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Abstract 

Background: Sustainable use of our soils is a key goal for environmental protection. As many ecosystem services are 

supported belowground at different trophic levels by nematodes, soil nematodes are expected to provide objective 

metrics for biological quality to integrate physical and chemical soil variables. Trait measurements of body mass car-

ried out at the individual level can in this way be correlated with environmental properties that influence the perfor-

mance of soil biota.

Results: Soil samples were collected across 200 sites (4 soil types and 5 land-use types resulting in 9 combinations) 

during a long-term monitoring programme in the Netherlands and the functional diversity of nematode communi-

ties was investigated. Using three commonly used functional diversity indices applicable to single traits (Divergence, 

Evenness and Richness), a unified index of overall body-mass distribution is proposed to better illustrate the applica-

tion of functional metrics as a descriptor of land use. Effects of land use and soil chemistry on the functional diver-

sity of nematodes were demonstrated and a combination of environmental factors accounts for the low functional 

value of Scots Pine forest soils in comparison to the high functional value of heathland soils, whereas human factors 

account for the low functional and chemical values of arable fields.

Conclusions: These findings show an unexpected high functional vulnerability of nematodes inhabiting clay-rich 

soils in comparison to sandy soils and support the notion that soil C:N ratio is a major driver of biodiversity. The higher 

the C:N ratio, the higher the overall diversity, as soil nematodes cope better with nutrient-poor agroecosystems under 

less intense fertilization. A trait-based way focusing on size distribution of nematodes is proposed to maintain envi-

ronmental health by monitoring the overall diversity in soil biota, keeping agriculture and forestry sustainable.

Keywords: Body-mass distribution, Functional Divergence, Functional Evenness, Functional Richness, Overall 

diversity
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Background

Preserving our thin soil is an important element in envi-

ronmental policy, but the lack of a consensus on meth-

odological criteria regarding sampling protocols and soil 

bioindicators is of concern. Will we ever be able to recog-

nize good conditions for soils, and define the stable state 

of this important, non-renewable part of our ecosystems? 

Soil chemistry and management practices are known to 

impact tiny soil invertebrates. For instance, the environ-

mental availability of key soil nutrients and the increas-

ing liming of cultivated soils have important effects on 

detrital food webs and recent studies show that larger-

bodied invertebrates are more sensitive to environmental 

changes than smaller-bodied invertebrates [1, 2]. As sup-

porting ecosystem services are converging on soil faunal 

activity within multiple trophic levels, tiny invertebrates 

like free-living nematodes can play a major role, making 

them valuable proxies for belowground ecological pro-

cesses [3–5].
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Nematodes are among the most frequently used bioin-

dicators due to their occurrence at multiple trophic levels 

of the detrital food web, their wide range of sensitivities 

towards external disturbances, and their easy extract-

ability from the soil. Hence their taxonomy and life his-

tory has been widely used for functional analyses [3, 4], 

although body-mass investigations at the community 

level are almost lacking. The few existing body-mass 

analyses in nematology were conducted either by collect-

ing average traits per species from the scientific literature 

[5] or by following cohorts in the laboratory during their 

entire development [6]. But, although detrital food webs 

are less size-structured than aquatic webs, because large, 

isolated nematodes can be easily attacked by smaller 

organisms [7], measurements of the functional diversity 

of soil nematodes based on their site-specific body-mass 
distribution are entirely missing.

This is rather surprising, as the size of organisms (M) 

is widely recognized as the best sole predictor in allo-

metric models and plays a dominant role in the delivery 

of ecosystem services (soil heterotrophs are regarded as 

ecosystem engineers because they are both motors and 

moderators of environmental changes). Exergy (the work 

a system can perform when at equilibrium [8]) can be 

derived from the body-mass distribution of the species. 

In addition, a functional trait like M, which is so strongly 

correlated with the environment, can be seen as the low-

est common denominator among ecological and evo-

lutionary processes, providing a way to mechanistically 

understand species responses to environmental change.

This global model is likely to hold for the soil nemato-

fauna as well, although this is not well known due the 

lack of knowledge on site-specific body-mass distribu-
tions. In 2004, Mike Kaspari already questioned for soil 

invertebrates: “But why should M vary from place to 
place?” [9] and indeed recent evidence shows that the 

body-mass averages of soil invertebrates strongly change 

from place to place according to local soil chemistry [2, 

10], following the environmental-driven principles of 

ecological stoichiometry [1, 10] and cascading resource-

consumer effects with increased land management [1, 11, 

12]. However, most efforts focus on aboveground organ-

isms and the investigation of nematodes remains uncom-

mon. Belowground, too many studies start with soil 

mesofauna (mites, collembolans, enchytraeids), ending 

with either macrofauna or megafauna but omitting the 

microfauna (amoebas, ciliates, flagellates, rotifers, nema-

todes) and sometimes even the microflora (fungi, bac-

teria). For instance, in Ernest et al. [13] only one protist 

species was considered, and the research papers on traits 

in soil ecology reviewed by Pey et  al. [12] address col-

lembolans (mesofauna) or earthworms (macrofauna), but 

not nematodes. This means that functional trait studies 

remain rare in nematology, as compared to microbiology, 

botany or entomology.

