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MULTIPOLAR HARDY INEQUALITIES ON RIEMANNIAN MANIFOLDS
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Abstract. We prove multipolar Hardy inequalities on complete Riemannian manifolds, providing
various curved counterparts of some Euclidean multipolar inequalities due to Cazacu and Zuazua
[Improved multipolar Hardy inequalities, 2013]. We notice that our inequalities deeply depend on
the curvature, providing (quantitative) information about the deflection from the flat case. By using
these inequalities together with variational methods and group-theoretical arguments, we also establish
non-existence, existence and multiplicity results for certain Schrödinger-type problems involving the
Laplace-Beltrami operator and bipolar potentials on Cartan-Hadamard manifolds and on the open
upper hemisphere, respectively.
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1. Introduction 1

The classical unipolar Hardy inequality (or, uncertainty principle) states that if n ≥ 3, then 2∫
Rn

|∇u|2dx ≥ (n − 2)2

4

∫
Rn

u2

|x|2 dx, ∀u ∈ C∞
0 (Rn); 3

here, the constant (n−2)2

4 is sharp and not achieved. Many efforts have been made over the last two decades 4

to improve/extend Hardy inequalities in various directions. One of the most challenging research topics in this 5

direction is the so-called multipolar Hardy inequality. Such kind of extension is motivated by molecular physics 6

and quantum chemistry/cosmology. Indeed, by describing the behavior of electrons and atomic nuclei in a 7

molecule within the theory of Born-Oppenheimer approximation or Thomas−Fermi theory, particles can be 8

modeled as certain singularities/poles x1, . . . , xm ∈ Rn, producing their effect within the form x �→ |x − xi|−1, 9

i ∈ {1, . . . , m}. Having such mathematical models, several authors studied the behavior of the operator with 10
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inverse square potentials with multiple poles, namely1

L := −Δ −
m∑

i=1

μ+
i

|x − xi|2 ,2

see Bosi, Dolbeaut and Esteban [5], Cao and Han [7], Felli, Marchini and Terracini [16], Guo, Han and Niu [18],3

Lieb [29], Adimurthi [1], and references therein. Very recently, Cazacu and Zuazua [10] proved an optimal4

multipolar counterpart of the above (unipolar) Hardy inequality, i.e.,5 ∫
Rn

|∇u|2dx ≥ (n − 2)2

m2

∑
1≤i<j≤m

∫
Rn

|xi − xj |2
|x − xi|2|x − xj |2 u2dx, ∀u ∈ C∞

0 (Rn), (1.1)

where n ≥ 3, and x1, . . . , xm ∈ Rn are different poles; moreover, the constant (n−2)2

m2 is optimal. By using the6

paralelogrammoid law, (1.1) turns to be equivalent to7

∫
Rn

|∇u|2dx ≥ (n − 2)2

m2

∑
1≤i<j≤m

∫
Rn

∣∣∣∣ x − xi

|x − xi|2 − x − xj

|x − xj |2
∣∣∣∣
2

u2dx, ∀u ∈ C∞
0 (Rn). (1.2)

All of the aforementioned works considered the flat/isotropic setting where no external force is present. Once8

the ambient space structure is perturbed, coming for instance by a magnetic or gravitational field, the above9

results do not provide a full description of the physical phenomenon due to the presence of the curvature.10

In order to discuss such a curved setting, we put ourselves into the Riemannian realm, i.e., we consider an11

n(≥ 3)-dimensional complete Riemannian manifold (M, g), dg : M × M → [0,∞) is its usual distance function12

associated to the Riemannian metric g, dvg is its canonical volume element, expx : TxM → M is its standard13

exponential map, and ∇gu(x) is the gradient of a function u : M → R at x ∈ M , respectively. Clearly, in the14

curved setting of (M, g), the vector x−xi and distance |x−xi| should be reformulated into a geometric context15

by considering exp−1
xi

(x) and dg(x, xi), respectively. Note that16

∇gdg(·, y)(x) = −exp−1
x (y)

dg(x, y)
for every y ∈ M, x ∈ M \ ({y} ∪ cut(y)),17

where cut(y) denotes the cut-locus of y on (M, g). In this setting, a natural question arises: if Ω ⊆ M is an18

open domain and S = {x1, . . . , xm} ⊂ Ω is the set of distinct poles, can we prove19 ∫
Ω

|∇gu|2dvg ≥ (n − 2)2

m2

∑
1≤i<j≤m

∫
Ω

Vij(x)u2dx, ∀u ∈ C∞
0 (Ω), (1.3)

where20

Vij(x) =
dg(xi, xj)2

dg(x, xi)2dg(x, xj)2
or Vij(x) =

∣∣∣∣∇gdg(x, xi)
dg(x, xi)

− ∇gdg(x, xj)
dg(x, xj)

∣∣∣∣
2

?21

Clearly, in the Euclidean space Rn, inequality (1.3) corresponds to (1.1) and (1.2), for the above choices of Vij ,22

respectively. It turns out that the answer deeply depends on the curvature of the Riemannian manifold (M, g).23

Indeed, if the Ricci curvature verifies Ric(M, g) ≥ c0(n − 1)g for some c0 > 0 (as in the case of the n-24

dimensional unit sphere Sn), we know by the theorem of Bonnet-Myers that (M, g) is compact; thus, we may25

use the constant functions u ≡ c ∈ R as test-functions in (1.3), and we get a contradiction. However, when26

(M, g) is a Cartan−Hadamard manifold (i.e., complete, simply connected Riemannian manifold with non-27

positive sectional curvature), we can expect the validity of (1.3), see Theorems 1.1 and 1.3 and suitable Laplace28

comparison theorems, respectively.29
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Accordingly, the primary aim of the present paper is to investigate multipolar Hardy inequalities on complete 1

Riemannian manifolds. We emphasize that such a study requires new technical and theoretical approaches. In 2

fact, we need to explore those geometric and analytic properties which are behind of the theory of multipolar 3

Hardy inequalities in the flat context, formulated now in terms of curvature, geodesics, exponential map, etc. 4

We notice that striking results were also achieved recently in the theory of unipolar Hardy-type inequalities on 5

curved spaces. The pioneering work of Carron [9], who studied Hardy inequalities on complete non-compact 6

Riemannian manifolds, opened new perspectives in the study of functional inequalities with singular terms 7

on curved spaces. Further contributions have been provided by D’Ambrosio and Dipierro [11], Kombe and 8

Özaydin [22,23], Xia [39], and Yang, Su and Kong [40], where various improvements of the usual Hardy inequality 9

is presented on complete, non-compact Riemannian manifolds. Moreover, certain unipolar Hardy and Rellich 10

type inequalities were obtained on non-reversible Finsler manifolds by Farkas, Kristály and Varga [15], and 11

Kristály and Repovs [27]. 12

In the sequel we shall present our results; for further use, let Δg be the Laplace-Beltrami operator on (M, g). 13

Let m ≥ 2, S = {x1, . . . , xm} ⊂ M be the set of poles with xi 
= xj if i 
= j, and for simplicity of notation, let 14

di = dg(·, xi) for every i ∈ {1, . . . , m}. Our first result reads as follows. 15

