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Abstract

Nematodes are presumably the most numerous Metazoans in terrestrial habitats.
They are represented at all trophic levels and are known to respond to nutrient
limitation, prey availability, and microbial resources. Predatory nematodes reside
at the highest trophic level, and as such their feeding habits could have a major
impact on soil food web functioning. Here, we investigate the effects of gender
and developmental stage on the nematode body sizes in coarse and loamy soils.
Besides Neodiplogasteridae, our predators are much larger than other soil-dwelling
nematodes from their early developmental stage onwards. From juvenile to adult, the
predatory Aporcelaimellus (Kruskal–Wallis P < 0.001), Dorylaimoides, and Tripyla
(both P < 0.01) show great length increases during their developmental growth,
in contrast to their possible prey (almost all P < 0.001). Less than 4% of the prey
exceeds the length of the predatory adults, but more than 30% of the prey exceeds
the length of the predatory juveniles. Potential body size ratios and some physical
problems experienced by small fluid feeders attacking large prey are discussed in
an attempt to summarize different prey-searching mechanisms and aggregative
predatory responses in the soil system.

Introduction

Demographic consequences of endogenous traits such as
body size (e.g., Amarillo–Suárez et al. 2011, and references
therein) are known. Under controlled conditions, for in-
stance, the expected initial advantage of large-sized inver-
tebrates is affected by resource quality and increasing com-
petition already at early life stages (Amarillo–Suárez et al.
2011). In terrestrial biota, controversy exists over whether
demographic responses reported from experimental condi-
tions might reflect ecosystem functioning (Waide et al. 1999;
Hooper et al. 2005; Crutsinger et al. 2006, etc.) and environ-
mental conditions (Crutsinger et al. 2006; Mulder and Elser
2009).

Trait variability of soil nematodes according to their gen-
der and life stage is expected to affect the susceptibility to
predation, but complex interactions between free-living ne-
matodes of different lengths and changing soil properties are
still hardly known and belowground sex-selective predation
is neglected. At least in soil nematodes, gender is likely to be
a key factor affecting trait variability. Sexual dimorphism in

size (length) makes female nematodes larger (longer) than
male nematodes (Goodey 1963; Yeates 1967, 1987; Bongers
1988; Yeates and Boag 2003), a mechanism that could make
females a more rewarding target.

We anticipate that in predator–prey systems, most of the
arising intraspecific trait variability reflects the diet and the
feeding behavior of predatory adults. Using mathematical
evidence derived from empirical studies (Mulder and Elser
2009; Mulder and Vonk 2011), we describe the extent to which
life stage and gender might influence the feeding strategy of
predatory nematodes.

For this purpose, we document here the body size ra-
tios for 148,063 predator–prey links as derived at individ-
ual level (body size as length in μm) from one matrix es-
tablished for every possible nematode target (prey). All the
sites are managed grasslands spread across the Netherlands:
76 of them are on podzols and regosols (henceforth sand)
and 29 are on fluvisols, cambisols, and anthrosols (clay).
(One of the 76 sites on sand was removed from the analy-
sis due to the lack of predatory nematodes in the recorded
specimens.)
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Methods

For each soil system, a composite sample was obtained by
mixing 320 soil cores randomly collected in the upper 10 cm
(each topsoil core with a diameter of 2.3 cm), and approx-
imately 500 g of soil was collected in glass jars and stored
at 4◦C (Mulder et al. 2003, 2011). Within one week, living
nematodes were extracted from 100 g of wet soil using the
Oostenbrink funnel elutriation method complemented with
sieving and cotton–wool extraction (Oostenbrink 1960). In
permanent mounts in formaldehyde, about 150 individuals
were identified by light microscope at 400–600× and assigned
to species (Bongers 1988) and related feeding habits (Small
1987; Yeates et al. 1993). We used these habits to generate a
large number of expected “who-eats-whom” combinations
without feeding preferences (Mulder et al. 2009). The body
length was measured to the nearest 1 μm with an eyepiece
micrometer, and life stage and gender were recorded as well
(all data downloadable from Ecological Archives: Mulder and
Vonk 2011). Soil nematodes exhibit on average body lengths
∼500 μm, ranging from 0.1 mm to 1.3 mm for Dauerlarvae
and up to 5 mm for adults. Computations used SAS version
9.1.3 Service Pack 3, SPSS 16.0, ACCESS XP, and EXCEL
2007, and the Visual Basic optimization toolbox.