A theoretical framework for effect and response traits 

was introduced by Lavorel et al. [14] and was extended by 

Enquist et al. [15] who make the prediction that: “Shifts 
in the environment will cause shifts in the trait distribu-
tion”. Many successful efforts have been made to predict 

the global distribution of functional traits for vascular 

plants [14–17]. Again, in the case of heterotrophs com-

parable site-specific efforts ranging from microflora up to 

macrofauna are restricted to few reference locations [18] 

and although valuable trait databases are being produced 

(David Russell, pers. comm.), most collect and provide 

species-specific average traits, not site-specific indi-

vidual-based traits. These databases, which encompass 

ecosystem services and environmental information (e.g. 

http://www.naturalcapitalproject.org) up to biodiversity 

(http://www.issg.org/database, http://www.edaphobase.

org), with plenty of specialized species and trait reposito-

ries like those for fishes, birds and vascular plants (http://

www.fishbase.org, http://ebird.org, http://www.try-db.

org, respectively), are suitable for macroecological pur-

poses but are often unsuitable to assess local functional 

diversity in response to environmental drivers.

Single traits, like the individual-based body-mass val-

ues, can provide promising opportunities to derive the 

functional diversities of communities of autrotrophs such 

as algae [19] or heterotrophs such as nematodes. It is in 

fact likely that nematodes will reflect soil quality, but this 

may depend on scale. At a larger spatial scales, complex 

landscapes like agroecosystems are often characterized by 

a high level of immigration from (semi)natural habitats at 

the border of managed systems [2, 11, 20], explaining the 

high aboveground biodiversity observed in fragmented 

landscapes around organic farms [21, 22]. According to 

us, such an ecological process makes the taxon-free analy-

sis of several site-specific distributions of one single func-

tional trait even more relevant to explain and predict the 

functioning of ecosystems under pressure.

Next to agricultural pressure, soil systems may face a 

wide range of other stress factors, e.g. desiccation, acidi-

fication, eutrophication, climate change, and habitat frag-

mentation. We expect that the recognition of functional 

regularities at small scales must be possible in soils, as all 

living organisms, including nematodes, obey trait-driven 

power laws. Hence, we aim to assess functional diversity 

for 200 soil nematode assemblages, sampled in both man-

aged and unmanaged ecosystems across the Netherlands. 

Our goals here are to: (1) to visualize the abiotic differ-

ences among the 200 investigated sites using multivari-

ate analysis, (2) to correlate the body-mass distribution 

of the nematodes with the environmental parameters 

of the sites, and (3) to predict the influence of separate 
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environmental drivers on the body-mass distribution of 

sampled nematodes with Generalized Linear Models.

Data and brief methods

Functional diversity is mostly seen as the variation in 

multiple ecologically important traits [23]. However one 

single trait, body mass, already provides a huge amount 

of information, as energy acquisition and energy use scale 

with body mass M [1, 2]. Such a trait-based framework 

can then be applied to agrobiodiversity using individual 

measurements of soil invertebrates. The body mass of 

nematodes is expected to be one of the most appropriate 

continuous traits related at the same time to behaviour 

and to environmental conditions. The majority of data 

was compiled from pre-existing data sets contributed to 

the Netherlands Soil Monitoring Network [24, 25], sup-

plemented by one databank [26] and a small number of 

unpublished allometric data sets. In each agroecosystem, 

the size (length and width) of approximately 150 identi-

fied nematodes was measured to the nearest 1 μm with 

an eyepiece micrometer to compute their weight (body 

mass) with a volumetric function.

As a large number of functional diversity indices have 

been devised, the most widely used approach has been 

chosen, i.e. to apply the overall definition of functional 

diversity as recommended by Mason et al. [27]. This takes 

into account the three primary components of functional 

diversity (Divergence, Evenness, and Richness: full statis-

tical explanation at the end of this paper in “Methods”—

“Statistics” section). Based upon these functional 

components, trait-based metrics (sensu Villéger et  al. 

[28]) were derived from all the 29,552 nematode indi-

viduals recorded in 200 soil systems (Fig. 1). The result-

ing components of functional diversity and the unifying 

average of these indices (introduced as overall body-mass 

distribution, hereafter BMD) were compared to local soil 

chemistry (pH, carbon, nitrogen and phosphorus con-

tents, and molar nutrient ratios) over different environ-

mental categories (4 soil types and 3 main management 

regimes: Fig. 2a, b, respectively) in an attempt to provide 

an indicator of soil quality and ecosystem functioning.

Results

At the community level, we focused on three functional 

diversity indices: Divergence, Evenness and Richness 

(Fig. 3). The body-mass distribution for most taxa is far 

from unimodal and 89.6% of the nematode taxa exhibit a 

positively-skewed leptokurtic distribution. The commu-

nity trait distribution closely mirrors soil environmental 

conditions. The trait-distribution of the nematofauna 

shows that these invertebrates are highly sensitive 

to shifts in the soil C:N ratio (Table  1) and to different 

management practices (always a significant factor in the 

Tukey’s Studentized Range test). There were significant 

differences between the sites in soil acidity and macronu-

trients. The coefficient of variation of nitrogen concentra-

tion was the highest (94.9%), followed by carbon (89.8%) 

and phosphorus (65.6%), while the coefficient of vari-

ation for molar ratios was the highest for C:P (134.1%), 

followed by N:P (87.6%) and C:N (34%). The latter result 

is remarkable, as despite its rather low coefficient of vari-

ation, the C:N ratio is an important driver of functional 

diversity metrics (Table 1). 

