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A B S T R A C T

This paper analyses the impact on supply chain performance of adopting different strategies to
implement partial information sharing among heterogeneous retailers. Supply chains are mod-
elled using a multi-agent systems approach. We find that the strategy adopted to construct the
partial information sharing structure (i.e., the retailers who share information) has a significant
impact on supply chain performance. We propose a practical strategy, named Order VAriance
Prioritization (OVAP), which gives priority to the retailers with higher order variance. OVAP
outperforms the worst (i.e. naive) implementation method by 27.2% and 7.8% with respect to the
levels of bullwhip and average inventory.

1. Introduction

1.1. Context and motivation

Information Sharing (IS) has been acknowledged as an effective practice for coordination among the nodes of decentralized
Supply Chains (SCs), improving the global performance and reducing production and logistics inefficiencies caused by the bullwhip
effect (Ali et al., 2012; Chatfield et al., 2004; Dejonckheere et al., 2004; Lee et al., 1997; Shan et al., 2014; Trapero et al., 2012; Wang
and Disney, 2016). However, there are numerous barriers to the implementation of IS in SCs (Ali et al., 2017; Spekman and Davis,
2016) including the risk of information leakage (Huang et al., 2016; Kong et al., 2013), lack of trust (Shnaiderman and Ouardighi,
2014), resource investments in Information Technology (Gunasekaran et al., 2017; Kembro et al., 2014), wide variety of technology
and tools (Ramanathan, 2014), different types of information (Rached et al., 2016; Yu et al., 2010), information distortion (Jeong and
Leon, 2012; Niranjan et al., 2011), and unbalanced share of gains between SC members (Lee and Whang, 2000; Rached et al., 2015;
Shih et al., 2015). These barriers, together with the decentralization and globalization of modern SCs make it difficult to achieve a
full/perfect IS among SC members and thus, this assumption deviates from real-life in some cases (Huang and Wang, 2017). As a
consequence, partial IS is a prevalent scenario in real-life SCs (Shnaiderman and Ouardighi, 2014; Xu et al., 2015; Zhou et al., 2009).

According to the literature, partial IS in SCs takes place when the information is asymmetrically shared among SC members (see
e.g. Gümüş, 2014; Gunasekaran et al., 2015; Inderfurth et al., 2013; Li et al., 2016; Zhou et al., 2017a), delayed (see e.g. Hoberg and
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Thonemann, 2014; Hosoda and Disney, 2012), partially revealed (Zhang et al., 2016), shared only between some members of the SC
(see e.g. Ganesh et al., 2014a, 2014b; Lau et al., 2004; Huang and Wang, 2017), or inaccurate, either intentionally (see e.g. Huang
et al., 2017; Shnaiderman and Ouardighi, 2014) or unintentionally (see e.g. Cannella et al., 2015; Kwak and Gavirneni, 2015). A
specific case of partial IS occurs when the information is symmetrically, timely and accurately shared, but takes place only between
some members of the SC. In fact, it is common that some members of SC do not participate in IS, particularly at the retailer stage
(empirical evidence showed that only 27% of retailers shared POS data with other members, see Shang et al., 2016). Nevertheless,
despite being a common practice, there is a lack of academic studies on the topic (Holmstrom et al., 2016). To the best of authors’
knowledge, there are only five studies addressing this theme: Costantino et al. (2014) and Ganesh et al. (2014a, 2014b) analyse how
different degrees of collaboration between SC members impact the bullwhip effect, inventory holding and shortage costs, and/or
customer service levels in a serial SC. Lau et al. (2004) analyse partial IS in three divergent SCs with increasing complexity. Finally,
Huang and Iravani (2005) analyse a SC with one capacitated manufacturer and two different retailers where the former may receive
demand and inventory information from any of the retailers.

All these works agree that retailers provide, by sharing customer demand information, the highest performance improvement for
SCs with respect to other members (e.g. wholesalers and distributors). Nevertheless, an important limitation of the above studies is
that they assume – with the exception of Lau et al. (2004) – a single retailer in the SC. However, real SCs often include more than one
retailer (Wan and Evers, 2011) and, due to the complexities of modern SCs, retailers may operate under different market scenarios
(e.g. different customer demand) and/or Operational Factors (OFs) (e.g. lead time, inventory order policies, forecasting methods,
etc.). These implications concern both traditional SCs (i.e., SCs without IS) and partial IS SCs that are willing to adopt or upgrade the
IS strategy (i.e., to incorporate new retailers). In cases where it is undesirable or infeasible to transform the current (traditional or
partial IS) SC into a full IS SC, where all retailers share information with upstream echelons, it is of great interest to define a strategy
to incorporate new retailers in IS by identifying the retailer(s) who can provide the highest global performance improvement by
sharing market demand information with upstream members. In this manner, a roadmap for implementing IS can be devised in order
to capture most IS benefits at a reduced cost. Despite its potential, to the best of the authors’ knowledge, the analysis of different
strategies for implementing partial information sharing among heterogeneous retailers has not been previously addressed.

Thus, it is important to understand how to select the most suitable retailers taking into account that (1) they are usually het-
erogeneous and (2) upstream members often lack visibility regarding retailers’ internal processes and policies. A practical and user-
friendly method for identifying appropriate retailers is to analyse retailers’ order patterns and, more specifically, the variability of
orders. There are two main reasons to follow such an approach: (1) orders are one of the few data transmitted upstream by retailers in
a traditional SC, and (2), IS is known to be more beneficial in a SC where members have to face higher order variability (Chatfield and
Pritchard, 2013). According to these considerations, we argue that IS might be more beneficial when it involves retailers who
transmit upstream most of the variability of the orders in the SC, and by doing so, reduces their contribution to the demand am-
plification.

1.2. Objectives and contribution

Motivated by the considerations in the previous section, our research objectives are:

1. To determine the impact of the IS implementation strategy (i.e., how to select the appropriate retailers for IS) on SC performance
when retailers are heterogeneous. More specifically, we intend to prove that the specific strategy adopted for IS implementation
has a significant effect for the SC in terms of the bullwhip effect and inventory levels.

2. To propose and test (through simulation) a practical IS implementation strategy to achieve effective IS for SCs with heterogeneous
retailers and partial IS, quantifying its benefits in terms of bullwhip and average inventory reductions. More specifically, we will
show that our proposed strategy exploits most of IS capability under partial IS.