Results

The results show striking dichotomies between the two preda-
tory life stages, that is, juvenile versus adult nematodes
(Fig. 1). As a matter of fact, much broader feeding strate-
gies (implying potential aggressive behavior) can be recog-
nized for juvenile consumers. In contrast to adult consumers,
juveniles might attack more often larger targets (32.11%
of the predatory juveniles share a larger potential prey).
Many juvenile predators are smaller than their potential prey,
like the widely occurring Neodiplogasteridae (their average
predator–prey body size ratio in clay equals 0.92 ± 0.55 SD
and in sand 0.84 ± 0.49 SD). Each veil line running parallel to
the prey size axis represents one individual predator, in most
cases one single adult (Fig. 1, left panels).

According to the loamy or sandy structure of the soil sys-
tems, predatory adults share significantly different body size
ratios between the nematofauna in clay and in sand (ANOVA
P < 0.0001: F♂ = 331 and F♀ = 101). In clay, only 0.30% of
the targeted prey exceeds the length of the predatory adults;
in sand, 3.89% of the prey exceeds the length of the predatory
adults. Such a mechanism resulted in skewed predator–prey
distributions according to the predatory life stage and gen-
der: the average predator–prey body size ratios for females,
males, and juveniles are 4.94, 3.97, and 1.89 in clay, and 4.47,
2.77, and 1.75 in sand, respectively. If we compute the same
average ratios for juveniles with either stylet or large buc-
cal cavities, the predator–prey body size ratios become 1.89

in clay and 2.21 in sand, and 1.80 in clay and 1.05 in sand,
respectively.

At each location, all developmental stages were recorded:
on the average, the total adult-to-juvenile ratio of nema-
todes was 0.31 (± 0.10 SD). As each taxon was not always
present with both genders on the same moment at the same
site, intraspecific temporal variation of the female-to-male
ratio was inflated and the total female-to-male ratio of adult
nematodes (averaging 3.48 ± 2.78 SD) did not show vari-
ation through time. In contrast to adults, juveniles show a
remarkable difference in their predator–prey body size ratios
according to their feeding behavior and the soil microenvi-
ronment. In particular, predatory juveniles with large buccal
cavities seem to be much more aggressive in coarse sandy soils
than in clay, potentially attacking prey as large as themselves
(their average predator–prey body size ratio equals 1.05 ±
0.74 SD). Neodiplogasteridae, with their esophageal sucking
attacks, and the stylet-bearing Dorylaimoides and Aporce-
laimellus, are common predatory juveniles. (Aporcelaimellus
is also frequent as predatory adult, mostly as female.) In sand,
stylet-bearing predators are about twice as frequent as those
with wide buccal cavities; in clay, where Neodiplogasteridae
are rare, stylet-bearing predators are even four times more
frequent than other predators.

Taxon-related body size averages (± SD) were shown in
Table 1: at higher trophic levels (bold taxa) Mononchi-
dae, Qudsianematidae, and Thornenematidae are the most
widespread predatory nematodes. Anatonchus, Clarkus, My-
lonchulus, Seinura, and Tripyla are stenophagous predators,
the other families and genera given in Table 1 as bold belong
to euryphagous predators, comprehending all the not obli-
gate predators. One example for “non obligate predation” is
provided by Pungentus. Originally described as plant-feeding
nematode (Thorne and Swanger 1936; Trudgill 1976), this
genus was recognized by Yeates et al. (1993) to have not
only “plant ectoparasitism” as preferred feeding habit, but
to occur as predatory nematode as well (see Small 1987, his
Table 3, and Ferris and Ferris 1989, their Table 2), being
“omnivore.”

Discussion

Nematode body size measurements were defined at the indi-
vidual level using one comprehensive and unbiased sampling
method, so that the length distribution incorporates both
the intraspecific variation and the soil nematofauna compo-
sition. In the latter case, the nematode life cycles clearly show
different survival and dispersal strategies (Small 1987; Yeates
1987; Bongers 1988). Although we were unable to address
all possible effects of seasonality and temperature on the ne-
matofauna composition (cf. Yeates 1968; Ritz and Trudgill
1999; Mulder et al. 2003), the correlations between sampling
time and total adult-to-juvenile ratio in all pooled sites—and
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Figure 1. Predator–prey body size relationships for soil nematodes in managed grasslands on clay (upper panels) and sand (lower panels). The body
lengths (μm) of all possible targets (males, females, and juveniles at all developmental stages) were plotted against the occurring predators either as
adults (left panels, male consumers in blue and female consumers in red) or as juveniles (right panels, in brown). The diagonal 1:1 lines show equal
body size for both prey and predatory nematodes. About 6.3% of the nematodes recorded in clay and 7.3% in sand belong to the second trophic
level (obligate and facultative predatory nematofauna). The coefficients of variation for all predator–prey interactions in adult and juvenile consumers
are 49% and 69% in clay, and 54% and 78% in sand, respectively.

in all sites belonging to one soil type separately—were in our
case not significant (P > 0.14).