We found in fact that soil C:N ratio was positively 

related to all functional diversity indices, and hence to 

their average (Table  1), indicating that in soils that are 

nutrient-poor, either due to a lack of fertilization or due 

to relatively low atmospheric N-deposition, the overall 

size of nematodes was the lowest and the correlation of 

functional metrics with soil abiotics was the highest. This 

observation implies that nematodes in soils with lower 

C:N ratios are much more diverse in body size, due to 

a larger range and larger spacing in body sizes between 

coexisting soil nematodes, with unfilled bins close to 

highly-filled bins. Obviously this statistical finding 

immediately raises the question: with increasing nitro-

gen availability (lower C:N and higher N:P ratios), do 

the phenologically-larger nematodes become less abun-

dant or smaller, or do the phenologically-smaller nema-

todes become more abundant or bigger? The very low 

Divergence values (Table 2) seem to suggest a structural 

homogeneity of the body-mass distribution in soil biota, 

but even these small changes should not to be underesti-

mated (see next paragraph).

A Generalized Linear Model (GLM) with Stepwise 

Selection (implemented forward selection technique) 

was used to determine the response of overall body-mass 

distribution (BMD) to the three functional diversity indi-

ces (Divergence, Evenness, and Richness). This Stepwise 

GLM shows that Divergence was the best single predic-

tor of overall BMD (it explains 83.08% of the variation 

in BMD), followed by Evenness (11.04%) and finally by 

Richness (5.88%) (Fig. 4). All functional diversity indices 

were highly predictable by GLMs running on soil abiot-

ics (Divergence, Richness and BMD p < 0.0001, Evenness 

p = 0.006).

Another stepwise GLM of the BMD, this time as pre-

dicted by soil abiotics (pH, C, N, P, C:N, C:P and N:P), 

shows soil acidity and the molar ratios as the most 

robust predictors, with C:N ratio having the most sig-

nificant effect on M (p < 0.0001), closely followed by C:P 

(p = 0.0002), pH (p = 0.0215) and N:P (p = 0.0213). Inde-

pendent GLMs show that only C:N, N:P and pH met the 

significance level for stepwise entry into the models fore-

casting Divergence (p < 0.0001 for both C:N and N:P and 

0.0008 for pH), Evenness (p < 0.0001, 0.1394 and 0.0374) 
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or Richness (p  <  0.0001, 0.0061 and 0.0007), hence soil 

abiotic variables are important in structuring the entire 

body-mass distribution of the soil nematofauna.

There is also a major difference between the functional 

diversity of the nematodes in sandy vs. clay-rich soils 

and across natural sites, with heathland nematofauna 

having much higher diversity than forest nematofauna 

(Table 2; Additional file 1). Multiple aspects of the func-

tional diversity of nematodes show that nematodes in 

clay soils are functionally less diverse than nematodes in 

sandy soils. This observation can be ascribed to different 

soil structures (less communicating water biofilm inhab-

ited by nematodes in sandy soils) and management prac-

tices (many more pesticides on clay-rich soils according 

to the Dutch Central Bureau of Statistics, http://www.

cbs.nl). This means that soil pore space and abundance 

of nematodes may play key roles in defining the overall 

body-mass distribution. A different soil structure does 

Fig. 1 Spatial distribution of the investigated soils across the Netherlands: 118 sites were sampled on sand (circles, Podzols with creamy back-

ground), 41 on clay (inverted triangles, Fluvisols and Cambisols with greenish background), 29 on peat (squares, Histosols with purple background) 

and 12 on Loess (upper triangles, Luvisols with reddish background, locations too close to each other to be plotted separately). Please compare the 

geographical locations of the sites in this map with their Euclidean locations in Fig. 2, upper panel (a)
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Fig. 2 Principal component analysis (PCA) of the (log-transformed) environmental variables (soil pH, C, N, P, C:N, C:P and N:P) of the investigated 

sites. Rotated varimax plot(s) visualized in a multifunctional space for the first principal component by the loadings pH, C:N, N:P and C:P (52.29%) 

and for the second principal component by the loadings C and N (37.49%). These elemental factors are closely correlated with soil types (a ANOVA 

F-ratios 237.77 for C and 259.24 for N, both p < 0.0001), with the average P concentration of Loess and sand 2-times less than in peat, the N concen-

tration 4-times less, and the C concentration 6-times less. The ANOVA also exhibits the expected correlation between pH and ecosystems (b F-ratio 

83.21, p < 0.0001), as in the Netherlands woody nature is occurring on acidic soils. Photo credits: Christian Mulder, Ton Schouten, Arthur de Groot 

and Bert van Dijk (RIVM)
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this by limiting movements and access of larger-sized 

predatory nematodes to their prey, as well as by sup-

plying space acting as refuges for the resting life-stages 

called Dauerlarvae.

Discussion

Using traits like body mass is an established method of 

great interest to numerical ecologists [29, 30]. Nema-

tode community indices based on species-specific 

properties have been widely utilized to evaluate soils 

[3–5, 31–33], but to our knowledge this is the first 

study that derives nematode community indices from 

body mass without taking either the identity or the 

life-stage of single individuals into account. As these 

functional indices were derived from the same trait, 

they are correlated with each other, resulting in a con-

strained trait volume.

