
Optimizing the Individuals Maturation for
Maximizing the Evolutionary Learning

T. Calenda1, A. Vitale2, A. Di Stefano2, V. Cutello1 and M. Pavone1

1 Department of Mathematics and Computer Science
University of Catania

V.le A. Doria 6, I-95125 Catania, Italy
{cutello, mpavone}@dmi.unict.it

2 Department of Electric, Electronics and Computer Science
University of Catania

v.le A. Doria 6, I-95125, Catania

1 Extended Abstract

As it is well known in the natural computing field, one of the major successful fac-
tors in evolutionary algorithms is the design and development of the exploration and
exploitation mechanisms. A good balancing between these two phases is crucial since
it strictly affects the efficiency and robustness of the evolutionary algorithms perfor-
mances. While the aim of the exploration mechanism is to search for new solutions in
new regions by using the mutation operator, the second mechanism has the purpose to
exploit in the best possible way all information gathered using the selection process.
Both phases, hence, help the algorithm in discovering, gaining and learning new in-
formation, and, subsequently, in exploiting all gained promising regions so to generate
better populations.

However, what allows to take advantage of the acquired information is truly given
by how long each individual lives and in doing so influencing the evolution and mat-
uration of the population. Besides, this lifetime affects, also, the exploration phase,
allowing having a better and deep search process. Thus, the time an individual remains
in the population becomes crucial in the performances of any evolutionary algorithm,
and it is strictly related to the good balancing between the exploration and exploitation
processes. Indeed, letting individuals live for a long time produces a dispersive search,
and, then, an unfruitful learning, with the final outcome of increasing the probability to
easily get trapped in local optima due to the low diversity that is generated. On the other
hand, allowing a short lifetime often does not help to have enough overall learning of
the knowledge discovered, and it neither allows a careful search within the solutions
space, producing instead high diversity into the population, which, in turn, negatively
affects the convergence towards a global optimum.

A first research work on this aspect was conducted in [3], where the authors pre-
sented an experimental study whose main aim was to understand the right lifetime of
any individual/solution in order to perform a proper exploration within the search space,
as well as a fair exploitation of the gained information. Such experimental analysis was
conducted on an immunological algorithm, whose core components are the cloning,
hypermutation and aging operators.

2

Table 1. Age assignment options.

Type Symbol Description

0 [0 : 0] age zero

1 [0 : τB] randomly chosen in the range [0 : τB]

2 [0 : (2/3 τB)] randomly in the range [0 : (2/3 τB)]

3 [0 : inherited] randomly in the range [0 : inherited]

4 [0 : (2/3 inherited)] randomly in the range [0 : (2/3 inherited)]

5 inherited or [0 : 0]
inherited; but if constructive mutations occur
then type 0

6 inherited or [0 : τB]
inherited; but if constructive mutations occur
then type 1

7
inherited or inherited; but if constructive mutations occur
[0 : (2/3 τB)] then type 2

8
inherited or inherited; but if constructive mutations occur
[0 : inherited] then type 3

9
inherited or inherited; but if constructive mutations occur
[0 : (2/3 inherited)] then type 4

10 inherited− 1 same age of parents less one

In the cited research work, eleven different options about the lifetime of each indi-
vidual were studied (see table 1), with the main goal to answer the three main questions:
(i) “is the lifespan related to the number of offspring generated?”; (ii) “is the lifespan
related to the population size?”; and in case of negative answer to the two previous
ones, (iii) “how long must the lifespan of an offspring be to carry out a proper explo-
ration?”. Once these questions were answered , an efficiency ranking was produced,
from which clearly emerged that a too short lifetime (parent’s age less 1 - “type10” of
table 1) is always the worst choice; whilst the best 4 are, respectively: “type0;” “type4;”
“type3;” and “type2;”. Thus, following the above described study, in this research work
we want to check if the achievements produced on the immunological algorithm (IA)
are still valid, and work, on a genetic algorithms (GA). Of course, what we do not ex-
pect to get the same efficiency ranking, but rather we would like to check if the top 4
for IA still appear as the top 4 for GA, even if in different ranking order, and, moreover,
if the worst for IA continues to still be the worst for GA.

The tackled Problem: to validate and generalize the obtained results, it is crucial to
develop an algorithm which is not tailored to a specific problem, by keeping it unaware
of any knowledge about the domain. As it is well-known in literature, to tackle and solve
generic and complex combinatorial optimization problems, any evolutionary algorithm
must incorporate local search methodologies, used as refinement and improvement of
the fitness function, and this means that they have to add knowledge about the features
of the problem and application domain. This, consequently, makes the algorithm un-
suitable and inapplicable to any other problem. To overcome this limitation and make
the outcomes as general as possible, in this study we tackle the classic One–Max (or
One–Counting) problem [5, 2] (as done in [3]). One–Max is a well-known toy prob-
lem, used to understand the dynamics and searching ability of a stochastic algorithm

3

[4]. Although it is not of immediate scientific interest, it represents a really useful tool
in order to well understand the main features of the algorithm, for example: what is
the best tuning of the parameters for a given algorithm; which search operator is more
effective in the corresponding search space; how is the convergence speed, or the con-
vergence reliability of a given algorithm; or what variant of the algorithm works better
[1]. It is worth emphasizing that a toy problem gives us a failure bound, because a
failure occurs in toy problems at least as often as it does in more difficult problems.
One-Max is simply defined as the task to maximize the number of 1 of a bit-string x of
length `:

f(x) =
∑̀
i=1

xi,

with xi ∈ {0, 1}. In order to validate our studies and our outcomes we have set ` =
10, 000 in all experiments.

