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Ionic polymer-metal composites (IPMCs) are electroactive polymers which transform the mechanical forces into electric signals
and vice versa.The paper proposes an enhanced fractional order transfer function (FOTF) model for IPMCmembrane working as
actuator. In particular the IPMCmodel has been characterized through experimentation, and amore detailed structure of its FOTF
has been determined via optimization routines.Theminimization error was attained comparing the simple genetic algorithms with
the simplex method and considering the error between the experimental and model derived frequency responses as cost functions.

1. Introduction

In the last decade a new breed of polymers, known as elec-
troactive polymers or more commonly EAPs, has emerged
thanks to their electroactive capabilities [1]. Ionic polymer-
metal composites [2] belong to this material class. They bend
if they are solicited by an external electric field and they act
as motion sensor if an external deformation is applied. They
are characterized by several interesting properties such as
high compliance, lightness, and softness. IPMCs exploit ionic
polymers for electrochemical and mechanical transduction
and noble metals as electrodes, and they represent a valid
alternative to the classic actuators and/or sensors. They can
be cut in any shape and size, they are characterized by
large deformations applying very low level of voltage, and
they can work both in a humid or in a wet environment.
These properties make them particularly attractive for pos-
sible applications in very different fields such as robotics,
aerospace, and biomedicine [3, 4].

An intense research has been currently carried out to
improve the IPMC performances in terms of power con-
sumption, developed force, and deformation [5].

Moreover the research efforts have been spent in finding
improved models able to predict the IPMCs behavior both as
actuators and sensors [6].

In the literature several models describing the IPMC as
actuator can be found. In detail, they can be divided into three
categories: white box, black box, and grey box.

The first category, called white box, or physical models, is
based on the underlying physical mechanisms of the IPMC to
develop a system of equations that fully describes the device
response [7]. Numerical implementation via methods as
finite element analysis can be found in the literature [8]. Some
difficulties are presented with physical modeling of IPMC
transducers, such as a complete knowledge of the chemical
and/or physical mechanisms involved in the electromechan-
ical transduction and the direct measurement of some mate-
rial parameters;moreover the numerical implementations are
computationally onerous due to the distributed nature of the
problem solution.

The second approach for modeling IPMC actuators is
called black box and uses a linear [9] or differential [10]
equation to simulate the actuating behavior. Such models,
called also empirical and phenomenological, are based on
the identification of coefficients through a series of curve fits
based on the experimental data.The internal physics is, in this
case, just a minor consideration.

An alternative to the complicated physicalmodels and the
simplistic and not scalable empirical models is the grey-box
models. They comprise the fundamental physical laws into
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time-domain equations or transfer functions and empirically
identified parameters to describe IPMC electromechanical
behavior [11].

The grey-box model identification is often a multiobjec-
tive optimization problem in a multidimensional space since
multiple cost functions can be used for parameters optimal
estimation.

In a previous work, see [12], the authors have already
proposed a fractional grey-box model of an IPMC actuator.
In the present paper two novelties, with respect to [12], are
introduced. The first one is related to the data acquisition. In
fact instead of using, as input, a chirp signal it was applied a
step-by-step frequency sweep.The second one is related to the
structure of the interpolating FOTF; in this paper a further
term has been added to the FOTF, obtaining a more accurate
measurement fitting.

A very popular method in the field of parameter identifi-
cation is the Nelder-Mead unconstrained simplex algorithm
[13].Themethodworks on the exploration of the design space
and does not require any derivative information, being there-
fore suitable for problems with nonsmooth functions. It is
widely used in optimization software tools (i.e., MATLAB) to
solve parameter estimation and similar statistical problems,
when the function values come fromexperimentation and are
thus uncertain or subject to noise [14]. On the other hand,
the simplex method is prone to local minima issues, and the
lack of convergence theory is often reflected in practice as a
numerical breakdown of the algorithm, even for smooth and
well-behaved functions.

Genetic algorithms (GAs), that explore a poorly under-
stood solution space in parallel by intelligent trials, represent
a class of optimization procedures able to face nonconvex
optimization problem and to provide optimal solution avoid-
ing remaining trapped in local minima [15, 16].

In the following, the two methods have been applied
and compared in order to optimize the parameters of the
interpolating FOTF.

The paper is structured as follows. Some introductive
notes on fractional order systems are given in Section 2. A
view on IPMC physics and working principles is presented in
Section 3 in order to give an introduction on such a composite
material; moreover the description of the experimental setup
is given as the basis for understanding the experimental data
used for model identification. In Section 4 the optimized
FOTFs of the IPMC membrane are given, and finally some
conclusions are reported.

2. Fractional Order System

The subject of fractional order calculus or noninteger order
systems, that is, the calculus of integrals and derivatives of
any arbitrary real or complex order, has gained considerable
popularity and importance during the last three decades with
applications in numerous seemingly diverse and widespread
fields of science and engineering [17–19].