Soil faunal activity is important to understand because 

it is a key driver of supporting ecosystem services. Body 

mass of nematodes may be an appropriate continuous 

Fig. 3 Location and variation of either species or assemblages can be visualized within a three-dimensional trait space, where in the case of species 

the dimensions are provided by traits and in the case of assemblages (this study) the dimensions are provided by trait-based indices. There are thus 

three functional components in the multidimensional space of a trait distribution (here, two nematode communities labeled as A and B for simplic-

ity) at any given location. Evenness quantifies the regularity in the body-mass distribution of the individual nematodes in their functional spaces 

(nematofauna A or B); Richness quantifies the functional space occupied by the same individual nematodes with their body-mass values; Divergence 

is the degree to which the abundance in functional space of individual nematodes belonging to either nematofauna A or B is distributed towards 

the tails of a weight range
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trait to quantify their activity and functional effects [e.g., 

33–35]. Functional indices based on one easily measur-

able but essential soft trait like body mass are useful and 

cost effective because they have a solid ecological under-

pinning and are not influenced by differing taxonomical 

knowledge across laboratories. Functional diversity indi-

ces will facilitate direct comparisons across ecosystems 

and between countries: there are several direct applica-

tions that we are going to address separately.

Spatial representativity
Agricultural land occupies by far the largest part of the 

Netherlands, with pastures being the dominant land-use 

type. Other forms of land use, like forests, occupy < 10% 

of the rural area. The major soil types are sandy soils, 

50.1%, clay-rich soils, 35.7%, peaty soils, 10.6%, and only 

1.6% Loess [35]. The distribution of ecosystem types mir-

rors the high diversity of management in the centre and 

east of the Netherlands (Fig. 1), with 53.9% of investigated 

sites on sandy soils, 23.0% on clay-rich soils, 16.3% on peat 

and 6.7% on Loess. Yeates [34] already stated that diversity 

within functional groups “may be the key to understand-
ing the global impacts of agricultural productions systems 
on nematode diversity”. Soil biodiversity loss after land 

conversion has been successfully predicted [11, 36]. For 

instance, during land-use intensification, tillage can dam-

age nematodes mechanically [37], disrupting soil texture 

and hence reducing Divergence and Evenness as shown 

here. Hence, the functional diversity of nematodes in clay-

rich soils, where an intensive tillage regime and frequent 

pesticide applications are common practices, is more 

affected by agricultural practices than in the case of the 

nematofauna in sandy soils. In other words, nematodes in 

clay-rich soils are functionally less diverse, possibly mak-

ing their detrital food webs less resilient to environmental 

shifts than for most agroecosystems on sand (Additional 

file  1). Moreover, if P is less susceptible to runoff when 

accumulated in larger aggregates [38], slower nematode 

movement in fine-textured clay would increase the isola-

tion among local populations [39], resulting in a mismatch 

in the Divergence of exploited and compacted soils.

Organic matter
Organic matter is one of the most widely investigated 

factors in agroecology as it influences soil water-stable 

aggregation during crop residue decomposition. Dutch 

arable fields are poor in organic matter, with 65.9% of 

them having less than 2% soil carbon, a threshold value 

for erosion. However, although it is well known that 

decomposition rate responds to rising temperature, 

nitrogen enrichment and higher atmospheric  CO2 lev-

els [40, 41], current models were too often unable to 

capture essential aspects of the impacts of nitrogen 

Table 1 Environmental-driven functional trends (Diver-

gence, FD, Evenness, FE, Richness, FR, and overall body-

mass distribution, BMD) for positive or negative Pearson’s 

correlation coefficients (upper lines, italics) and signifi-

cances (n = 200, Prob > |r|, lower lines) for the body-mass 

distribution of nematodes and soil abiotics (pH, carbon, 

nitrogen and phosphorus)

The term ‘neutral’ was used for all the statistically not significant correlations

FD FE FR BMD

pH Negative Negative Neutral Negative

0.005 0.008 0.414 0.040

C Neutral Neutral Neutral Neutral

0.852 0.641 0.803 0.915

N Neutral Neutral Neutral Neutral

0.398 0.722 0.300 0.401

P Neutral Neutral Neutral Neutral

0.327 0.410 0.646 0.438

C:N Positive Positive Positive Positive

<0.0001 <0.0001 0.009 <0.0001

C:P Neutral Positive Neutral Neutral

0.057 0.016 0.322 0.395

N:P Neutral Neutral Negative Neutral

0.911 0.390 0.006 0.289

Table 2 Nematode body-mass metrics (Divergence, FD, 

Evenness, FE, Richness, FR, and Overall Body-Mass Dis-

tribution, BMD) for the nine investigated ecosystem 

types (standard deviation in brackets) ranked accord-

ing to increasing BMD mean values: Italics for all indices 

below (above) the first (third) quartile, underline for all 

indices above the national average (n = 200)

FD FE FR BMD (%)

Scots pine forests 0.024 0.625 0.410 35.3

 (± 0.008)  (± 0.080)  (± 0.044)  (± 3.5)

Arable fields on clay 0.024 0.626 0.432 36.1

 (± 0.005)  (± 0.066)  (± 0.029)  (± 2.8)