Theorem 1.1 (Multipolar Hardy inequality I). Let (M, g) be an n-dimensional complete Riemannian manifold 16

and S = {x1, . . . , xm} ⊂ M be the set of distinct poles, where n ≥ 3 and m ≥ 2. Then 17

∫
M

|∇gu|2dvg ≥ (n − 2)2

m2

∑
1≤i<j≤m

∫
M

∣∣∣∣∇gdi

di
− ∇gdj

dj

∣∣∣∣
2

u2dvg 18

+
n− 2

m

m∑
i=1

∫
M

diΔgdi − (n − 1)
d2

i

u2dvg, ∀u ∈ C∞
0 (M). (1.4) 19

Moreover, in the bipolar case (i.e., m = 2), the constant
(n − 2)2

m2
=

(n − 2)2

4
is optimal in (1.4). 20

Remark 1.2. 21

(a) The proof of inequality (1.4) is based on a direct calculation. If m = 2, the local behavior of geodesic 22

balls implies the optimality of the constant (n−2)2

m2 = (n−2)2

4 ; in particular, the second term is a lower order 23

perturbation of the first one of the RHS (independently of the curvature). 24

(b) The optimality of (n−2)2

m2 seems to be a hard nut to crack. A possible approach could be a fine Agmon- 25

Allegretto-Piepenbrink-type spectral estimate developed by Devyver [12] and Devyver, Fraas and Pin- 26

chover [13] whenever (M, g) has asymptotically non-negative Ricci curvature (see Pigola, Rigoli and 27

Setti [32], Cor. 2.17, p. 44). Indeed, under this curvature assumption one can prove that the operator 28

−Δg − W is critical (see [13], Def. 4.3), where 29

W =
(n − 2)2

m2

∑
1≤i<j≤m

∣∣∣∣∇gdi

di
− ∇gdj

dj

∣∣∣∣
2

+
n − 2

m

m∑
i=1

diΔgdi − (n − 1)
d2

i

. 30

Although expected, we have no full control on the second summand with respect to the first one in W , i.e., 31

the latter term could compete with the ’leading’ one; clearly, in the Euclidean setting no such competition is 32

present, thus the optimality of (n−2)2

m2 immediately follows by the criticality of W . It remains to investigate 33

this issue in a forthcoming study. 34

(c) We emphasize that the second term in the RHS of (1.4) has a crucial role. Indeed, on one hand, when 35

the Ricci curvature verifies Ric(M, g) ≥ c0(n − 1)g for some c0 > 0, one has that di(x) = gd(x, xi) ≤ 36

π/
√

c0 for every x ∈ M and by the Laplace comparison theorem, we have that diΔgdi − (n − 1) ≤ 37
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(n − 1)(
√

c0di cot(
√

c0di) − 1) < 0 for di > 0, i.e. for every x 
= xi. Thus, this term modifies the original1

problem (1.3) by filling the gap in a suitable way. On the other hand, when (M, g) is a Cartan−Hadamard2

manifold, one has diΔgdi − (n − 1) ≥ 0, and inequality (1.4) implies (1.3). This result will be resumed3

in Corollary 4.1 (i). In particular, when M = Rn is the Euclidean space, then expx(y) = x + y for every4

x, y ∈ Rn and |x|Δ|x| = n − 1 for every x 
= 0; therefore, Theorem 1.1 and the criticality of −Δ − W5

immediately yield the main result of Cazacu and Zuazua [10], i.e., inequality (1.2) (and equivalently (1.1)).6

For further use, we notice that K ≥ c (resp. K ≤ c) means that the sectional curvature on (M, g) is bounded7

from below (resp. above) by c ∈ R at any point and direction.8

For every c ∈ R, let sc, ctc : [0,∞) → R be defined by9

sc(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sin(
√

cr)√
c

if c > 0,

r if c = 0,

sinh(
√−cr)√−c

if c < 0,

and ctc(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
c cot(

√
cr) if c > 0,

1
r

if c = 0,

√−c coth(
√−cr) if c < 0.

(1.5)

Although the paralelogrammoid law in the Euclidean setting provides the equivalence between (1.1) and (1.2),10

this property is no longer valid on generic manifolds. However, a curvature-based quantitative paralelogrammoid11

law and a Toponogov-type comparison result provide a suitable counterpart of inequality (1.1):12

Theorem 1.3 (Multipolar Hardy inequality II). Let (M, g) be an n-dimensional complete Riemannian13

manifold with K ≥ k0 for some k0 ∈ R and let S = {x1, . . . , xm} ⊂ M be the set of distinct poles belonging to14

a strictly convex open set S̃ ⊂ M , where n ≥ 3 and m ≥ 2. Then we have the following inequality:15

∫
S̃

|∇gu|2dvg ≥4(n − 2)2

m2

∑
1≤i<j≤m

∫
S̃

s2
k0

(
dij

2

)
didjsk0(di)sk0(dj)

u2dvg +
∑

1≤i<j≤m

∫
S̃

Rij(k0)u2dvg

+
n − 2

m

m∑
i=1

∫
S̃

diΔgdi − (n − 1)
d2

i

u2dvg, ∀u ∈ C∞
0 (S̃), (1.6)

where dij = dg(xi, xj) and16

Rij(k0) =

⎧⎪⎨
⎪⎩

1
d2

i

+
1
d2

j

− 2
k0didj

(
1

sk0(di)sk0(dj)
− ctk0(di)ctk0(dj)

)
, if k0 
= 0,

0, if k0 = 0.

17

Remark 1.4. When (M, g) is a Cartan−Hadamard manifold and k0 ≤ 0, one has that Rij(k0) ≥ 0; thus we18

obtain a similar result as in (1.3); the precise statement will be given in Corollary 4.1 (ii).19

Applications. As we already noticed, multipolar Hardy inequalities have been applied in the flat case to guaranty20

existence and uniqueness of solutions for various elliptic PDEs. If the particles (e.g. the fermions appearing in21

the Thomas−Fermi theory, see Lieb [29]) are distributed in a curved space, the aforementioned works cannot22

be applied. For instance, if some external forces perturb the flat model (present as a magnetic or gravitational23

field), the curvature will appear. Such a typical case occurs in the study of classical particles in the Lobachevsky24

hyperbolic model or spherical Riemannian model, described recently by Kudryashov, Kurochkin, Ovsiyuk and25

Red’kov [28], and Cariñena, Rañada and Santander [8].26
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Motivated by the latter investigations on curved frameworks, we consider two model Schrödinger-type equa- 1

tions involving bipolar potentials in two different geometrical settings, namely, in the negatively and positively 2

curved case, where our multipolar Hardy inequalities can be successfully applied: 3