Such strategy, named Order VAriance Prioritization (OVAP), considers retailers’ order variability to identify potential retailers for
IS. As such, this is a “pre-assessment” strategy, since it is based on current information of the SC, and it can be determined prior to the
performance assessment, avoiding the need of running a SC model. Consequently, OVAP can be implemented in practice. More
specifically, OVAP determines the retailers for IS as follows:

– Estimate retailers’ order variance prior to IS implementation.
– Generate a sequence of retailers, which are ranked from the highest to the lowest order variance (i.e., retailers with higher order
variance are potentially better partners for IS).

In order to get more accurate dynamic insights, a model of an entire SC should be considered (Chatfield, 2013). As such, to fulfil
the research objectives we model a SC with four echelons (i.e., Factory, Distributor, Wholesaler and Retailer), each of them char-
acterized by one member with the exception of the Retailer’s echelon. In order to consider several partial IS structures and allow for a
precise representation of the performance of OVAP, we consider four retailers (see Fig. 1). Each retailer may or may not share private
market demand information with the Wholesaler (i.e., partial IS), who may use this data in his/her inventory control policy. Ad-
ditionally, retailers are heterogeneous, as they face different market and geographical conditions. Such heterogeneity is specifically
simulated by systematically varying three different OFs (i.e., average lead time, market demand variability, and forecasting period).
Finally, since SC processes are often subject to uncertainty, we consider stochastic demand and lead times in order to obtain more
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realistic results.
To fulfil the first research objective, we define and compare two benchmarking strategies (i.e., BEST and WORST). These are

“post-assessment” strategies, since they can be determined only after the assessment of the performance of all the possible partial IS
structures, thus needing to run a SC model. More specifically, BEST selects the retailers who provide the best SC performance
improvement, and WORST selects the retailers who provide the worst SC performance improvement. Consequently, BEST and
WORST cannot be implemented in practice.

To fulfil the second research objective, OVAP is compared with BEST and WORST under several scenarios with partial IS and
different levels of retailer heterogeneity. Since BEST and WORST represent the best and the worst possible IS implementation
strategies, OVAP will have an intermediate performance. However, if OVAP performs close to BEST, then it can be concluded that
OVAP is a good strategy to implement IS. As mentioned before, SC performance is assessed by measuring the bullwhip effect and the
average inventory, so we adopt two system-level metrics, namely Bullwhip Slope and Systemic Inventory Level, which allow us to
easily compare the global performance of different SCs (Cannella et al., 2013).

The inherent complexity of the SCs to be analysed, characterized by a divergent configuration, heterogeneous members facing
stochastic demands and lead times, and where the collaboration to share market information takes place only among a few members,
makes simulation a suitable approach to develop the models and perform the analysis. In fact, simulation, and particularly Multi-
Agent Systems (MAS), has been recognised as an effective research methodology for complex systems modelling (see e.g., Costantino
et al., 2016, 2015a; Langroodi and Amiri, 2016; Long, 2015, or Ponte et al., 2016, 2017). More specifically, to develop the SC models
we use SCOPE (Dominguez and Framinan, 2013), a MAS-based software tool for complex SC modelling. In order to perform a
systematic analysis of the simulations, we adopt reasonable assumptions and data inputs for simulations obtained from different cases
to emulate real-world logistic systems (Dominguez et al., 2017). SCOPE has been validated by contrasting the results obtained from
the simulations with those reported by other authors. More specifically, in Dominguez and Framinan (2013), a four-stage serial SC
has been modelled and the results (amplification of the standard deviation of orders) obtained by SCOPE are found to be in line with
those provided by Chatfield et al. (2004), Chen et al. (2000), Dejonckheere et al. (2004).

The computational experience carried in Section 4 shows that there are significant differences in the performance of BEST and
WORST, particularly for high levels of retailer heterogeneity, which indicates that the specific IS implementation strategy adopted is
relevant for SC performance. Results also show that OVAP is a suitable IS implementation strategy that ensures a high SC performance
improvement for any type of partial IS structure. More specifically, for certain levels of retailer heterogeneity, the SC performance
improvement obtained by OVAP and BEST are identical in 93.33% and 84.44% of the scenarios analysed in terms of Bullwhip Slope
and Systemic Inventory Level, respectively.

The remainder of this paper is as follows: Section 2 describes the SC model. Section 3 presents the design of experiments. In
Section 4 we analyse the results obtained and provide the main findings of the work. Finally, Section 5 presents some industrial
recommendations, concluding remarks, and future research lines.

2. Supply chain model

The SC model is an extension of that by Chatfield et al. (2004) in order to model divergent SCs (see e.g. Dominguez et al., 2014),
and it has been specifically developed to model partial IS.

Regarding the notation adopted in the model, subscript = …i E1 indicates the echelon’s position in the SC, being i=1 the most

Fig. 1. SC with partial IS at retailers.
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upstream echelon. Subscript = …j N1 i indicates node’s position in echelon i, being Ni the total number of nodes in echelon i. In
addition, ⩾ −N Ni i 1 in order to model a divergent SC. A generic node in the SC can be denoted as nij. In order to model the partial IS,
we use a binary variable (δij): =δ 1ij if node nij shares information with an upstream partner, and =δ 0ij otherwise.

In the following we describe the main modelling assumptions:

– Supply chain configuration: We adopt the commonly used four-echelon (E=4) SC structure (see e.g. Chatfield et al., 2004; Sterman,
1989). The reason is that, by considering an entire SC, we are able to get more accurate dynamic insights (Zhou et al., 2017b) and
avoid underestimating the bullwhip effect (Chatfield, 2013). In order to model partial IS at retailers, this SC model is extended by
considering several retailers, resulting in a divergent SC. More specifically, we consider four retailers (Ni =4 ∀ i=4; Ni =1 ∀

i < 4), since these numbers allow us to provide a detailed representation of the SC performance by considering several partial IS
structures (see Fig. 1). Retailers are the only SC members allowed to share demand information upstream (δij =0, 1 ∀ i=4;
δij =0 ∀ i < 4). In addition, we assume that this information can be received only by the immediate upstream partner, i.e. the
Wholesaler (Kembro and Selviaridis, 2015; Lau et al., 2004).

– Customer demands are stochastic, independent and identically distributed, and follow a normal distribution (DC
t

j ) (Chatfield et al.,
2004; Rekik et al., 2017).

– Capacity constraint. There is unlimited production, transportation and stocking capacity.
– Backlog. In the event of a stock-out situation, a node partially replenishes its customer with the remaining stock and backorder the
excess of demand (Chatfield and Pritchard, 2013).

– Return of excess inventory to upstream partners is not permitted, as it has been shown that this condition may alter the assessment
of SC performance (Chatfield and Pritchard, 2013; Dominguez et al., 2015b).