Dairy grasslands on clay 0.032 0.629 0.476 37.9

 (± 0.010)  (± 0.052)  (± 0.055)  (± 2.3)

Arable fields on sand 0.027 0.650 0.464 38.0

 (± 0.009)  (± 0.067)  (± 0.056)  (± 2.9)

Arable fields on Loess 0.031 0.632 0.487 38.3

 (± 0.007)  (± 0.046)  (± 0.047)  (± 1.8)

Dairy grasslands on peat 0.033 0.664 0.486 39.4

 (± 0.011)  (± 0.050)  (± 0.055)  (± 2.1)

Dairy grasslands on sand 0.034 0.658 0.501 39.7

 (± 0.009)  (± 0.043)  (± 0.051)  (± 1.8)

Dry heathlands on sand 0.049 0.713 0.520 42.7

 (± 0.009)  (± 0.037)  (± 0.037)  (± 1.5)

Organic farms on sand 0.048 0.705 0.561 43.8

 (± 0.010)  (± 0.037)  (± 0.050)  (± 1.5)
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on soil carbon storage [42]. With climate change, for 

instance, observed effects of warming on soil C stocks 

are variable across sites, with either positive or nega-

tive impacts possible [43], and carbon flux is known to 

be rapid [44]. This variation in effects can be ascribed in 

part to soil priming [45–47] and contributes to one of 

the main pitfalls of climate scenarios: they are based on 

short-term responses of soil respiration and mostly do 

not account for responses of soil invertebrates. Chertov 

et  al. [48] made an attempt to quantify the active con-

tribution of soil micro- and mesofauna to the formation 

of organic matter, might be improved from a functional, 

trait-driven perspective. Assessing invertebrates active 

in slowly-decomposing recalcitrant organic matter, like 

our nematodes, quantifies carbon sequestration and may 

allow better estimates of soil C budgets and greenhouse 

gas emissions.

Methane release
Saunois et  al. [49] show that the agricultural sector in 

Europe is the number one contributor to the human-

induced increase in global methane emission, with the 

majority of the annual methane emissions between 2003 

and 2012 coming from the “agriculture and waste” emis-

sion category. Previous estimates showed that a rapid 

increase in livestock numbers is a driver of worldwide 

agricultural changes, with a total contribution of 15% 

methane by ruminants [50]. This anthropogenic trend is 

Fig. 4 3D-scatter of the multidimensional functional space of the body-mass dispersion of the nematodes occurring in our 200 soils. The three 

indices (axes x, y and z) provide together a common currency that closely mirrors environmental filtering and hence enables to assess the overall 

diversity of soil systems at farm level (each single point) and at categorical level (each management practice is functionally grouped in the niche 

space of the nematode traits). The body-mass dispersion of nematodes in their site-specific functional space can be assessed through the trait 

volume of the minimum convex hull that includes all communities
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recognizable belowground as well, as most soil nematode 

taxa rapidly disappear with increasing enteric fermen-

tation by cattle [35]. Lower nematode species richness 

under high livestock density may explain the higher 

Divergence in grazed ecosystems. Since methane produc-

tion is dependent on labile C pools and as the decompo-

sition of such labile pools in soils produces both  CH4 and 

 CO2, methane emission and manure may alter the carbon 

cycle. When litter reaches the soil, decomposition con-

verts only part of the litter C into  CO2 and most of the 

litter C into pools of different longevities [51]. Hence, the 

balance between microbes and nematodes, specifically 

between rapidly-decomposing bacterial cells and bacte-

rial grazers and slowly-decomposing fungal remains and 

fungal grazers [52, 53], a balance so relevant for many 

beneficial species that outweigh pests and pathogens, is 

likely to be altered with high addition of cattle manure.

Nutrient turnover
Our results show clear differences in overall functional 

diversity of soil nematodes depending on the land use 

type. Diversity was highest on organic farms and heath-

lands grazed by sheep (both ecosystem types with only 

organic fertilizers sharing the highest functional quality), 

followed by all other agroecosystems (each of them with 

either organic and mineral fertilizers or only with mineral 

fertilizers as for arable fields) and finally Scots Pine forest 

(no addition of nutrients at all and the lowest functional 

quality of the nematofauna: Additional file  1). Chertov 

[54] assumes that nutrient turnover and C:N:P stoichio-

metric relationships can be mediated by soil biota [53, 

55], for instance by their necromass. This will be par-

ticularly true for phosphorus. As biologically-available P 

is thought to increase with the soil pH [1], water balance 

and liming, reflecting a globally challenging  Ca2+ sup-

ply rate [56], might enhance the numerical density of soil 

nematodes.

Quality assessment
In the short term, we might expect a reliable taxon-free 

automation in the trait estimation of soil nematodes with 

flow-cytometric analysis, but meanwhile the trait esti-

mation has to been done by light microscopy. Traits can 

be used to evaluate ecosystems according to their eco-

logical potential. The three resulting functional indices 

can be expressed in percentages and their multi-layered 

average (BMD) clearly shows that in the Netherlands (i) 

organic farming is a sustainable land use, (ii) arable fields 

are exploited soil systems, (iii) productive agroecosys-

tems on clay-rich soils are of lower functional diversity, 

and (iv) natural sites on the same soil type (acidic sand) 

can behave in opposite ways according to the tree can-

opy, with the overall functional diversity of nematodes in 

open canopy heath lands much higher than the overall 

functional diversity of close canopy forests. Functional 

metrics provides the tool to assess the quality of soil 

functions and enable to investigate and manage properly 

the Pandora’s Box beneath us all.