A. Non-positively curved case. Let (M, g) be an n(≥ 3)-dimensional Cartan−Hadamard manifold with K ≥ k0 4

for some k0 ≤ 0, and S = {x1, x2} ⊂ M be the set of poles. By keeping the previous notations, we consider the 5

problem 6

−Δgu + V (x)u = λ
s2
k0

(
d12
2

)
d1d2sk0(d1)sk0(d2)

u + μW (x)f(u) in M, (Pμ
M ) 7

where V, W : M → R are positive potentials, λ ∈ [0, (n − 2)2
)

is fixed, μ ≥ 0 is a parameter, and the continuous 8

function f : R → R is sublinear at infinity. In Theorem 4.3 we prove that problem (Pμ
M ) has only the zero 9

solution for small values of μ, while it exists μ0 > 0 such that (Pμ
M ) has two distinct weak solutions in a 10

suitable functional space whenever μ ≥ μ0. 11

12

B. Positively curved case. If Sn
+ denotes the open upper hemisphere and S = {x1, x2} ⊂ Sn

+ is the set of poles, 13

we study the Dirichlet problem 14⎧⎨
⎩−Δgu + C(n, β)u = λ

∣∣∣∣∇gd1

d1
− ∇gd2

d2

∣∣∣∣
2

u + |u|p−2u, in Sn
+

u = 0, on ∂Sn
+,

(PSn
+
) 15

where g is the usual Riemannian structure on the unit sphere Sn inherited by Rn+1, λ ∈ [0, (n−2)2

4 ) is fixed, 16

C(n, β) > 0 is given in Corollary 4.5 and p ∈ (2, 2∗); hereafter, 2∗ = 2n/(n−2) is the critical Sobolev exponent. In 17

Theorem 4.6 we prove the existence of infinitely many solutions for (PSn
+
); moreover, by using group-theoretical 18

arguments, we provide qualitative results on the solutions concerning their symmetries whenever the poles x1 19

and x2 are in specific positions. 20

The plan of the paper is as follows. In Section 2 we present a series of preparatory definitions and results 21

which are used throughout the paper. In Section 3 we prove the multipolar Hardy inequalities, i.e., Theorems 22

1.1 & 1.3. In Section 4 we study problems (Pμ
M ) and (PSn

+
), while in Section 5 we formulate some remarks 23

concerning further questions/perspectives. 24

2. Preliminaries 25

Let (M, g) be an n−dimensional complete Riemannian manifold (n ≥ 3). As usual, TxM denotes the tangent 26

space at x ∈ M and TM =
⋃

x∈M

TxM is the tangent bundle. Let dg : M ×M → [0,∞) be the distance function 27

associated to the Riemannian metric g, and Br(x) = {y ∈ M : dg(x, y) < r} be the open geodesic ball with 28

center x ∈ M and radius r > 0. If dvg is the canonical volume element on (M, g), the volume of a bounded 29

open set S ⊂ M is Volg(S) =
∫

S

dvg. The behaviour of the volume of small geodesic balls can be expressed as 30

follows, see Gallot, Hulin and Lafontaine [17]; for every x ∈ M we have 31

Volg(Br(x)) = ωnrn (1 + o(r)) as r → 0. (2.1)

Let u : M → R be a function of class C1. If (xi) denotes the local coordinate system on a coordinate 32

neighbourhood of x ∈ M , and the local components of the differential of u are denoted by ui = ∂u
∂xi

, then the 33

local components of the gradient ∇gu are ui = gijuj . Here, gij are the local components of g−1 = (gij)−1. In 34

particular, for every x0 ∈ M one has the eikonal equation 35

|∇gdg(x0, ·)| = 1 a.e. on M. (2.2)
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In fact, relation (2.2) is valid for every point x ∈ M outside of the cut-locus of x0 (which is a null measure set).1

When no confusion arises, if X, Y ∈ TxM , we simply write |X | and 〈X, Y 〉 instead of the norm |X |x and2

inner product gx(X, Y ) = 〈X, Y 〉x, respectively. The Lp(M) norm of ∇gu(x) ∈ TxM is given by3

‖∇gu‖Lp(M) =
(∫

M

|∇gu|pdvg

)1/p

.4

The space H1
g (M) is the completion of C∞

0 (M) with respect to the norm5

‖u‖H1
g(M) =

√
‖u‖2

L2(M) + ‖∇gu‖2
L2(M).6

The Laplace-Beltrami operator is given by Δgu = div(∇gu) whose expression in a local chart of associated7

coordinates (xi) is Δgu = gij( ∂2u
∂xi∂xj

− Γ k
ij

∂u
∂xk

), where Γ k
ij are the coefficients of the Levi−Civita connection.8

In the sequel, we shall explore the following comparison results (see Shen [35], Wu and Xin [38], Thms. 6.19

and 6.3, Pigola, Rigoli and Setti [32], Thm. 2.4):10

• Laplace comparison theorem I: if K ≤ c for some c ∈ R, then11

Δgdg(x0, x) ≥ (n − 1)ctc(dg(x0, x)); (2.3)

• Laplace comparison theorem II: if K ≥ k0 for some k0 ∈ R, then12

Δgdg(x0, x) ≤ (n − 1)ctk0(dg(x0, x)), (2.4)

where these relations are understood in the distributional sense. Note that in (2.4) it is enough to have the13

lower bound (n − 1)k0 for the Ricci curvature.14

3. Multipolar Hardy inequalities: proof of Theorems 1.1 and 1.315

Proof of Theorem 1.1. Let E =
m∏

i=1

d2−n
i and fix u ∈ C∞

0 (M) arbitrarily. A direct calculation on the set M \16 ⋃m
i=1({xi} ∪ cut(xi)) yields that17

∇g

(
uE− 1

m

)
= E− 1

m ∇gu +
n − 2

m
uE− 1

m

m∑
i=1

∇gdi

di
·18

Integrating the latter relation, the divergence theorem and eikonal equation (2.2) give that19

∫
M

∣∣∣∇g

(
uE− 1

m

)∣∣∣2 E
2
m dvg =

∫
M

|∇gu|2dvg +
(n − 2)2

m2

∫
M

∣∣∣∣∣
m∑

i=1

∇gdi

di

∣∣∣∣∣
2

u2dvg20

+
n − 2

m

m∑
i=1

∫
M

〈
∇gu

2,
∇gdi

di

〉
dvg21

=
∫

M

|∇gu|2dvg +
(n − 2)2

m2

∫
M

∣∣∣∣∣
m∑

i=1

∇gdi

di

∣∣∣∣∣
2

u2dvg22

− n − 2
m

m∑
i=1

∫
M

div
(∇gdi

di

)
u2dvg.23

24
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Due to (2.2), we have 1

div
(∇gdi

di

)
=

diΔgdi − 1
d2

i

, i ∈ {1, . . . , m}. 2

Thus, an algebraic reorganization of the latter relation provides an Agmon-Allegretto-Piepenbrink-type multi- 3

polar representation 4∫
M

|∇gu|2dvg− (n − 2)2

m2

∑
1≤i<j≤m

∫
M

∣∣∣∣∇gdi

di
− ∇gdj

dj

∣∣∣∣
2

u2dvg =
∫

M

∣∣∣∇g

(
uE−1/m

)∣∣∣2 E2/mdvg+
n− 2

m

m∑
i=1

Ki(u),

(3.1)