– Lead times of a node nij (Lij
t) are defined as the time elapsed between order and receipt, and are assumed to be stochastic,

independent, and identically distributed. Lead times follow a Gamma distribution (see e.g., Bischak et al., 2014; Chatfield et al.,
2004; Dominguez et al., 2015b, Hayya et al., 2011, among others). Since the simulation model is based on discrete time periods,
we assume lead times to be integers. Therefore, values obtained from the Gamma distribution are discretized. Consequently, each
time an order is generated, it is assigned a random integer lead time, which corresponds to the number of periods required for the
order to arrive. Although the effect of stochastic lead times is not analysed when exposing the simulation results, we assume
stochastic lead times as it better emulates real SCs. In fact, in many realistic situations, lead times depend on several uncertain
events across the entire SC, and a number of researchers have shown lead-time variability to be an issue that significantly impacts
on inventory models and systems (Bischak et al., 2014; Chaharsooghi and Heydari, 2010; Chatfield et al., 2004; Chatfield and
Pritchard, 2013; Kim et al., 2006; Hayya et al., 2011; Lin, 2016, among others).

– Order crossovers are allowed, i.e., replenishment may be received in a different sequence than they were ordered (Bischak et al.,
2014; Chatfield and Pritchard, 2017; Disney et al., 2016; Hayya et al., 2008).

– Orders received. On period t, node nij issues an order Oij
t , and receives orders from a set Vij of downstream linked nodes. Total

demand received by node nij (Dij
t) can be then expressed as in Eq. (1).

– Ordering policy. SC members use an adaptive (R,S) periodic review policy (Babai et al., 2016; Li and Disney, 2017; Li et al., 2014;
Syntetos et al., 2016a; Zhou et al., 2017b), where R is the review period. S is the desired OUT level, and it is updated in every
period. These type of policies are widely used in SCs (Bischak et al., 2014; Costantino et al., 2015b). Orders are placed at discrete
time intervals according to the review period (we assume R=1, Chatfield et al., 2004) as in Eq. (2), where IPij

t is the inventory
position, WIPij

t is the work in progress, Iij
t is the current on hand inventory and Bij

t is backlog. The OUT level (Sij
t) is computed by a

common approach as in Eq. (3) (see e.g. Chatfield et al., 2004), where z is a safety factor, Dij
t and sD

2
ij
t are the estimations of demand

average and variance, Lij
t and sL

2
ij
t are the estimations of lead times average and variance (we assume the same z for all nodes of the

SC (Kim et al., 2006)).
– Demand forecast. A node nij dynamically updates the forecast of incoming demand by a τij-periods moving averages/variances
forecasting technique (Chatfield et al., 2004; Chen et al., 2000; Syntetos et al., 2016b), as in Eqs. (4) and (5). Lead times are
estimated by running averages and variances approaches, i.e. using all prior information available (τij = t) (Cannella et al., 2017;
Chatfield, 2013).
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– Partial information sharing. If a downstream node shares information with its upstream node, the latter can see the demand
information from the downstream node, otherwise it only sees the order posed by the downstream node. As a consequence, since
there might be several downstream linked nodes, the demand information received by the upstream node or “shared demand” is a
combination of downstream demand and downstream orders depending on whether the downstream nodes share demand in-
formation, or not. This is modelled as in Eq. (6) where ShDij

t is the shared demand. The upstream node then uses this information
to forecast demand and determine the OUT level, which is modelled by replacing Dij

t by ShDij
t in Eqs. (3)–(5).

∑= + −
∈

+ + + +ShD ShD δ O δ(1 )ij
t

r V
i r
t

i r i r
t

i r1, 1, 1, 1,
ij (6)

– Sequence of actions. For each period, each node nij performs the following sequence of actions: (1) computes the Sij
t level using the

forecast computed in the previous period; (2) if >S IPij
t

ij
t , places an order Oij

t and increases WIPij
t accordingly; (3) receives the

products from the upstream partner, reducing WIPij
t and increasing Iij

t accordingly; (4) if Iij
t > 0, satisfies backorders, reducing Iij

t

and Bij
t accordingly; (5) receives new orders from downstream linked nodes (Dij

t) and the demand information, in case that the
node shares it (ShDij

t). If ⩽D Iij
t

ij
t satisfies demand and reduces Iij

t accordingly. If >D Iij
t

ij
t partially satisfies demand with the

available inventory, reducing Iij
t accordingly (Iij

t =0), and backordering the unsatisfied demand ( = −B D Iij
t

ij
t

ij
t); (6) forecast demand

using updated shared demand information (ShDij
t) and lead time for the next period [ ShDij

t, sShD
2

ij
t , Lij

t , sL
2

ij
t ].

The SC model described in this section has been developed using SCOPE, a MAS-based SC simulator. This tool was implemented
using the Swarm libraries, specifically designed to build MAS-based models (Minar et al., 1996). The scalability of MAS models allows
SCOPE to create a wide range of SC configurations with any number of companies distributed along the SC. Agents can be updated
with new behaviours, and can be individually customized. These features make SCOPE a suitable simulation platform to develop
divergent SC models with partial IS and heterogeneous SC members. SCOPE was used to model and analyse complex SC problems in
divergent SCs in some recent studies (see e.g., Cannella et al., 2017; Dominguez et al., 2017).

3. Design of experiments (DoE)

The aim of the DoE is to generate a test-bed of different SCs with heterogeneous retailers in order to test the efficiency of the
proposed implementation strategy (OVAP). In addition, OVAP will be benchmarked against the two post-assessment strategies BEST
and WORST. Recall that these strategies, using the data obtained from the simulations, select the best and the worst retailers for IS,
respectively.

The definition of the design of experiments entails the following aspects:

I. Emulation of heterogeneous retailers, definition of the levels of retailer heterogeneity and a variety of SCs.
II. Determination of model parameters.
III. Determination of SC performance metrics.
IV. Determination of the information sharing structures.
V. Definition of the benchmarking strategies: BEST and WORST.

These aspects are discussed in the following subsections.

3.1. Emulation of heterogeneous retailers, definition of the levels of retailer heterogeneity and a variety of SCs

To emulate heterogeneous retailers, we perform experiments by systematically varying three of their OFs, i.e., demand variance
(σD

2
Cj
), forecasting period (τij) and lead time average (μLij) (Dominguez et al., 2017). Considering that upstream members of the SC

often lack visibility on retailers’ internal processes and policies, we assume that retailers’ OFs are unknown and thus, they are not
within the scope of this study. To emulate this condition, we allow retailers’ OFs to adopt random values. These values fall within an
upper and a lower bound representing extreme values of the factors (UB and LB, respectively), with a uniform probability (Table 1).
Bounds are chosen according to values typically adopted in other studies on SC dynamics. In particular, the UB values employed can
be found in Chatfield et al. (2013), Costantino et al. (2014) and Dominguez et al. (2017). LB is obtained by reducing the UB for each
OF.