Conclusions

According to West and Brown [57], scaling of body mass 

is a potent tool in any physical system, from molecules 

up to forests. For them, the starting point for allomet-

ric analysis was to recognize that complex structures 

require close integration [57]. This makes a more wide-

spread use of body-mass distribution almost imperative 

for revealing some trends in soil functions, like nutrient 

cycling. Negative environmental developments, such as 

rapid human growth, increasing land use intensification 

and climate change, support the scenario that some soil 

systems might become unsustainable. It is therefore sur-

prising that a comparable attempt to quantify functional 

components for soil nematodes has not been done yet, as 

the trait ‘body mass’ underpins the growth and dynam-

ics—and hence the sustainability—of living organisms 

and the systems they belong to [57, 58]. For instance, 

functional trait theory has been applied in management 

decision-making processes and as a means of preserving 

some urban services in twenty-first century cityscapes, 

as exemplified in future planning schemes [cf. 58]. Not-

withstanding a high diversity of free-living nematodes, 

their individual body-mass values provide precious infor-

mation on the complex structure of soil systems. Hence, 

from a trait-based perspective our unified evidence might 

have comparable implications for decision-making pro-

cesses on the surveillance and forecasting of effects due 

to agricultural intensification and global changes. The 

most remarkable results are that it is not the nutrient 

concentration that matters, but the ratios between soil 

macronutrients, and that the functional resilience of clay-

rich soils is more endangered by agricultural practices 

than the functional resilience of managed sandy soils. 

Intensive management practices at the farm level will 

have global implications as well. Aside from the ongo-

ing concern about declining biodiversity and the pri-

mary losses of crop landraces, we are facing a new kind 

of genetic erosion, this time of soil functions, a loss that 

must be addressed in situ with a much more sustainable 

agriculture.

Methods

Study area
Soil biota from 200 sites across the Netherlands were 

sampled during the period 2004–2009 (Fig.  1). Investi-

gated ecosystems were either cultivated (organic farms, 

dairy grasslands, or arable fields) or unmanaged (Pinus 
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sylvestris forests or Calluna vulgaris heathlands). Agroe-

cosystems can be ranked qualitatively according to recent 

management regime into three categories: low-pressure 

(28 organic grassland farms), middle-pressure (106 dairy 

grasslands, mostly conventional), and high-pressure (44 

arable fields). Due to the lack of agroforestry, Scots Pine 

forests (n = 12) can be regarded as no-pressure lands and 

are, like dry heathlands (n = 10), typical examples of pro-

tected nature areas in the Netherlands. The data set used 

here contains the following ecosystem types: arable fields 

on clay, arable fields on sand, arable fields on Loess, dairy 

grasslands on clay, dairy grasslands on peat, dairy grass-

lands on sand, dry heathlands on sand, organic farms on 

sand, and pine forests on sand.

All arable fields were winter farms, i.e. lands not cul-

tivated or grazed at the time of sampling, including 

multi-cropping, intercropping, crop rotation, and alley 

cropping. Organic and biodynamic farming techniques 

were used on certified organic farms, often together with 

agronomic practices to enhance nitrogen fixation by clo-

vers. Compost and farmyard manure were used for ferti-

lization in organic farms, and no biocides were employed, 

in contrast to other management regimes. There biocides 

were used, as in conventional farms, where mineral fer-

tilizers were used to compensate for the smaller amount 

of farmyard manure, and in (semi)intensive farms, where 

both organic and mineral fertilizers were used. Fertilizer 

use information was gathered through farmer interviews 

during the field sampling, and supplemented by monitor-

ing data.

Relationships between soil nematode communities and 

the relative soil pH values (pH in  H2O) and molar ratios 

carbon to nitrogen (C:N), carbon to phosphorus (C:P), 

and nitrogen to phosphorus (N:P) were investigated. The 

pH value was obtained using a de-ionized 4:1 water:soil 

vol/vol ratio, the C content was derived from the fresh 

soil organic matter after oven-combustion at 550 °C using 

pedotransfer factors, the N content was determined by a 

titrimetric method after Kjeldahl destruction and the P 

content by automated ion analyser after sample digestion.

In each agroecosystem, one bulk sample was pro-

duced from 320 cores (ø 2.3 × 10 cm) randomly distrib-

uted across the investigated site. The bulk of 500  g soil 

was kept in glass containers and stored at 4  °C prior to 

extraction. The nematode extraction from 100  g of soil 

was performed using the Oostenbrink method (a stand-

ard technique widely accepted in nematology for mor-

phological and taxonomical purposes, even for molecular 

analysis; see [59, 60] for a methodological discussion). All 

the individual nematodes within two clean 10  ml water 

suspensions were screened and approximately 150 ran-

domly-chosen specimens per site were identified under 

a light microscope (Table 3). All these 29,552 specimens 

were measured to the nearest 1  μm with an eyepiece 

micrometer for the traits: individual length, individual 

width, and individual fresh weight [26]. The latter fresh 

weight was derived at the individual level with a volu-

metric function based on the cylindrical morphology of 

elongate nematodes, and converted to dry body mass 

using a weight ratio of 0.20 [61]. For each sampling site, 

the trait distribution was derived from site-specific indi-

vidual masses by discretizing them into equal mass bins 

and estimating the total mass of each class. Individuals 

were allocated to mass bins of width 0.0029, estimated as 

h = (3.5 × SD)/
√
n, where h is the class width and n the 

total number of observations [62].