where Ki(u) =
∫

M

diΔgdi − (n − 1)
d2

i

u2dvg. Inequality (1.4) directly follows by (3.1). 5

In the sequel, we deal with the optimality of the constant (n−2)2

m2 in (1.4) when m = 2. In this case the right 6

hand side of (1.4) behaves as (n−2)2

4 dg(x, xi)−2 whenever x → xi and by the local behavior of the geodesic balls 7

(see (2.1)) we may expect the optimality of (n−2)2

4 . In order to be more explicit, let Ai[r, R] = {x ∈ M : r ≤ 8

di(x) ≤ R} for r < R and i ∈ {1, . . . , m}. If 0 < r � R are within the range of (2.1), a layer cake representation 9

yields for every i ∈ {1, . . . , m} that 10∫
Ai[r,R]

d−n
i dvg =

Volg(BR(xi))
Rn

− Volg(Br(xi))
rn

+ n

∫ R

r

Volg(Bρ(xi))ρ−1−ndρ 11

= o(R) + nωn log
R

r
· (3.2) 12

Let S = {x1, x2} be the set of poles, x1 
= x2. Let ε ∈ (0, 1) be small enough such that it belongs to the range 13

of (2.1), and B2
√

ε(x1) ∩ B2
√

ε(x2) = ∅. Let 14

uε(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
(

di(x)
ε2

)
log
(

1
ε

) di(x)
2−n

2 , if x ∈ Ai[ε2, ε];

2 log
( √

ε
di(x)

)
log
(

1
ε

) di(x)
2−n

2 , if x ∈ Ai[ε,
√

ε];

0, otherwise,

15

with i ∈ {1, 2}. Note that uε ∈ C0(M), having compact support
⋃2

i=1 Ai[ε2,
√

ε] ⊂ M ; in fact, uε can be used 16

as a test function in (1.4). For later use let us denote by ε∗ = 1

log( 1
ε )2 , 17

Iε =
∫

M

|∇guε|2dvg, Lε =
∫

M

〈∇gd1,∇gd2〉
d1d2

u2
εdvg, Kε =

2∑
i=1

∫
M

diΔgdi − (n − 1)
d2

i

u2
εdvg 18

and 19

Jε =
∫

M

[
1
d2
1

+
1
d2
2

]
u2

εdvg. 20

The proof is based on the following claims: 21

Iε − μHJε = O(1), Lε = O( 4
√

ε) and Kε = O( 4
√

ε) as ε → 0, (3.3)

and 22

lim
ε→0

Jε = +∞. (3.4)
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The above properties can be obtained by direct computations, based on the estimates (2.1), (3.2) and1 ∣∣∣∣Δgdi − n − 1
di

∣∣∣∣ ≤ 1 a.e. in B√
ε(xi),2

(for ε > 0 small enough), see Kristály and Repovs [27]. Combining relations (3.3) and (3.4) with inequality (1.4),3

we have that4

μH ≤ Iε − n−2
2 Kε

Jε − 2Lε
≤ Iε + n−2

2 |Kε|
Jε − 2|Lε| =

μHJε + O(1)
Jε + O( 4

√
ε)

→ μH as ε → 0,5

which concludes the proof. �6

Remark 3.1. Let us assume that in Theorem 1.1, (M, g) is a Riemannian manifold with sectional curvature7

verifying K ≤ c. By the Laplace comparison theorem I (see (2.3)) we have:8

∫
M

|∇gu|2dvg ≥ (n − 2)2

m2

∑
1≤i<j≤m

∫
M

∣∣∣∣∇gdi

di
− ∇gdj

dj

∣∣∣∣
2

u2dvg9

+
(n − 2)(n − 1)

m

m∑
i=1

∫
M

Dc(di)
d2

i

u2dvg, ∀u ∈ C∞
0 (M), (3.5)10

where Dc(r) = rctc(r) − 1, r ≥ 0. In addition, if (M, g) is a Cartan−Hadamard manifold with K ≤ c ≤ 0,11

then Dc(r) ≥ 3|c|r2

π2+|c|r2 for all r ≥ 0. Accordingly, stronger curvature of the Cartan−Hadamard manifold implies12

improvement in the multipolar Hardy inequality (3.5).13

Proof of Theorem 1.3. It is clear that14 ∣∣∣∣∇gdi

di
− ∇gdj

dj

∣∣∣∣
2

=
1
d2

i

+
1
d2

j

− 2
〈∇gdi,∇gdj〉

didj
· (3.6)

Let us fix two arbitrary poles xi and xj (i 
= j), and a point x ∈ S̃. We consider the Alexandrov comparison15

triangle with vertexes x̃i, x̃j and x̃ in the space M0 of constant sectional curvature k0, associated to the points16

xi, xj and x, respectively. More precisely, M0 is the n-dimensional hyperbolic space of curvature k0 when k0 < 0,17

the Euclidean space when k0 = 0, and the sphere with curvature k0 when k0 > 0.18

We first prove that the perimeter L(xixjx) of the geodesic triangle xixjx is strictly less than 2π√
k0

; clearly,19

when k0 ≤ 0 we have nothing to prove. Due to the strict convexity of S̃, the unique geodesic segments joining20

pairwisely the points xi, xj and x belong entirely to S̃ and as such, these points are not conjugate to each21

other. Thus, due to do Carmo ([14], Prop. 2.4, p. 218), every side of the geodesic triangle has length ≤ π√
k0

.22

By Klingenberg ([21], Thm. 2.7.12, p. 226) we have that L(xixjx) ≤ 2π√
k0

. Moreover, by the same result of23

Klingenberg, if L(xixjx) = 2π√
k0

, it follows that either xixjx forms a closed geodesic, or xixjx is a geodesic24

biangle (one of the sides has length π√
k0

and the two remaining sides form together a minimizing geodesic of25

length π√
k0

). In both cases we find points on the sides of the geodesic triangle xixjx which can be joined by two26

minimizing geodesics, contradicting the strict convexity of S̃.27

We are now in the position to apply a Toponogov-type comparison result, see Klingenberg ([21], Prop. 2.7.7,28

p. 220); namely, we have the comparison of angles29

γM0 = m ̂(x̃ix̃x̃j) ≤ γM = m ̂(xixxj).30

Therefore, 〈∇gdi,∇gdj〉 = cos(γM ) ≤ cos(γM0).31
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On the other hand, by the cosine-law on the space form M0, see Bridson and Haefliger ([6], p. 24), we have 1⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cosh(
√−k0dij) = cosh(

√−k0di) cosh(
√−k0dj) − sinh(

√−k0di) sinh(
√−k0dj) cos(γM0), if k0 < 0;

cos(
√

k0dij) = cos(
√

k0di) cos(
√

k0dj) + sin(
√

k0di) sin(
√

k0dj) cos(γM0), if k0 > 0;

d2
ij = d2

i + d2
j − 2didj cos(γM0), if k0 = 0.