Table 1
Retailers’ Operational factors.

Retailers’ Operational Factors (OFs) LB UB

Demand variance (σDCj
2 ) 102 202

Forecasting period (τij) 5 15
Lead time average (μLij) 2 4
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In order to test the performance of the OVAP strategy under different scenarios, we distinguish between different levels of retailer
heterogeneity (i.e., how different are retailers among themselves). Note that retailers are heterogeneous because they have different
OFs. Since retailers’ OFs are assumed to be unknown to the upstream members of the SC, we adopt the retailers’ order pattern as an
indicator of the levels of retailer heterogeneity. In fact, retailers’ OFs have a direct impact on retailers’ order policy and thus, on how
retailers place orders in each period (i.e., retailers’ order variability). Thus retailers’ order variability can be seen as a consequence of
retailers’ internal policies and operational environment. In this sense, we assume that retailers with similar order policies will react
similarly to the environment (e.g., to market demand changes, lead times, etc.) and thus, if they also operate in a similar environment,
they will place orders similarly. On the contrary, we assume that, if these retailers operate in different markets and/or with different
lead times and/or they have different order policies, they will place orders adopting different rules. As such, we adopt the retailers’
order pattern as an approximation to the levels of retailer heterogeneity.

On the basis of the above observations, we define the levels of retailer heterogeneity (ψ) as the coefficient of variation of retailers’
order variance c v s. . ( )O

2
Ej
T (Eq. (7)) in the scenario of No IS (NIS), i.e., traditional SC. A high value of ψ means that retailers are

ordering with significantly different variance and thus, we consider that they are (strongly) heterogeneous. A low value of ψ means
that retailers are ordering with similar variance, and thus we assume that retailers are (weakly) heterogeneous. Finally, if ψ =0,
retailers place orders with identical variance and they can be considered homogeneous for the upstream SC.

= = = ∀ = …

∑ −=

ψ c v s
StdDev s

Average s s
j N. . ( )

( )

( )
1, ,

( )

O

O

O

s s

N

O
E

2

2

2 2Ej
T

Ej
T

Ej
T

j
NE

OEj
T OEj

T

E

Ej
T

1
2 2 2

(7)

ψ is based on retailers’ order patterns (sO
2

Ej
T ), and thus it is a consequence of retailers’ internal policies and operational environment

(i.e., the OFs). Hence, this indicator can be used to characterize the levels of retailer heterogeneity in SCs where retailers’ OFs are not
known in advance. However, ψ does not give detailed information on how retailers’ order variances are distributed. In fact, similar
values of ψ can be obtained using different combinations of retailers’ order variances. As a consequence, we do not perform the
analysis based on individual SCs; instead, we distinguish between classes of SCs with significantly different values of ψ (i.e., low and
high values) and test the implementation strategies – at an aggregate level – in such classes. To do so, we perform the following steps:

1. Generate a sample of 150 random SCs. SCs are instances of the model presented in Section 2, with the retailers’ OFs randomly
generated according to values shown in Table 1. As a result, each SC is randomly generated.

2. Simulate all the 150 SCs under the NIS scenario and compute ψ for each of them, obtaining the following minimum and maximum
values: ψmin =0.028 and =ψ 0.802max .

3. In order to differentiate between SCs with two different levels of ψ, we:
a. Divide the interval between ψmin and ψmax in three identical parts (i.e., SCs with low, medium and high levels of ψ), namely ψL,

ψM , and ψH , as shown in Table 2.
b. Build a test-bed of SCs by considering 15 SCs in each of the two extreme classes of SCs, i.e., ψL and ψH . Table 3 reports ψ values

for all of the SCs under analysis.

3.2. Determination of model parameters

Model parameters, which are common for all SC nodes – summarised in Table 4 – are chosen as usual values used in SC dynamics
literature (see, e.g., Chatfield, 2013; Costantino et al., 2014; Dominguez et al., 2015a). Demand average and variance are not ap-
plicable to the upstream members of the SC (indicated as N.A. in Table 4). Some of the parameters of retailers coincide with the
retailer’s OFs (indicated as OF in Table 4).

3.3. Determination of SC performance metrics

Due to the high number of different SCs to be analysed (see Section 3.4), we adopt system level performance metrics. By doing so,
we are able to compute the global performance of the SC instead of computing echelons’ performance individually, thus allowing an
easy comparison between different SCs (Cannella et al., 2017). The adopted performance metrics are the Bullwhip Slope (BwSl), to
measure the global bullwhip effect of the SC, and the Inventory Average (InvAv), to measure the total average inventory of the SC
(Cannella et al., 2013).

BwSl is computed as in Eq. (8), where ORVrRi is the Order Variance Ratio in echelon i (Chen et al., 2000), which is calculated as

Table 2
Range of ψ values obtained for the sample of 150 SCs.

ψL ψM ψH

Lower bound 0.028 0.286 0.544
Upper bound 0.286 0.544 0.802
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T for divergent SCs (Dominguez et al., 2015b), NC is the number of customers in the SC, πi is the

position of the i-th echelon in Dejonckheere’s et al. curve, and T is the total simulation time. InvAv is computed as the average
inventory held by all members of the SC over the observation period (Cannella et al., 2013), as per Eq. (9).
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In order to benchmark two different IS implementation strategies (e.g., Strategy_1 and Strategy_2), we use the percentage increase of
SC performance obtained by the Strategy_2 over the Strategy_1 ( →metricΔ Strategy Strategy1 2 (%)), where metric can be either BwSl or InvAv
(Eq. (10)).

=
−

∗→metric
metric metric

metric
Δ (%)

( )
100Strategy Strategy

Strategy Strategy

Strategy
1 2

1 2

1 (10)

3.4. Determination of the information sharing structures

Let ∑ =
δj

N
Ej1

E be the degree of retailer collaboration (i.e., the number of retailers sharing information). For the SCs under analysis,

the possible IS structures range from NIS with ∑ =
=

δ 0j j1
4

4 to Full IS (FIS) with ∑ =
=

δ 4j j1
4

4 . Between NIS and FIS are the partial IS

structures, with ∑ ∈
=

δ [1,3]j j1
4

4 , namely 1RIS, 2RIS, and 3RIS. Since retailers are heterogeneous, under partial IS we need to dis-
tinguish all the possible combinations of retailers for each IS structure, e.g., a 2RIS structure defined by δEj =[1,1,0,0] (named 2RIS12)
is different than a 2RIS structure defined by δEj =[0,1,1,0] (named 2RIS23). A summary of all IS structures is provided in Table 5.