Verification
Every specimen from a site-specific survey was com-

pared to pre-existing records for other agroecosystems, 

i.e. comparable soil types and ecosystem types, to insure 

that errors had not been made in the measurements of 

nematode traits. Soil abiotic predictors were compared 

with existing GIS values and data were periodically spot 

checked by people using the database who found oddi-

ties or outliers. Questions regarding particular records 

were answered by referring to the original datasheets. 

Greatest care was taken to detect incorrect taxonomical 

identification and wrong body size measurements. Dur-

ing the entire process, random checking of taxa and traits 

(from misspelling to identification) was performed on a 

regular basis. Dubious taxa recorded only once as single 

specimen, like the marine Daptonema, were removed 

from our data set (Table 3). In addition, in EXCEL 2007 

the function “Data: Remove Duplicates” was applied to 

remove double entries. Corrections were made based 

on original datasheets or notes. Information outside the 

norms (e.g. stake numbers that do not exist, undocu-

mented 5-digit species codes, body sizes (body masses) 

either too short (small) or too long (large) for the identi-

fied taxon) was systematically checked and compared to 

the original data forms filled in at the Dutch Agriculture 

and Horticulture Laboratory (scanned as PDF files) and 

all ACCESS XP and EXCEL 2007 datasheets.

Statistics
As functional diversity cannot be summarized by one sin-

gle number, even if computed for a single functional trait, 

a framework composed of three independent compo-

nents (Divergence, Evenness, and Richness) has become 

widely used [27, 28]. These three separate functional 

diversity indices were computed in R (version 3.3.3, cran.

xl-mirror.nl) as follows:

a. Functional Divergence of trait-level distribution (FD) 

quantifies how much of a body-mass distribution in 
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a functional space maximises the divergence among 

traits in assemblage i [27, 63]. The FD in an assem-

blage (Fig.  3) is based on an abundance-weighted 

sum of squares analogous to a log-transformed vari-

ance with the formula:FD = 2
π
arctan(5V ), with 

V = ∑
n

i=1

[
(lnCi − lnC)2× Ai] where Ci is the 

character value of the category body size for the ith 

body-mass class, Ai the proportional abundance of 

the ith body-mass value for the (dry weight) classes 

in the trait distribution of nematodes, and lnC  the 

abundance-weighted mean of the natural logarithm 

of body-mass values for the categorical classes [27]. 

This index is constrained by the factor 2⁄π between 0 

and 1, with 1 for a complete functional divergence.

b. Functional Evenness of trait-level distribution (FE) 

describes how the extent to which abundance is 

equally distributed in the functional space in assem-

blage i [63, 64]. Several evenness indices have been 

proposed [64–66], like the recently introduced “Trait 

Even Distribution” [67]. Here, we have selected the 

most established functional diversity index, where 

FE represents the degree to which the body mass of 

the nematofauna is evenly distributed along the mass 

spectrum (Fig. 3). Evenness was applied to the total 

mass in each bin with the formula:

where n is the total number of mass bins and xi the 

total mass of the ith mass bin. Also FE has the advan-

tage that it varies between 0 and 1 (with 1 for a com-

plete functional evenness) and to discriminate assem-

blages with statistical robustness [27, 64–66].

FE = 1 − 2

π
arctan

⎡
⎢⎣ n∑
s1=1

⎛
⎝ln

(
xs1

)
−

n∑
s2=1

(
ln

(
xs2

)/
n
)⎞⎠

2/
n

⎤
⎥⎦

Table 3 List of the investigated nematode taxa

Achromadora sp. Dorylaimoides sp. Plectus sp.

Acrobeles sp. Ecumenicus mono-

hystera

P. acuminatus

A. ciliatus Epidorylaimus sp. P. armatus

A. complexus E. agilis P. cirratus

A. mariannae E. lugdunensis P. elongatus

Acrobeloides sp. Eucephalobus sp. P. longicaudatus

A. nanus E. mucronatus P. parietinus

Aglenchus sp. E. oxyuroides P. parvus

A. agricola E. striatus P. pusillus

Alaimus sp. Eudorylaimus sp. P. rhizophilus

A. meyli E. centrocercus Pleurotylenchus sp.

A. primitivus Eumonhystera sp. Pratylenchus sp.

Amphidelus sp. E. vulgaris P. crenatus

Amplimerlinius sp. Filenchus sp. P. fallax

A. caroli F. vulgaris P. neglectus

A. icarus Helicotylenchus sp. P. penetrans

Anaplectus sp. H. pseudorobustus P. thornei

A. grandepapillatus H. varicaudatus P. vulnus

A. granulosus Hemicycliophora sp. Prionchulus punctatus

Anatonchus sp. Heterocephalobus sp. Prismatolaimus sp.