2

Consequently, 3⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos(γM ) ≤ cosh(
√−k0di) cosh(

√−k0dj) − cosh(
√−k0dij)

sinh(
√−k0di) sinh(

√−k0dj)
, if k0 < 0;

cos(γM ) ≤ cos(
√

k0dij) − cos(
√

k0di) cos(
√

k0dj)
sin(

√
k0di) sin(

√
k0dj)

, if k0 > 0;

cos(γM ) ≤ d2
i + d2

j − d2
ij

2didj
, if k0 = 0,

4

which implies 5

1
d2

i

+
1
d2

j

− 2 cos(γM )
didj

≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4
didj

s2
k0

(
dij

2

)
sk0(di)sk0(dj)

+ Rij(k0), if k0 
= 0;

d2
ij

d2
i d

2
j

, if k0 = 0,

6

where the expression Rij(k0) is given in the statement of the theorem. Relation (3.6), the above inequality 7

and (1.4) imply together (1.6). � 8

4. Applications: bipolar Schrödinger-type equations on curved settings 9

In this section we present two applications in different geometric frameworks. In order to avoid technicalities, 10

we shall restrict our attention to problems with only two poles; the interested reader may extend these results 11

to multiple poles with suitable modifications. 12

4.1. A bipolar Schrödinger-type equation on Cartan−Hadamard manifolds 13

First of all, by using inequalities (1.4) and (1.6), we obtain the following non-positively curved versions of 14

Cazacu and Zuazua’s inequalities (1.2) and (1.1) for multiple poles, respectively: 15

Corollary 4.1. Let (M, g) be an n-dimensional Cartan−Hadamard manifold and let S = {x1, . . . , xm} ⊂ M 16

be the set of distinct poles, with n ≥ 3 and m ≥ 2. Then we have the following inequality: 17∫
M

|∇gu|2dvg ≥ (n − 2)2

m2

∑
1≤i<j≤m

∫
M

∣∣∣∣∇gdi

di
− ∇gdj

dj

∣∣∣∣
2

u2dvg, ∀u ∈ H1
g (M). (4.1)

Moreover, if K ≥ k0 for some k0 ∈ R, then 18

∫
M

|∇gu|2dvg ≥ 4(n − 2)2

m2

∑
1≤i<j≤m

∫
M

s2
k0

(
dij

2

)
didjsk0(di)sk0(dj)

u2dvg, ∀u ∈ H1
g (M). (4.2)

Proof. Since (M, g) is a Cartan−Hadamard manifold, by using inequality (1.4) and the Laplace comparison 19

theorem I (i.e., inequality (2.3) for c = 0), standard approximation procedure based on the density of C∞
0 (M) 20

in H1
g (M) and Fatou’s lemma immediately imply (4.1). Moreover, elementary properties of hyperbolic functions 21

show that Rij(k0) ≥ 0 (since k0 ≤ 0). Thus, the latter inequality and (1.6) yield (4.2). � 22
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In the sequel, let (M, g) be an n-dimensional Cartan−Hadamard manifold (n ≥ 3) with K ≥ k0 for some1

k0 ≤ 0, and S = {x1, x2} ⊂ M be the set of poles. In this subsection we deal with the Schrödinger-type equation2

−Δgu + V (x)u = λ
s2
k0

(
d12
2

)
d1d2sk0(d1)sk0(d2)

u + μW (x)f(u) in M, (Pμ
M )3

where λ ∈ [0, (n − 2)2
)

is fixed, μ ≥ 0 is a parameter, and the continuous function f : [0,∞) → R verifies4

(f1) f(s) = o(s) as s → 0+ and s → ∞;5

(f2) F (s0) > 0 for some s0 > 0, where F (s) =
∫ s

0

f(t)dt.6

According to (f1) and (f2), the number cf = maxs>0
f(s)

s is well defined and positive.7

On the potential V : M → R we require that8

(V1) V0 = inf
x∈M

V (x) > 0;9

(V2) lim
dg(x0,x)→∞

V (x) = +∞ for some x0 ∈ M ,10

and W : M → R is assumed to be positive. Elliptic problems with similar assumptions on V have been11

studied on Euclidean spaces, see e.g. Bartsch, Pankov and Wang [3], Bartsch and Wang [4], Rabinowitz [34]12

and Willem [37].13

Before to state our result, let us consider the functional space14

H1
V (M) =

{
u ∈ H1

g (M) :
∫

M

(|∇gu|2 + V (x)u2
)
dvg < +∞

}
15

endowed with the norm16

‖u‖V =
(∫

M

|∇gu|2 dvg +
∫

M

V (x)u2 dvg

)1/2

.17

The next Rabinowitz-type compactness result (see Rabinowitz [34]) is crucial in the study of weak solutions of18

problem (Pμ
M ):19

Lemma 4.2. If V satisfies (V1) and (V2), the embedding H1
V (M) ↪→ Lp(M) is compact, p ∈ [2, 2∗).20

Proof. Let {uk}k ⊂ H1
V (M) be a bounded sequence in H1

V (M), i.e., ‖uk‖V ≤ η for some η > 0. Let q > 0 be21

arbitrarily fixed; by (V2), there exists R > 0 such that V (x) ≥ q for every x ∈ M \ BR(x0). Thus,22 ∫
M\BR(x0)

(uk − u)2dvg ≤ 1
q

∫
M\BR(x0)

V (x)|uk − u|2 ≤ (η + ‖u‖V )2

q
·23

On the other hand, by (V1), we have that H1
V (M) ↪→ H1

g (M) ↪→ L2
loc(M); thus, up to a subsequence we have24

that uk → u in L2
loc(M). Combining the above two facts and taking into account that q > 0 can be arbitrary25

large, we deduce that uk → u in L2(M); thus the embedding follows for p = 2. Now, if p ∈ (2, 2∗), by using an26

interpolation inequality and the Sobolev inequality on Cartan−Hadamard manifolds (see Hebey [19], Chapt. 8),27

one has28

‖uk − u‖p
Lp(M) ≤ ‖uk − u‖n(p−2)/2

L2∗(M)
‖uk − u‖n(1−p/2∗)

L2(M)29

≤ Cn‖∇g(uk − u)‖n(p−2)/2
L2(M) ‖uk − u‖n(1−p/2∗)

L2(M) ,30

where Cn > 0 depends on n. Therefore, uk → u in Lp(M) for every p ∈ (2, 2∗). �31

The main result of this subsection is as follows.32
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Theorem 4.3. Let (M, g) be an n-dimensional Cartan−Hadamard manifold (n ≥ 3) with K ≥ k0 for some 1

k0 ≤ 0 and let S = {x1, x2} ⊂ M be the set of distinct poles. Let V, W : M → R be positive potentials 2

verifying (V1), (V2) and W ∈ L1(M) ∩ L∞(M) \ {0}, respectively. Let f : [0,∞) → R be a continuous function 3

verifying (f1) and (f2), and λ ∈ [0, (n − 2)2
)

be fixed. Then the following statements hold: 4

(i) Problem (Pμ
M ) has only the zero solution whenever 0 ≤ μ < V0‖W‖−1

L∞(M)c
−1
f ; 5

(ii) There exists μ0 > 0 such that problem (Pμ
M ) has at least two distinct non-zero, non-negative weak solutions 6

in H1
V (M) whenever μ > μ0. 7

Proof. According to (f1), one has f(0) = 0. Thus, we may extend the function f to the whole R by f(s) = 0 8

for s ≤ 0, which will be considered throughout the proof. Fix λ ∈ [0, (n − 2)2
)
. 9