Table 3
ψ values for the test-bed of SCs.

ψL SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10 SC11 SC12 SC13 SC14 SC15
0.171 0.118 0.224 0.028 0.239 0.272 0.270 0.196 0.155 0.268 0.208 0.171 0.124 0.156 0.044

ψH SC16 SC17 SC18 SC19 SC20 SC21 SC22 SC23 SC24 SC25 SC26 SC27 SC28 SC29 SC30
0.546 0.780 0.550 0.619 0.589 0.544 0.547 0.752 0.802 0.569 0.568 0.569 0.575 0.671 0.660

Table 4
Summary of model parameters.

Model parameters Retailers Upstream members

Demand average (μDCj
) 50 N.A.

Demand variance (σDCj
2 ) OF N.A.

Lead time average (μLij) OF 4

Lead time c.v. 0.50 0.50
Forecasting period (τij) OF 15
Safety factor (z) 2 (service 97.72%) 2 (service 97.72%)

Table 5
Summary of IS structures.

Type of IS Degree of retailer collaboration IS structure Specific IS structure

No IS ∑ == δ 0j j1
4

4 NIS N.A.

Partial IS ∑ == δ 1j j1
4

4 1RIS 1RIS1, 1RIS2, 1RIS3, 1RIS4

∑ == δ 2j j1
4

4 2RIS 2RIS12, 2RIS13, 2RIS14, 2RIS22, 2RIS23, 2RIS24, 2RIS34

∑ == δ 3j j1
4

4 3RIS 3RIS123, 3RIS124, 3RIS134, 3RIS234

Full IS ∑ == δ 4j j1
4

4 FIS N.A.
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3.5. Definition of the benchmarking strategies: BEST and WORST

Two theoretical strategies, namely BEST and WORST, are used for benchmarking. These are “post-assessment” IS strategies, since
they are determined after the assessment of the performance of all the partial IS structures. In particular, for a given performance
metric (i.e., BwSl or InvAv), BEST (WORST) is obtained by selecting the retailers who provide the best (worst) SC performance
improvement for each partial IS structure, as follows:

1. For 1RIS, select the best (worst) of four retailers, i.e., select the specific IS structure (1RISx) that obtains the lowest (highest) value
of metric (best (worst) performance). We denote such IS structure by 1RISx′.

2. For 2RIS, select the best (worst) of the three remaining retailers, i.e., select the specific IS structure (2RISx′y, with ≠ ′y x ) that
obtains the lowest (highest) value of metric. We denote such IS structure by 2RISx′y′.

3. For 3RIS, select the best (worst) of the two remaining retailers, i.e., select the specific IS structure (3RISx′y′z; ≠ ′ ′z x y, ) that obtains
the lowest (highest) value of metric. We denote such IS structure by 3RISx′y′z′.

4. The BEST (WORST) IS implementation strategy, which select the best (worst) retailers for each partial IS structure, is given by:
[1RISx′, 2RISx′y′, 3RISx′y′z′].

A summary of the DoE is presented in Table 6. We run a total of 16 IS structures (Table 5) on 30 SCs (Table 3), totalling 480
experiments. In order to account for randomness, we run 30 replications of each experiment (Cannella et al., 2017; Chatfield et al.,
2004) and the simulation outputs are statistically analysed. To ensure a steady state of the system we set the simulation time to 4000
periods, and to eliminate system’s initialization effects we remove the first 1000 periods as a warm-up time.

4. Analysis and results

The results are presented in two sections in line with the research objectives presented in Section 1.2:

1. BEST vs WORST: First we analyse the performance obtained when the best and the worst decisions regarding the retailers are
selected for the different partial IS structures (1RIS, 2RIS, 3RIS). As discussed before, our first research objective is to study
whether the specific strategy for IS adopted is relevant in terms of SC performance.

2. OVAP: This analysis aims at comparing the results obtained by OVAP with those obtained by BEST and WORST. Obviously, OVAP
cannot outperform the post-assessment BEST but, if the differences are small, then it could be concluded that OVAP is able to
capture most of the benefits of the BEST while being a pre-assessment strategy.

4.1. Determining the relevance of the adopted IS implementation strategy on a SC with heterogeneous retailers: BEST vs WORST

Fig. 2 shows average values obtained for BwSl and InvAv adopting the BEST and WORST strategies from NIS to FIS. Along with the
averages, 95% confidence intervals (CIs) are also plotted. Since we cannot present graphics for all the analysed SCs, we present some
exemplary results obtained for 4 out of 30 SCs (2 SCs belonging to ψL and the other 2 SCs belonging to ψH). Curves show a decreasing
function on the degree of retailer collaboration: as the degree of retailer collaboration increases, the SC performance improves. This
result does not depend on the strategy adopted, as the improvement is observed for both BEST and WORST. However, the shape of the
curves obtained are different, being convex for BEST and concave for WORST. Since both curves share common start and end points,
these results suggest that a better SC performance is obtained if a partial IS structure is configured according to the BEST strategy.

To confirm the above results we look at the CIs. Results obtained for BwSl show very tight CIs (i.e., CIs are very close to the
averages), thus suggesting that there are significant BwSl differences between BEST and WORST for each partial IS structure and for
both ψL and ψH . Nevertheless, these differences are more important for SCs in ψH (i.e., SC17 and SC21). Results obtained for InvAv
show wider CIs. For this metric, results suggest that there are significant differences between BEST and WORST only for the SCs in ψH .
For the SCs in ψL, these differences are lower, obtaining some overlapping of CIs for SC3.

In order to contrast these preliminary results, we take into consideration the full test-bed of SCs. As a first step, we calculate 95%
CIs to verify the robustness of the results obtained for BwSl and InvAv and check for significant difference between BEST and WORST
for each partial IS structure. Table 7 shows a summary of results for all the scenarios (i.e., 30 SCs× 3 partial IS structures= 90
scenarios) and both metrics.

Results suggest that there are significant differences between BEST and WORST for all the scenarios in ψH for both metrics.

Table 6
Summary of DoE.