A. tridentatus H. elongatus P. dolichurus

Aphelenchoides sp. Heterodera sp. P. intermedius

A. bicaudatus Hoplolaimidae Prodorylaimus sp.

A. blastophthorus Longidorus sp. P. acris

A. composticola L. elongatus Psilenchus

Aphelenchus sp. Malenchus sp. P. hilarulus

A. avenae M. acarayensis Pungentus sp.

Aporcelaimellus sp. M. andrassyi P. alpinus

A. obtusicaudatus M. bryophilus P. silvestris

A. paraobtusicaudatus Meloidogyne sp. Qudsianematidae

A. simplex M. chitwoodi Quinisulcius sp.

Bastiania sp. M. hapla Rhabditidae

Bitylenchus dubius M. naasi Rotylenchus sp.

B. maximus Mesodorylaimus sp. R. buxophilus

Boleodorus thylactus M. aberrans R. goodeyi

Bunonema sp. M. bastiani R. robustus

B. reticulatum M. derni Seinura sp.

Cephalobidae M. spengelii Teratocephalus sp.

Cephalobus sp. Metateratocephalus sp. T. costatus

C. persegnis M. crassidens T. tenuis

Cervidellus sp. Monhysteridae Theristus agilis

C. serratus Mononchidae Thonus sp.

C. vexilliger Mononchus sp. T. circulifer

Chiloplacus sp. M. aquaticus Thornenematidae

C. bisexualis M. truncatus Thornia propinqua

Chromadoridae Mylonchulus sp. Trichodorus sp.

Chronogaster sp. Neodiplogasteridae T. primitivus

Clarkus sp. Nordiidae T. similis

C. papillatus Odontolaimus chlorurus Tripyla sp.

Coslenchus sp. Panagrolaimus sp. T. cornuta

Table 3 continued

C. costatus P. detritophagus T. filicaudata

Criconematidae P. rigidus Trophurus sp.

Cuticularia sp. Paramphidelus sp. Tylenchidae

Dauerlarvae P. hortensis Tylencholaimus sp.

Diphtherophora sp. Paratrichodorus sp. T. crassus

D. obesa P. pachydermus Tylenchorhynchus sp.

Diploscapter coronatus P. teres T. striatus

Discolaimus sp. Paratylenchus sp. Tylenchus sp.

Ditylenchus sp. P. bukowinensis T. arcuatus

D. myceliophagus P. microdorus T. elegans

Dolichodoridae P. nanus Tylolaimophorus 

typicus

Dolichorhynchus sp. P. projectus Wilsonema sp.

D. lamelliferus P. tateae W. otophorum

Dorydorella bryophila Xiphinema sp.

Dorylaimellus sp. X. diversicaudatum
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c. Functional Richness of trait-level distribution (FR) 

represents the functional space FSi filled by any nem-

atode assemblage i (Fig. 3) with the formula:

where R is the absolute range of the functional trait 

[27, 63]. For each of the sites, FR was calculated as the 

ratio (0  <  FR  <  1) between the mass spectrum filled 

by the nematofauna within its assemblage and the 

cumulative mass spectrum calculated over all 29,552 

records [26], with 1 for a completely filled range. 

Hence, FR was calculated as a one-dimensional index 

for the body-mass distribution of all species [68] and 

we did not calculate richness using a multidimen-

sional index estimating the minimal convex hull con-

taining all species in one functional space [19, 28].

d. Overall body-mass distribution (BMD) is proposed 

to provide a single measure of nematode functional 

diversity. We calculated it as a dimensionless per-

centage of the average of the three indices, using the 

formula:

where each component (FD, FE and FR) represents 

one layer that can be plotted along one axis of Fig. 3. 

Building an optimal functional space is a critical mod-

elling step [69] but such an additional standardisa-

tion in order to keep the functional diversity indices 

homogeneous allows us to put equal weight on each 

functional component (Additional file 1).

e. Generalized Linear Models (GLMs) were fitted to the 

data by maximum likelihood estimation with step-

wise regressions for BMD as function of the other 

three functional components FI, with Soil Type and 

Ecosystem Type as CLASS variables. All GLMs were 

done in SAS 9.4 (PROC GENMOD). First, the gen-

eral form of the GLM was BMD = α + β1FI1 + β2FI 
2  +  β3FI 3 (CLASS  =  Soil Type, Ecosystem Type), 

with BMD as the estimated overall body-mass distri-

bution, FIn each computed functional diversity index 

(FD, FE and FR, respectively), βn the linear coeffi-

cient for the indices and α is the intercept. Second, 

for all indices (BMD, FD, FE and FR, generalized as 

IF), a comparable GLM was computed as function 

of soil abiotics. The general form of the model is 

I(BMD,FD,FR,FR) ∝ α + β1 pH + β2C + β3N + β4P + β

5(C:N)  +  β6(C:P)  +  β7(N:P), again with Soil Type 

and Ecosystem Type as CLASS variables. Some lev-

els of interaction involving classification variables 

(nature on sand but not on clay) are not represented 

and GENMOD does not include missing levels. We 

FR =
(
FSi

R

)

BMD(%) =
⌈
FD + FE + FR

⌉
× 100

used the same CLASS variables in one-way analysis 

of variance (PROC ANOVA statement).

g. Principal component analysis (PCA) of the afore-

mentioned soil predictors pH, C, N, P, C:N, C:P and 

N:P were log-transformed and their principal com-

ponents were visualized in a multifunctional space 

in rotated varimax plots for all the 200 investigated 

sites.
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