Genetic Algorithm: in this work a classical genetic algorithm has been developed,
which is based on the uniform crossover, and flip mutation operator, where each indi-
vidual has probability Pm = 0.4 to have one randomly chosen bit to be flipped. How-
ever, in order to adapt the GA on this experimental study, to each individual/offspring
we assigned an age that determines its lifetime into the population until it reaches the
maximum age (τB), which is determined by a user-defined parameter. In a nutshell,
each chromosome is allowed to remain for a number of generations determined by the
assigned ageuntil it reaches the value τB . Whenever an offspring is generated, it is is
assigned a given age, chosen from Table 1, which is incremented by 1 at each genera-
tion. Instead, to every individual of the initial population it is always assigned age zero,
regardless of the age assignment chosen. It is important to highlight that in general,
Crossover and Mutation do not affect the age of any individual, except for the 5 − 9
options of the age assignment types, where the assigned age is updated only if its fit-
ness value improves after the performance of the genetic operators. Once the maximum
age allowed is exceeded for a chromosome, this will be removed from the population
via the aging operator, regardless of its fitness function value. However, an exception is
allowed only for the best solution found so far (elitist variant). This variant helps the al-
gorithm keep track of the most promising region - which would otherwise be lost - and
whose exploitation might be useful in solving some specific kinds of problems. The last
operator performed is the selection operator, which identifies the best elements from the
offspring set and the old parents, guaranteeing monotonicity in the evolution dynamics.
Nevertheless, due to the aging operator, it could happen that the number of individuals
which survived (ds) is less than the input population size (d). In this case, the selection
operator randomly generates d− ds new individuals. The age assignment together with
the aging operator, have the purpose to reduce premature convergences, and keep high
diversity into the population. It is worth emphasizing again that the choice of what age
value to assign plays a central role on the performances of the GA designed (and of any
evolutionary algorithm), since, from it, it depends the evolution and maturation of the
solutions. What age to assign is then the focus of this research work.

4

Results and Conclusions: as described above, several experiments have been per-
formed with the main aim to check if the outcomes highlighted and obtained on the
immunological algorithm are still valid on a Genetic Algorithm. If so, this allows us to
give a rough indication on the needed lifetime to a solution to have a proper balancing
between exploration and exploitation in order to maximize the evolutionary learning.
For these experiments we took into account the same experimental protocol used in
[3], but reducing the string length to ` = 2000. Unfortunately, for higher values than
` = 2000 the GA is not able to reach the optimal solution. All age assignment options
in table 1, have been studied varying the population size (pop size = 50, 100) and
τB = 5, 10, 15, 20, 50, 100, 200, fixing as termination criteria Tmax = 105 (maximum
number of fitness function evaluations), and, finally, each experiment was computed
on 100 independent runs. Furthermore, GA was studied in both its variants: elitist and
no elitist.

By analyzing all the results it is possible to assert that the worst age assignment
types on IA continue to be the worst even on GA, and in particular in the last two
positions appear ′′type6′′ and ′′type10′′ respectively. Likely their bad performances are
due to the high diversity they produce, not allowing a relevant lifetime to perform a
good exploration. Moreover, we may also assert that the top 4 options produced by IA,
in most cases, are still in the top 4 of the efficiency ranking produced by GA, although
never in the same order.

References

1. V. Cutello, A. G. De Michele, M. Pavone: “Escaping Local Optima via Parallelization and
Migration”, VI International Workshop on Nature Inspired Cooperative Strategies for Opti-
mization (NICSO), Studies in Computational Intelligence, vol. 512, pp. 141–152, 2013.

2. V. Cutello, G. Narzisi, G. Nicosia, M. Pavone: “Clonal Selection Algorithms: A Comparative
Case Study using Effective Mutation Potentials”, 4th International Conference on Artificial
Immune Systems (ICARIS), LNCS 3627, pp. 13–28, 2005.

3. A. Di Stefano, A. Vitale, V. Cutello, M. Pavone: “Document How long should offspring lifes-
pan be in order to obtain a proper exploration?”, 2016 IEEE Symposium Series on Compu-
tational Intelligence (SSCI), INSPEC number 16670548 2016, pp. 1–8, 2016.

4. A. Prugel-Bennett, A. Rogers: “Modelling Genetic Algorithm Dynamics”, Theoretical Aspects
of Evolutionary Computing, pp. 59-85, 2001.

5. J. D. Schaffer, L. J. Eshelman: “On crossover as an evolutionary viable strategy”, 4th Inter-
national Conference on Genetic Algorithms, pp. 61–68, 1991.