SCs OVAP BEST & WORST

IS structures Required Information IS structures Required Information

ψL: SC1-> SC15 ∑ == δ 0j j1
4

4 s
O j

T
4

2 ∑ = →= δ 0 4j j1
4

4 BwSl & InvAv
ψH : SC16-> SC30
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However, as the heterogeneity of retailers decreases (ψL), there are some scenarios where these differences are not significant. In fact,
it seems logical that the variation of retailers’ order variance in these scenarios is low and, as a consequence, the choice between BEST
or WORST strategies does not make a big difference in terms of improving SC performance. Hence, the averages metrics for BEST and
WORST are relatively close. This fact is represented in Table 7 by the higher number of scenarios where the results obtained by the
different strategies showed overlapping CIs. More specifically, we found overlapping CIs in 13.33% (BwSl) and 57.78% (InvAv) of the
scenarios with ψL.

In order to quantify the impact of the adopted IS strategy on SC performance, we compare the performance obtained by the two

Fig. 2. BwSl and InvAv for BEST and WORST strategies.
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extreme IS implementation strategies BEST and WORST, computing →BwSlΔ (%)WORST BEST and →InvAvΔ (%)WORST BEST for all the SCs
and partial IS structures. Table 8 shows the average results obtained from all the replications. Additionally, average values are shown
for each SC (averaged for the three partial IS structures) as well as for each partial IS structure (averaged for all the SCs). 95% CIs are
computed for each partial IS structure.

For the SCs with ψL, results show an overall increase in BwSl of 9.76%, and an overall increase of InvAv 3.75%, which are rather
low figures that confirm the results in Table 7 for InvAv. However, performance differences are more relevant for the set of SCs in ψH ,
showing an overall increase in BwSl of 27.28%, and in InvAv of 7.96%. Finally, for each partial IS structure, 95% CIs suggest that
differences between WORST and BEST are significantly higher for SCs in ψH than for SCs in ψL. On the basis on these observations, we
formalise the following finding:

(1) The IS implementation strategy adopted in a SC with heterogeneous retailers has a significant impact in terms of overall bullwhip effect and
inventories.

Table 7
Summary of the significance of the results obtained for BEST and WORST (95% CI).

*: significant BwSl % stat. Sig. InvAv % stat. Sig.

X: not significant 1RIS 2RIS 3RIS 1RIS 2RIS 3RIS

ψL SC1 * * * 86.67% * X X 42.22%
SC2 * * * X X X
SC3 * * * X * X
SC4 X X X X X X
SC5 * * * * X *
SC6 * * * * * *
SC7 * * * * X *
SC8 * * * * * X
SC9 * * * X * X
SC10 * * * X * *
SC11 X X * X X X
SC12 * * * X X *
SC13 * * * * X X
SC14 * * * * * *
SC15 X * * X X X

ψH SC16-SC30 * * * 100% * * * 100%

Table 8
Relative SC performance improvement between WORST and BEST.

ψL ψH

→BwSlΔ (%)WORST BEST →InvAvΔ (%)WORST BEST →BwSlΔ (%)WORST BEST →InvAvΔ (%)WORST BEST

1RIS 2RIS 3RIS Ave. 1RIS 2RIS 3RIS Ave. 1RIS 2RIS 3RIS Ave. 1RIS 2RIS 3RIS Ave.

SC1 5.67 7.67 8.18 7.17 4.06 3.15 2.18 3.13 SC16 20.01 23.66 25.98 23.22 6.74 7.90 8.27 7.64
SC2 5.91 5.04 9.37 6.77 4.69 1.85 3.15 9.90 SC17 28.03 36.73 36.78 33.84 8.24 9.56 9.53 9.11
SC3 8.72 15.73 12.78 12.41 3.01 4.93 1.96 3.30 SC18 15.51 31.24 27.45 24.73 5.58 11.47 9.13 8.73
SC4 2.97 2.01 0.83 1.94 3.61 1.74 1.79 2.38 SC19 19.26 29.68 33.84 27.59 6.37 10.92 10.98 9.43
SC5 7.29 10.49 15.83 11.21 4.06 2.90 3.78 3.58 SC20 17.23 31.54 27.67 25.48 5.06 7.66 7.59 6.77
SC6 12.15 17.21 19.26 16.21 4.24 5.87 5.91 5.34 SC21 18.50 32.12 28.16 26.26 5.29 8.29 6.39 6.66
SC7 8.42 12.44 12.63 11.16 3.48 2.70 3.31 3.17 SC22 21.11 30.67 27.48 26.42 5.19 9.32 4.54 6.35
SC8 12.91 14.73 14.87 14.17 6.23 6.09 3.16 5.16 SC23 26.02 35.56 37.02 32.87 8.85 9.95 10.94 9.91
SC9 8.57 15.59 12.44 12.20 2.17 5.35 2.66 3.39 SC24 29.75 34.82 38.65 34.41 10.52 9.80 9.50 9.94
SC10 10.64 15.32 17.25 14.40 2.49 3.86 3.94 3.43 SC25 18.17 28.23 25.40 23.93 5.29 6.79 6.50 6.19
SC11 3.30 2.97 5.47 3.91 2.86 2.22 1.25 2.11 SC26 20.19 24.87 31.04 25.37 6.39 8.71 8.44 7.85
SC12 5.17 12.35 9.93 9.15 1.51 0.00 4.68 2.06 SC27 17.77 24.50 27.00 23.09 6.54 9.02 7.88 7.81
SC13 5.43 7.60 8.16 7.06 3.78 1.68 2.30 2.59 SC28 20.78 28.50 29.09 26.12 6.75 7.05 6.35 6.71
SC14 10.12 18.21 13.46 13.93 4.17 5.94 4.23 4.78 SC29 24.08 30.39 31.89 28.79 8.78 8.27 7.57 8.20
SC15 3.46 6.98 3.68 4.70 3.22 0.29 2.22 1.91 SC30 19.82 27.88 33.43 27.04 6.12 9.11 8.94 8.05

Ave. 7.38 10.96 10.94 9.76 3.57 3.24 3.10 3.75 Ave. 21.08 30.03 30.73 27.28 6.78 8.92 8.17 7.96

95%CI 8.99 13.63 13.53 11.95 4.15 4.26 3.73 4.77 95%CI 23.16 32.01 32.92 29.14 7.60 9.59 9.07 8.60
5.78 8.28 8.35 7.57 3.00 2.21 2.47 2.73 19.01 28.04 28.54 25.42 5.96 8.25 7.27 7.32
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4.2. Testing the performance of OVAP

In this section we test the performance of the proposed IS strategy (OVAP) by comparing its performance with that of BEST and
WORST. We first benchmark OVAP vs BEST. Table 9 shows numeric results ( →metricΔ (%)OVAP BEST ) for all 30 SCs.