(i) Assume that u ∈ H1
V (M) is a non-zero weak solution of problem (Pμ

M ). Multiplying (Pμ
M ) by u, an 10

integration on M gives that 11∫
M

|∇gu|2 dvg +
∫

M

V (x)u2 dvg = λ

∫
M

s2
k0

(
d12
2

)
d1d2sk0(d1)sk0(d2)

u2dvg + μ

∫
M

W (x)f(u)udvg. 12

By the latter relation, Corollary 4.1 (see relation (4.2)) and the definition of cf , it yields that 13∫
M

|∇gu|2 dvg + V0

∫
M

u2 dvg ≤
∫

M

|∇gu|2 dvg +
∫

M

V (x)u2 dvg 14

= λ

∫
M

s2
k0

(
d12
2

)
d1d2sk0(d1)sk0(d2)

u2dvg + μ

∫
M

W (x)f(u)udvg 15

≤
∫

M

|∇gu|2 dvg + μ‖W‖L∞(M)cf

∫
M

u2 dvg. 16

Consequently, if 0 ≤ μ < V0‖W‖−1
L∞(M)c

−1
f , then u is necessarily 0, a contradiction. 17

(ii) Let us consider the energy functional associated with problem (Pμ
M ), i.e., Eμ : H1

V (M) → R defined by 18

Eμ(u) =
1
2

∫
M

(|∇gu|2 + V (x)u2) dvg − λ

2

∫
M

s2
k0

(
d12
2

)
d1d2sk0(d1)sk0(d2)

u2 dvg − μ

∫
M

W (x)F (u)dvg . 19

One can show that Eμ ∈ C1(H1
V (M), R) and for all u, w ∈ H1

V (M) we have 20

E ′
μ(u)(w) =

∫
M

(〈∇gu,∇gw〉 + V (x)uw) dvg − λ

∫
M

s2
k0

(
d12
2

)
d1d2sk0(d1)sk0(d2)

uw dvg − μ

∫
M

W (x)f(u)wdvg . 21

22

Therefore, the critical points of Eμ are precisely the weak solutions of problem (Pμ
M ) in H1

V (M). By exploring 23

the sublinear character of f at infinity, Corollary 4.1 and Lemma 4.2, one can see that Eμ is bounded from 24

below, coercive and satisfies the usual Palais-Smale condition for every μ ≥ 0. Moreover, by an elementary 25

computation one can see that assumption (f1) is inherited as a sub-quadratic property in the sense that 26

lim
‖u‖V →0

∫
M

W (x)F (u)dvg

‖u‖2
V

= lim
‖u‖V →∞

∫
M

W (x)F (u)dvg

‖u‖2
V

= 0. (4.3)

Due to (f2) and W 
= 0, we can construct a non-zero truncation function u0 ∈ H1
V (M) such that 27∫

M

W (x)F (u0)dvg > 0. Thus, we may define 28

μ0 =
1
2

inf

⎧⎪⎪⎨
⎪⎪⎩

‖u‖2
V∫

M

W (x)F (u)dvg

: u ∈ H1
V (M),

∫
M

W (x)F (u)dvg > 0

⎫⎪⎪⎬
⎪⎪⎭ . 29
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By the relations in (4.3), we clearly have that 0 < μ0 < ∞.1

Let us fix μ > μ0. Then there exists ũμ ∈ H1
V (M) with

∫
M

W (x)F (ũμ)dvg > 0 such that μ >2

‖ũμ‖2
V

2
∫

M

W (x)F (ũμ)dvg

≥ μ0. Consequently,3

c1
μ := inf

H1
V (M)

Eμ ≤ Eμ(ũμ) ≤ 1
2
‖ũμ‖2

V − μ

∫
M

W (x)F (ũμ) < 0.4

Since Eμ is bounded from below and satisfies the Palais-Smale condition, the number c1
μ is a critical value of5

Eμ, i.e., there exists u1
μ ∈ H1

V (M) such that Eμ(u1
μ) = c1

μ < 0 and E ′
μ(u1

μ) = 0. In particular, u1
μ 
= 0 is a weak6

solution of problem (Pμ
M ).7

Standard computations based on Corollary 4.1 and the embedding H1
V (M) ↪→ Lp(M) for p ∈ (2, 2∗) show8

that there exists a sufficiently small ρμ ∈ (0, ‖ũμ‖V ) such that9

inf
‖u‖V =ρμ

Eμ(u) = ημ > 0 = Eμ(0) > Eμ(ũμ),10

which means that the functional Eμ has the mountain pass geometry. Therefore, we may apply the mountain pass11

theorem, see Rabinowitz [34], showing that there exists u2
μ ∈ H1

V (M) such that E ′
μ(u2

μ) = 0 and Eμ(u2
μ) = c2

μ,12

where c2
μ = infγ∈Γ maxt∈[0,1] Eμ(γ(t)), and Γ = {γ ∈ C([0, 1]; H1

V (M)) : γ(0) = 0, γ(1) = ũμ}. Due to the fact13

that c2
μ ≥ inf‖u‖V =ρμ

Eμ(u) > 0, it is clear that 0 
= u2
μ 
= u1

μ. Moreover, since f(s) = 0 for every s ≤ 0, the14

solutions u1
μ and u2

μ are non-negative. �15

Remark 4.4. Theorem 4.3 can be applied on the hyperbolic space Hn = {y = (y1, . . . , yn) : yn > 0} endowed16

with the metric gij(y1, . . . , yn) = δij

y2
n
; it is new even on the Euclidean space Rn, n ≥ 3.17

4.2. A bipolar Schrödinger-type equation on the upper hemisphere18

A positively curved counterpart of (4.1) can be stated as follows by using (1.4) and a Mittag−Leffler expansion19

(the interested reader can establish a similar inequality to (4.2) as well):20

Corollary 4.5. Let Sn
+ be the open upper hemisphere and let S = {x1, . . . , xm} ⊂ Sn

+ be the set of distinct21

poles, with n ≥ 3 and m ≥ 2. Let β = max
i=1,m

dg(x0, xi), where x0 = (0, . . . , 0, 1) is the north pole of the sphere22

Sn and g is the natural Riemannian metric of Sn inherited by Rn+1. Then we have the following inequality:23

‖u‖2
C(n,β) ≥

(n − 2)2

m2

∑
1≤i<j≤m

∫
Sn
+

∣∣∣∣∇gdi

di
− ∇gdj

dj

∣∣∣∣
2

u2 dvg, ∀u ∈ H1
g (Sn

+), (4.4)

where ‖u‖2
C(n,β) =

∫
Sn
+

|∇gu|2dvg + C(n, β)
∫

Sn
+

u2dvg and C(n, β) = (n − 1)(n − 2)
7π2−3(β+π

2 )2

2π2
(

π2−(β+π
2 )2
) .24

Proof. Let M = Sn be the standard unit sphere in Rn+1 and the open upper hemisphere Sn
+ = {y =25