Predatory adults are on average three times up to five times
as large as their prey, whereas juveniles seem to search their
prey randomly and without preference, possibly abandoning
their prey before fully utilizing it or dealing the ingestion of
their prey as group activity. For example, Seinura juveniles

might attack Rhabditidae, Eucephalobus, Tylenchidae, and
Paratylenchus, injecting toxic esophageal secretions into the
injured prey (Hechler 1963; Bilgrami 2008) and often feed-
ing together with other predatory nematodes. Stylet-bearing
nematodes (predators without wide oral apertures) cannot
swallow their prey and are forced to digest parts of their prey
outside their esophagus because their oral apertures are too
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Table 1. Nematode length in μm (mean ± SD) of juveniles, females, and males for widespread taxa, that is, preys recorded more than 100 times (in
regular font) and predators recorded more than five times (in bold). We summarized here 95% of the total of 15,522 individuals (single observations
in brackets). We performed Kruskal–Wallis ANOVA for testing the null hypotheses of either no difference in the body size between the soil types
(coarse sand vs. loamy clay) or between the life stages (juvenile vs. adults). The developmental growth was clearly recognizable; juvenile Dauerlarvae
were per se excluded from the latter Kruskal–Wallis analysis, but the closely correlated Rhabditidae exhibit a sharp difference in length between their
juvenile and adult stages (P < 0.001).

Sand Clay

Taxon Juvenile Female Male Juvenile Female Male

Acrobeles 378 ± 101 569 ± 118 528 ± 142
Acrobeloides 342 ± 103 456 ± 109 (529) 310 ± 71 489 ± 127
Aglenchus 446 ± 81 523 ± 70 520 ± 50 391 ± 61 488 ± 91 492 ± 86
Anaplectus 566 ± 245 1008 ± 153 848 ± 303 491 ± 245 1052 ± 206 1202 ± 253
Anatonchus 613 ± 378 954 ± 389 (2167) (2386)
Aphelenchoides 341 ± 108 593 ± 216 534 ± 116 348 ± 138 599 ± 157 546 ± 91
Aporcelaimellus 1204 ± 492 2152 ± 300 (1428) 1215 ± 571 2253 ± 493
Bitylenchus 874 ± 345 956 ± 312 694 ± 135 715 ± 146 737 ± 128
Clarkus 742 ± 267 1095 ± 294 534 ± 225
Dauerlarvae 480 ± 163 476 ± 138
Dolichodoridae 370 ± 130 (637) 539 ± 12 481 ± 212 (419)
Dorylaimoides 721 ± 334 1158 ± 2 1218 ± 79 590 ± 314 1415 ± 710 (1550)
Epidorylaimus 1141 ± 382 1558 ± 168
Eucephalobus 353 ± 95 551 ± 92 516 ± 94 347 ± 94 553 ± 81 537 ± 85
Eudorylaimus 1054 ± 683 1736 ± 453 (1232) 965 ± 447 1778 ± 111
Filenchus 462 ± 116 559 ± 128 514 ± 118 445 ± 115 539 ± 85 532 ± 56
Helicotylenchus 502 ± 140 770 ± 99 476 ± 140 686 ± 80
Heterodera 502 ± 58 488 ± 49
Meloidogyne 408 ± 30 424 ± 31
Mesodorylaimus 1026 ± 236 1457 ± 588 1380 ± 212 (1509)
Mononchidae undiff. 484 ± 166 1051 ± 446
Mononchus 623 ± 248 (2243) 636 ± 239
Mylonchulus 698 ± 345 (473)
Neodiplogasteridae 354 ± 131 462 ± 102 564 ± 120 387 ± 190
Panagrolaimus 441 ± 131 789 ± 132 721 ± 122 479 ± 158 829 ± 117 733 ± 107
Paratylenchus 324 ± 44 347 ± 41 354 ± 33 296 ± 52 350 ± 44 343 ± 6
Plectus 511 ± 277 649 ± 206 966 ± 55 616 ± 362 944 ± 607
Pratylenchus 293 ± 78 487 ± 67 420 ± 39 290 ± 79 504 ± 59 477 ± 77
Prodorylaimus 1005 ± 230 (1539) 1077 ± 148
Pungentus 1321 ± 324 1663 ± 179 842 ± 439 (1651)
Qudsianematidae undiff. 881 ± 357 1299 ± 127 523 ± 176 (1674)
Rhabditidae 437 ± 161 787 ± 225 633 ± 156 417 ± 146 833 ± 216 720 ± 120
Seinura 388 ± 46 (458) (416)
Thonus (1290) 1265 ± 142 (2520)
Thornenematidae undiff. 823 ± 323 (1743) 1356 ± 86 788 ± 351
Tripyla 766 ± 280 1395 ± 157 1276 ± 67 726 ± 293 1433 ± 272 1260 ± 144
Tylenchidae 378 ± 101 507 ± 163 528 ± 121 377 ± 110 523 ± 144 504 ± 104
Tylenchorhynchus 497 ± 202 768 ± 230 600 ± 102 411 ± 144 615 ± 363