For SCs in ψL, OVAP does not equal BEST, as we observe perfect matches in 57.78% and 46.67% of the scenarios for BwSl and
InvAv, respectively. In these scenarios, the observed differences oscillate between [0.55% – 5.67%] for BwSl and between [0.2% –
4.34%] for InvAv. On SCs in ψH , OVAP is similar to BEST in 93.33% and 84.44% of the scenarios for BwSl and InvAv, respectively. For
the instances where OVAP does not match BEST perfectly, the observed differences oscillate between [1.75% – 3.84%] for BwSl and
between [0.13% – 2.57%] for InvAv. Thus, we can conclude that OVAP is able to obtain results that are very close to those obtained
by BEST, particularly for SCs in ψH . As a consequence, the results obtained for →BwSlΔ (%)WORST OVAP and →InvAvΔ (%)WORST OVAP
(Table 10) are very similar to those obtained for →BwSlΔ (%)WORST BEST and →InvAvΔ (%)WORST BEST (Table 8).

These findings can be summarised as follows:

(2) The OVAP strategy to involve heterogeneous retailers into a partial IS structure (i.e., prioritizing those retailers with larger order’s
variance) performs, according to the levels of retailer heterogeneity,
a. (ψH) similar (or very close) to BEST in 93.33% (BwSl) and 84.44% (InvAv) of the analysed scenarios.
b. (ψL) similar (or very close) to BEST in 57.78% (BwSl) and 46.67% (InvAv) of the analysed scenarios.

(3) The OVAP strategy may obtain bullwhip and inventory reductions of
a. (ψH) ∼27.2% and ∼7.8%, respectively, with respect to the values obtained by WORST.
b. (ψL) ∼9.1% and ∼2.7%, respectively, with respect to the values obtained by WORST.

In order to get further insights on the adoption of the OVAP strategy, we measure its efficiency by comparing the performance
improvement obtained by a partial IS structure (#RIS) with that of a FIS, as per Eq. (11). The behaviour of OVAP can be seen by
plotting the function =f RIS metric(# ,Δ (%))RIS FIS# / . In Fig. 3 we plot f for OVAP and WORST, averaging the results obtained for the 15
SCs of each set (ψL and ψH) and showing the 95% CIs.

Table 9
Relative SC performance differences between OVAP and BEST.

ψL ψH

→BwSlΔ (%)OVAP BEST →InvAvΔ (%)OVAP BEST →BwSlΔ (%)OVAP BEST →InvAvΔ (%)OVAP BEST

1RIS 2RIS 3RIS 1RIS 2RIS 3RIS 1RIS 2RIS 3RIS 1RIS 2RIS 3RIS

SC1 0.84 0.55 1.01 0.46 0.53 0.61 SC16 0.00 1.99 0.00 0.00 1.27 0.73
SC2 5.34 0.00 0.00 4.25 1.85 0.00 SC17 0.00 0.00 1.75 0.00 0.00 2.57
SC3 0.00 0.00 0.00 0.00 0.00 0.00 SC18 0.00 0.00 0.00 0.00 0.00 0.00
SC4 0.83 2.20 1.01 0.64 0.68 0.64 SC19 0.00 0.00 0.00 0.00 0.13 0.00
SC5 0.00 0.68 0.00 0.00 0.22 0.00 SC20 0.00 0.00 0.00 0.00 0.00 0.00
SC6 3.46 0.00 0.00 2.77 0.00 0.00 SC21 0.00 0.00 0.00 0.00 0.00 0.00
SC7 0.00 0.00 1.89 0.00 0.00 0.00 SC22 0.00 0.00 0.00 0.00 0.00 1.19
SC8 0.00 2.50 0.00 0.00 4.14 0.00 SC23 0.00 0.00 0.00 0.00 0.00 0.00
SC9 5.67 0.00 0.00 0.40 0.00 0.00 SC24 0.00 3.84 0.00 0.00 0.00 0.00
SC10 0.00 0.00 0.00 0.66 0.00 0.00 SC25 0.00 0.00 0.00 0.00 0.00 2.13
SC11 1.33 2.66 3.18 1.14 0.21 0.50 SC26 0.00 0.00 0.00 0.00 0.00 0.00
SC12 0.00 0.00 0.00 1.51 1.77 4.34 SC27 0.00 0.00 0.00 0.00 0.00 0.00
SC13 3.04 0.00 0.00 3.78 0.55 0.38 SC28 0.00 0.00 0.00 0.00 0.00 0.00
SC14 1.25 0.00 0.00 0.20 0.00 0.00 SC29 0.00 0.00 0.00 0.00 0.00 1.12
SC15 0.00 1.35 1.47 0.00 0.00 2.36 SC30 0.00 0.00 0.00 0.00 0.00 0.00

Table 10
Relative SC performance differences between OVAP and WORST.

ψL ψH

→BwSlΔ (%)WORST OVAP →InvAvΔ (%)WORST OVAP →BwSlΔ (%)WORST OVAP →InvAvΔ (%)WORST OVAP

1RIS 2RIS 3RIS Ave. 1RIS 2RIS 3RIS Ave. 1RIS 2RIS 3RIS Ave. 1RIS 2RIS 3RIS Ave.

Ave. 5.98 10.67 10.65 9.10 2.50 2.84 2.60 2.65 Ave. 21.08 29.75 30.65 27.16 6.78 8.83 7.68 7.77

95%CI 7.85 13.39 13.38 11.35 3.39 3.83 3.42 3.32 95%CI 23.16 31.75 32.79 28.96 7.60 9.54 8.75 8.45
4.11 7.95 7.92 6.86 1.61 1.85 1.78 1.98 19.00 27.75 28.51 25.36 5.96 8.12 6.61 7.09
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For SCs with ψH , OVAP shows an increasing concave function of the degree of retailer collaboration, while WORST shows an
increasing convex function. Hence, since both curves share common start and end points, OVAP obtains most of the benefits provided
by FIS with a low degree of retailer collaboration, while WORST performs clearly worse than FIS for any degree of retailer colla-
boration. In fact, a 1RIS structure determined according to OVAP is able to achieve an average 44% (57.1%) of the total BwSl (InvAv)
reduction provided by a FIS, while a similar structure selected according to WORST is only able to achieve an average 6.9% (16%) of
the total BwSl (InvAv) reduction provided by a FIS. Similarly, a 3RIS structure according to OVAP is able to achieve most of the
benefits provided by a FIS (around 86% for both BwSl and InvAv), while a similar structure according to WORST does not provide
more than 42% of the benefits of a FIS.