(y1, . . . , yn+1) ∈ Sn : yn+1 > 0}. By Theorem 1.1 we have26 ∫
Sn
+

|∇gu|2 dvg ≥ (n − 2)2

m2

∑
1≤i<j≤m

∫
Sn
+

∣∣∣∣∇gdi

di
− ∇gdj

dj

∣∣∣∣
2

u2 dvg027

+
n − 2

m

m∑
i=1

∫
Sn
+

diΔgdi − (n − 1)
d2

i

u2 dvg, ∀u ∈ C∞
0 (Sn

+).28

29
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Since K ≡ 1, the two-sided Laplace comparison theorem (or a direct computation) shows that Δgdi = (n − 1

1) cot(di). 2

Fix u ∈ C∞
0 (Sn

+). By using the Mittag−Leffler expansion of the cotangent function, i.e., 3

cot t =
1
t

+ 2t

∞∑
k=1

1
t2 − π2k2

, t ∈ (0, π), 4

and the fact that 0 < di < π, i ∈ {1, . . . , m} (up to the poles, which has null measure), one has 5∫
Sn
+

diΔgdi − (n − 1)
d2

i

u2 dvg = −2(n − 1)
∫

Sn
+

∞∑
k=1

u2

π2k2 − d2
i

dvg. 6

Since di < π, we get that 7∫
Sn
+

∞∑
k=2

u2

π2k2 − d2
i

dvg ≤
∫

Sn
+

∞∑
k=2

u2

π2k2 − π2
dvg =

3
4π2

∫
Sn
+

u2dvg. 8

Moreover, since β = max
i=1,m

dg(x0, xi) <
π

2
, one can see that for every x ∈ Sn

+, di(x) = dg(x, xi) ≤ dg(x, x0) + 9

dg(x0, xi) < π
2 + β. Thus, π2 − d2

i > π2 − (β + π
2

)2
> 0, which implies 10∫

Sn
+

u2

π2 − d2
i

dvg ≤ 1

π2 − (β + π
2

)2
∫

Sn
+

u2 dvg. 11

Combining the above two estimates, we have that 12∫
Sn
+

|∇gu|2 dvg + C(n, β)
∫

Sn
+

u2 dvg ≥ (n − 2)2

m2

∑
1≤i<j≤m

∫
Sn
+

∣∣∣∣∇gdi

di
− ∇gdj

dj

∣∣∣∣
2

u2 dvg, 13

where C(n, β) = (n − 1)(n − 2)
7π2−3(β+ π

2 )2

2π2
(

π2−(β+ π
2 )2
) . The latter inequality can be extended to H1

g (Sn
+) by standard 14

approximation argument. � 15

For simplicity, let S = {x1, x2} ∈ Sn
+ be the set of poles. We consider the Dirichlet problem 16⎧⎨

⎩−Δgu + C(n, β)u = λu

∣∣∣∣∇gd1

d1
− ∇gd2

d2

∣∣∣∣
2

+ |u|p−2u, in Sn
+

u = 0, on ∂Sn
+,

(PSn
+
) 17

where g is the natural Riemannian structure on the standard unit sphere Sn inherited by Rn+1, p ∈ (2, 2∗), 18

λ ∈
[
0, (n−2)2

4

)
is fixed and C(n, β) = (n − 1)(n − 2)

7π2−3(β+ π
2 )2

2π2
(

π2−(β+ π
2 )2
) ; hereafter, x0 = (0, . . . , 0, 1) is the north 19

pole of Sn and β = max{dg(x0, x1), dg(x0, x2)}. 20

Theorem 4.6. Let Sn
+ be the open upper hemisphere (n ≥ 3), S = {x1, x2} ⊂ Sn

+ be the set of poles and 21

p ∈ (2, 2∗). The following statements hold: 22

(i) Problem (PSn
+
) has infinitely many weak solutions in H1

g (Sn
+). In addition, if x1 = (a, 0, . . . , 0, b) and 23

x2 = (−a, 0, . . . , 0, b) for some a, b ∈ R with a2 + b2 = 1 and b > 0, then problem (PSn
+
) has a sequence 24

{uk}k∈N of distinct weak solutions in H1
g (Sn

+) of the form 25

uk := uk

(
y1,
√

y2
2 + . . . + y2

n, yn+1

)
= uk

(
y1,
√

1 − y2
1 − y2

n+1, yn+1

)
. 26
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(ii) If n = 5 or n ≥ 7, and x1 = (a, 0, . . . , 0, b), x2 = (−a, 0, . . . , 0, b) for some a, b ∈ R with a2 + b2 = 1 and1

b > 0, then there exists at least sn = [
n

2
] + (−1)n−1 − 2 sequences of sign-changing weak solutions of (PSn

+
)2

in H1
g (Sn

+) whose elements mutually differ by their symmetries.3

Proof. Fix λ ∈ [0, (n−2)2

4 ) arbitrarily. The energy functional E : H1
g (Sn

+) → R associated with problem (PSn
+
) is4

given by5

E(u) =
1
2
‖u‖2

C(n,β) −
λ

2

∫
Sn
+

u2

∣∣∣∣∇gd1

d1
− ∇gd2

d2

∣∣∣∣
2

dvg − 1
p

∫
Sn
+

|u|p dvg.6

It is clear that E ∈ C1(H1
g (Sn

+), R) and its critical points are precisely the weak solutions of (PSn
+
).7

(i) We notice that the embedding H1
g (Sn

+) ↪→ Lp(Sn
+) is compact for every p ∈ (2, 2∗), see e.g. Hebey [19].8

By means of Corollary 4.5, one can prove that the functional E satisfies the assumptions of the symmetric9

version of the mountain pass theorem, see e.g. Jabri ([20], Thm. 11.5) or Rabinowitz ([33], Thm. 9.12), thus10

there exists a sequence of distinct critical points of E which are weak solutions of problem (PSn
+
) in H1

g (Sn
+).11

In particular, let x1 = (a, 0, . . . , 0, b) and x2 = (−a, 0, . . . , 0, b) for some a, b ∈ R with a2 + b2 = 1 and b > 0.12

We notice that in this case β = dg(x0, x1) = dg(x0, x2) = arccos b. We shall prove that the energy functional13

E is invariant w.r.t. the group G0 = idR × O(n − 1) × idR via the action14

ζu(x) = u(ζ−1x)15

for every u ∈ H1
g (Sn

+), ζ ∈ G0 and x ∈ Sn
+. First, since ζ ∈ G0 is an isometry on Rn+1, a change of variables16

easily implies that17

u �→ 1
2
‖u‖2

C(n,β) −
1
p

∫
Sn
+

|u|p dvg18

is G0-invariant. Thus, it remains to focus on the G0-invariance of the functional19

u �→
∫

Sn
+

u2

∣∣∣∣∇gd1

d1
− ∇gd2

d2

∣∣∣∣
2

dvg.20

To do this, we recall that21 ∣∣∣∣∇gd1

d1
− ∇gd2

d2

∣∣∣∣
2

=
1
d2
1

+
1
d2
2

− 2
〈∇gd1,∇gd2〉

d1d2
·22

and ∇gdg(·, y)(x) = − exp−1
x (y)

dg(x,y) for every x, y ∈ Sn
+, x 
= y. According to Udrişte ([36], p. 19), one has23

exp−1
x xi =

di(xi − x cos di)
sindi

, i ∈ {1, 2}, x ∈ Sn
+ \ {xi}.24

Therefore,25

∇gdi(x) = ∇gdg(x, xi) = −exp−1
x (xi)
di

=
x cos di − xi

sin di
, i ∈ {1, 2}, x ∈ Sn

+ \ {xi}. (4.5)

