testing.

The combination of PNA probes and biosensors using nanostructured materials has been shown
to improve the detection performances significantly. Most the advanced optical and electrochemical
approaches here discussed take advantage of the neutral charge of PNA and exploit nanostructured
materials to enhance the detected signal. Different biosensing platforms using PNA reaching fM
sensitivity are already available and can identify both miRs as well as mutations in ctDNAs. The direct
use of some of the described platforms on serum or plasma human sample has also been demonstrated.

Future perspectives in the field are linked to the ability to provide the final validation of some
of the already described platforms in the clinical setting to demonstrate their performance under the
most critical conditions.
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