For SCs with ψL, OVAP shows an increasing quasi-linear function for BwSl, which is reasonable, since retailers are quite similar.
However, WORST still performs significantly worse than OVAP, showing an increasing convex function. InvAv shows overlapping
results, as foreseeable from the results shown in Table 7. As a summary, we can conclude the following:

(4) The partial IS structure defined by OVAP in a SC with highly heterogeneous retailers performs only marginally worse than the FIS in terms
of BwSl and InvAv, which may not be the case for other partial IS structures.

(5) For a SC where retailers are slightly heterogeneous, the partial IS structure defined by OVAP performs proportional to the FIS (according to
the number of retailers involved) in terms of BwSl, which may not be the case for other partial IS structures.

5. Industrial recommendations and concluding remarks

5.1. Industrial recommendations

The results in the previous section show that the strategy selected for retailers’ adoption of IS is key to improve SC performance.
This strategy is particularly relevant when retailers are highly heterogeneous (i.e., they have different operational configurations
and/or customer demand). Conversely, a bad strategy may undermine investments in technology and efforts to establish

Fig. 3. BwSlΔ (%)RIS FIS# / and InvAvΔ (%)RIS FIS# / for OVAP and WORST.
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collaboration practices due to the poor results obtained. Therefore, the strategy to incorporate retailers in IS needs to be carefully
designed.

A first step for this design is to assess the heterogeneity of the retailers in the SC. Prior to implementing IS, information about
retailers’ demand (and other operational features such as the forecasting period or lead times) are unknown to SC managers, as they
only have information about retailers’ orders. As such, a way to assess the heterogeneity of retailers is to compute the coefficient of
variation of retailers’ order variance, as described in Section 3.3. This single measure provides a simple indicator to estimate the
levels of retailer heterogeneity, since it does not require obtaining and analysing a high amount of information from retailers.

If retailers show a high levels of heterogeneity, managers may adopt the OVAP strategy, i.e. selecting the retailers with higher
order variance to be first included in the IS strategy. This strategy has been shown to achieve the highest bullwhip and inventory
reduction for most scenarios analysed (i.e., ∼93% for bullwhip and ∼84% for inventory). In addition, a partial IS structure im-
plemented using the OVAP strategy is able to achieve a sizeable part of the total benefits from full IS: i.e. including just one of the four
retailers in IS captures around 50% of the total benefits of full IS both in terms of bullwhip effect and average inventory reduction; by
including an additional retailer these benefits rise up to around 70%. These results provide further insights for conducting a trade-off
analysis for determining the target number of collaborative retailers. More specifically, by assuming a linear increase of costs with the
number of retailers involved in IS, a cost/benefit analysis may show, counterintuitively, that, in some cases, a partial IS structure is
more beneficial than a full IS structure.

In summary, for a partial IS structure with a given number of collaborating retailers, OVAP presents the following advantages: (1)
it exhibits a good exploitation of IS capability, providing a strategy to incorporate new retailers in the IS scheme by selecting those
with the highest performance improvement; (2) only one type of information is required to prioritize retailers, removing the need of
balancing different types of information and thus simplifying the process of selecting partners for IS.

5.2. Concluding remarks

This work analyses issues related to the implementation of the information sharing practice on heterogeneous retailers (i.e., they
may have different operational configurations and/or customer demand, thus producing different order patterns) when only a partial
collaboration can be achieved (i.e., due to several barriers only some retailers are going to share information upstream). Since
retailers are heterogeneous, the benefits achieved by information sharing may depend critically on the specific retailers that are
involved and thus, the strategy adopted to include retailers in the information sharing scheme may have a significant impact on
supply chain performance. Therefore, it is important to determine the impact of the adopted strategy on supply chain performance in
order to implement information sharing at retailers, and to devise a strategy to share information with the retailers who potentially
provide the highest performance improvement, considering that upstream members often lack of visibility on retailers’ internal
processes and policies. To this aim, we propose to adopt a strategy based on retailers’ order variance (OVAP) (i.e., retailers with
higher order variance are potentially better partners for information sharing) and to quantify the benefits of adopting such strategy in
terms of bullwhip and average inventory reductions.

To accomplish the research objectives, we build a four echelon supply chain model with four retailers using SCOPE (a Multi-Agent
based simulation tool), to analyse different partial IS scenarios at retailers. We generate a test-bed of 30 different SCs where retailers
are heterogeneous (i.e., they have different market demands, lead times and forecasting period). We adopt the coefficient of variation
of retailers’ order variance as a measure of the levels of retailer heterogeneity. Finally, we use two benchmarking strategies, i.e., BEST
and WORST. The former takes use of the results obtained from the simulations to identify and select the retailers who provide the best
performance for the whole SC; similarly, the latter selects the retailers who provide the worst performance for the whole supply
chain.

Results show that the adopted strategy to implement information sharing at retailers has a significant impact on supply chain
performance, particularly for highly heterogeneous retailers. The proposed strategy OVAP performs almost identically to BEST
(93.33% (Bullwhip Slope) and 84.44% (Systemic Inventory Level) of the analysed scenarios) for highly heterogeneous retailers,
obtaining an average (∼27.2%) bullwhip and (∼7.8%) inventory improvement over WORST. Thus, adopting the OVAP strategy to
involve retailers in information sharing ensures exploitation of information sharing capability with heterogeneous retailers without
the need of prior access to retailers’ private information.

The present study has some limitations that may open room for future research. First of all, the number of retailers was fixed. A
higher number of retailers may reduce the levels of retailer heterogeneity under the boundary conditions. How is the number of
retailers related to the levels of retailer heterogeneity? In addition, due to the inherent complexity of the problem under analysis, the
study has been limited to the implementation of information sharing at retailers. It would be of interest to extend this research to
other echelons of the chain, e.g., is the strategy adopted to implement information sharing at heterogeneous wholesalers also relevant
to supply chain performance? How important is wholesaler heterogeneity for information sharing? Is OVAP also efficient at upstream
echelons of the chain? How does the downstream supply chain/information sharing structure impact on the implementation of
information sharing in the upstream echelons? Finally, it would be interesting to perform an integrated study of the implementation
of partial information sharing in the supply chain as a whole (i.e., considering all echelons and all nodes) with heterogeneous
members, and study the interactions that may arise between the different echelons. Naturally, in this type of analysis the structure of
the supply chain may also play an important role.
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