Let ζ ∈ G0, i ∈ {1, 2} and x ∈ Sn
+ \ {xi} be fixed. Since ζxi = xi, it follows that26

di(ζx) = dg(ζx, xi) = dg(ζx, ζxi) = dg(x, xi) = di(x),27

and by (4.5),28

〈∇gdg(ζx, x1),∇gdg(ζx, x2)〉 = 〈∇gdg(x, x1),∇gdg(x, x2)〉.2930
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Summing up the above properties (combined with a trivial change of variable), it follows that the energy 1

functional E is G0-invariant, i.e., E(ζu) = E(u) for every u ∈ H1
g (Sn

+) and ζ ∈ G0. 2

We now can apply the same variational argument as above for the functional E0 = E|HG0 (Sn
+) where 3

HG0(Sn
+) =

{
u ∈ H1

g (Sn
+) : ζu = u for every ζ ∈ G0

}
. Accordingly, one can find a sequence {uk}k∈N ⊂ 4

HG0(Sn
+) of distinct critical points of E0. Moreover, due to the principle of symmetric criticality of Palais [31], 5

the critical points of E0 are also critical points for the original energy functional E , thus weak solutions of 6

problem (PSn
+
). Since uk are G0-invariant functions, they have the form uk := uk(y1,

√
y2
2 + . . . + y2

n, yn+1) = 7

uk(y1,
√

1 − y2
1 − y2

n+1, yn+1), k ∈ N. 8

(ii) Let n = 5 or n ≥ 7, and denote by sn =
[

n
2

]
+ (−1)n−1 − 2. (Note that s6 = 0.) For every j ∈ {1, . . . , sn} 9

we define 10

Gn
j =

⎧⎪⎨
⎪⎩

O(j + 1) × O(n − 2j − 3) × O(j + 1), if j 
= n − 3
2

;

O

(
n − 1

2

)
× O

(
n − 1

2

)
, if j =

n − 3
2

,
11

where O(k) is the orthogonal group in Rk. For a fixed Gn
j , we define the function τj associated to Gn

j as 12

τj(σ) =

⎧⎪⎨
⎪⎩

(σ3, σ2, σ1), if j 
= n − 3
2

and σ = (σ1, σ2, σ3) with σ1, σ2 ∈ Rj+1, σ2 ∈ Rn−2j−3;

(σ3, σ1), if j =
n − 3

2
and σ = (σ1, σ3) with σ1, σ3 ∈ R

n−1
2 .

13

Note that τj /∈ Gn
j , τjG

n
j τ−1

j = Gn
j and τ2

j = idRn−1 . Similarly as in Kristály [26], we introduce the action 14

of the group 15

Gn
j,τj

= idR × 〈Gn
j , τj〉 × idR ⊂ O(n + 1) 16

on the space H1
g (Sn

+) by 17

ζu(x) = u(ζ−1x), (τ̃jζ)u(x) = −u(ζ−1τ̃−1
j x), (4.6)

for every ζ ∈ G̃n
j = idR × Gn

j × idR, τ̃j = idR × τj × idR, u ∈ H1
g (Sn

+) and x ∈ Sn
+. We define the subspace of 18

H1
g (Sn

+) containing all the symmetric points w.r.t. the compact group Gn
j,τj

, i.e., 19

HGn
j,τj

(Sn
+) =

{
u ∈ H1

g (Sn
+) : ζ̃u = u for every ζ̃ ∈ Gn

j,τj

}
. 20

Note that (see Kristály [26], Thm. 3.1) for every j 
= k ∈ {1, 2, . . . , sn} one has 21

HGn
j,τj

(Sn
+) ∩ HGn

k,τk
(Sn

+) = {0}. (4.7)

In a similar way as above, we can prove that the energy functional E is Gn
j,τj

-invariant for every j ∈ {1, . . . , sn} 22

(note that E is an even functional), where the group action on H1
g (Sn

+) is given by (4.6). Therefore, for every 23

j ∈ {1, . . . , sn} there exists a sequence {uj
k}k∈N ⊂ HGn

j,τj
(Sn

+) of distinct critical points of Ej = E|HGn
j,τj

(Sn
+). 24

Again by Palais [31], {uj
k}k∈N ⊂ HGn

j,τj
(Sn

+) are distinct critical points also for E , thus weak solutions for 25

problem (PSn
+
). It is clear that every uj

k is sign-changing (see (4.6)) and according to (4.7), elements in different 26

sequences have mutually different symmetry properties. � 27

Remark 4.7. For n = 6 in Theorem 4.6 (ii), one has s6 = 0; therefore, in this case we cannot apply the above 28

group-theoretical argument to guarantee the existence of sign-changing solutions for problem (PSn
+
). 29
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5. Concluding remarks1

In the present paper we presented some multipolar Hardy inequalities on complete Riemannian manifolds by2

exploring the presence of the curvature and giving some applications in the theory of elliptic equations involving3

bipolar potentials; as far as we know, this is the first study in such a geometrical setting. During the preparation4

of the manuscript we faced several problems which, - in our opinion, - are worth to be tackled in forthcoming5

investigations. In the sequel, we shall formulate some of them:6

(a) As we already pointed out in Remark 1.2 (b), the optimality of (n−2)2

m2 in (1.4) for generic Riemannian man-7

ifolds is not yet understood for m ≥ 3 which requires further studies. We notice that multipolar inequalities8

involving non-uniform weights on complete Riemannian manifolds can also be obtained, following Devyver,9

Fraas and Pinchover [13].10

(b) For simplicity reasons, in Section 4 we considered only some model elliptic problems with familiar growth11

assumptions, i.e., sublinear and subcritical pure power term. However, multipolar Hardy inequalities (cf.12

Thms. 1.1 and 1.3) allow to study other classes of elliptic problems involving other type of nonlinear terms13

(critical, concave-convex, etc.).14

(c) A challenging problem is to study the heat equation involving multiple poles on strip-like domains or curved15

tubes (embedded into appropriate Riemannian manifolds). We notice that in the Euclidean setting such16

equations have been investigated by Baras and Goldstein [2], Krejčǐŕık and Zuazua [24, 25] via Hardy-type17

inequalities; see also references therein. We notice that deep studies already exist concerning linear heat18

equations on Riemannian manifolds having non-negative Ricci curvature which is related to the Perelman’s19

volume non-collapsing result, see Ni [30].20
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[11] L. D’Ambrosio and S. Dipierro, Hardy inequalities on Riemannian manifolds and applications. Ann. Inst. H. Poincaré Anal.47
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