narrow for a direct ingestion (Bilgrami 2008). This implies
that predatory nematodes with wide oral apertures such as
mononchs (Cobb 1917; Andrássy 1958) are supposed to be
more sensitive to the size of their prey than other predators
such as diplogasterids that can either (1) feed on prey much
larger than themselves thanks to extracorporal digestion or
(2) suck the body content of prey leaving an empty cuticle
behind them.

But mononchs also need one lip contact to detect their
prey (Grootaert and Maertens 1976; Grootaert and Wyss
1979). To compensate the short range of their prey detec-
tion, mononchs such as Mylonchulus are actively mobile
(Grootaert and Maertens 1976; Bilgrami 1992), a mecha-
nism that contributes to explain their higher sensitivity: a
prey encounter is enhanced by an efficient searching ability
and rapid attacks (Grootaert and Wyss 1979), and the chance

c© 2011 The Authors. Published by Blackwell Publishing Ltd. 389



Trait-mediated predator-prey systems C. Mulder et al.

to hold and suck a large prey becomes greater in the case of a
larger sized target.

The relatively high degree of large prey attacked by ju-
veniles can be explained by either enzymatic injection dur-
ing extracorporal digestion, as known for other invertebrates
such as arthropods (Cohen 1995), although some predatory
juveniles during the first two development stages survive in
cultures on agar (Small 1987; Yeates 1987; but see also Lin-
ford and Oliveira 1937). Moreover, soil predatory nematodes
are known to attack randomly other worms much larger
than themselves, such as enchytraeids (Small 1987; Mul-
der and Elser 2009), as soon targeted (enchytraeid) worms
share either low “behavioral resistance” (less undulation)
or low “physical resistance” (no thick cuticles). Wounding
and prey vulnerability (sensu Bilgrami 1992) are major chal-
lenges in soil nematology because the entire scale of possible
predator–prey interactions can be strongly enhanced from
those presented in this study. Attraction and aggregation
of soil predatory nematodes around the targeted resource,
suggesting possibly importance of (1) stimulating prey se-
cretions in establishing predator–prey contacts and (2) size
and numerical abundance of preys in determining patches
of predators, were recognized by Bilgrami and Gaugler
(2004).

Conclusions

Given the need to discriminate between the fundamental
trade-offs (habitat-response relationships at organism level)
and the secondary trade-offs (habitat-response relationships
at species level), gender and life stage have to be taken
into account in multitrophic networks. The incorporation
of nematodes into feeding habits according to their buccal
size and their buccal armature is common practice (Wieser
1953; Yeates et al. 1993) and defines the likelihood of be-
havioral feedings (Wieser 1953; Yeates 1987; Bilgrami and
Gaugler 2004). In our nematode predator–prey systems,
the measurable variation in attack rates with correspond-
ing predator–prey oscillations seems to depend not only on
taxonomy, but on gender and life stage as well. Gender itself
might contribute to explain a possibly large part of the behav-
ior, a conclusion partially supported by recent simulations on
how the growth rate and the phenology are influenced by the
size variability present through time (Moya–Laraño 2011).
Although simplistic conclusions must be avoided, we mea-
sured the variation of predator–prey body size ratios in soils;
showed that the nematode life stage strongly influences the
size range of possible targets; assessed that males seem to
be more aggressive than females in their feeding behavior
(yielding contrasting prey’s responses); and argued the phys-
iological validity of using species-specific body size average
as sole independent predictor in allometric models. These re-

sults provide evidence that gender and life stage clearly matter
at different levels in community ecology.
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