Fractional derivatives provide an excellent tool for the
description of memory and hereditary properties of various
materials and processes. This is the main advantage of frac-
tional derivatives in comparison with classical integer-order

models, inwhich such effects are in fact neglected.The advan-
tages of fractional derivatives become apparent in modeling
mechanical and electrical properties of real materials.

The most frequently used definition for the general
fractional differintegral is the Caputo one, see [19]:
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and allows to easilymanage fractional differential equation as
noninteger order transfer function.

The fractional order transfer function of incommensurate
real orders assumes the following form [18]:
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Since in this case the values of fractional exponents
need to be estimated along with the corresponding transfer
function coefficients adequate optimization procedures need
to be used.

3. IPMC: Physics and
Experimental Configuration

3.1. Working Principles andManufacturing. IPMC consists of
a fluorocarbon membrane containing sulfonate groups cov-
ered on both sides with a thin noble metal coating layer. The
IPMC actuator sample is manufactured with three primary
coatings and one secondary coating of platinum. To increase
platinum deposition the dispersing agent polyvinylpyrroli-
done (PVP) has been used with a concentration of 0.001M
[2]. The core of device is based on Nafion, distributed
by DuPont; the characteristics of such an ionic polymer
working in a humid environment allow the IPMC to work
as actuator. The liquid molecules (generally water) which are
mobile in the polymer structure, in fact, are at the basis for
the electrochemical and mechanical transduction; they are
driven by the voltage applied to the polymer via the metallic
electrodes. The metal used to realize the device electrodes is
usually platinum or gold.
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Figure 1: IPMC structure.

Figure 2: Experimental setup: mechanical structure, IPMC mem-
brane, and laser beam.

3.2. Experimental Setup. The IPMC model was developed
considering a configuration of a beam clamped at one end, as
schematized in Figure 1. The pinned end is also used to apply
the electrical stimulus via the electrodes.

The geometric parameters of the IPMC sample, as
reported in Figure 1, are 𝐿

𝑆
= 28mm, 𝐿

𝐶
= 6mm, 𝑡

𝑘
=

200 𝜇m, and𝑊 = 5mm.
While the input signals𝑉in were applied to the IPMCelec-

trodes, the free deformation 𝛿 has been measured through a
laser distance sensor, Baumer Electric OADM 12.

In order to determine the IPMC frequency response,
sinusoidal inputs at different frequencies have been applied.

The considered range is between 50mHz and 50Hz with
an amplitude of 3Vpp, and the following set of frequencies
has been applied:

frequency = [0.05 0.1 0.4 0.7 1 3 7 10 13

17 20 22 25 27 30 31 32 33

34 35 36 37 38 40 43 47 50] .

(5)

Three acquisition sets have been considered, in the
following referred as Acq

1
, Acq
2
, and Acq

3
.

Figure 3 shows the magnitude and the phases of the
acquired signals. The three measurement sets have been
successively acquired starting from the lower frequency
towards the higher one and then back to the lower one.

The sampling frequency is the same for all the sinusoidal
inputs and is equal to 1100Hz.

The mechanical structure gripping the IPMC membrane
and the measurement laser are shown in Figure 2.
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Figure 3: Magnitude and phase for the three acquisition sets.

4. Fractional Order Transfer
Function Modeling

The acquired data shows a second-order like frequency
response; see Figure 3. It is possible to note that, at low
frequency, both the magnitude and the phase of the Bode
diagram show a trend of fractional order.

It is possible to view that the magnitude curve slope is
lower than 20 db/dec, and the phase does not follow integer
order variations.

The high-frequency noise that affects the frequency
response is due to the low quality of the measured signals,
and it mainly affects the phase representation.

These considerations suggest considering a fractional
order model. The following building blocks for the FOTF
have been therefore considered:

(i) 𝐺
1
(𝑠) = 𝑘/𝑠

𝛼
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2

𝑛
)
𝛼2.

The first term allows to model a fractional pole at 𝑠 = 0,
the second one a fractional order pole with time constant 𝜏,
and the third one a second order fractional order term with a
pair of complex poles.

The structure of the complete model for the FOTF if
assumed is as follows:

𝐺 (𝑠) = 𝐺
1
(𝑠) 𝐺
2
(𝑠) 𝐺
3
(𝑠) . (6)

Applications of IPMC as actuators imply the availability
of a good model at low frequency.

The model representation in (6) proves to be a more
accurate model at low frequencies with respect to the one
presented in [12].

Taking into account the sets of available measurements,
four different frequency models have been determined.
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Table 1: FOTF parameters GAs optimized.

𝑘 𝛼 𝜏 𝛼
1

𝛼
2

𝑤
𝑛

𝜉 Error
Model1 on Acq1 data 3.000 0.181 0.766 0.783 1.281 40.273 0.079 21.38%
Model2 on Acq2 data 4.21 0.184 1.216 0.695 1.320 39.233 0.079 21.53%
Model3 on Acq3 data 1.878 0.268 0.392 0.663 1.261 37.876 0.120 22.18%
Mean error model 6.756 0.225 0.847 0.668 1.401 39.867 0.110 21.11%

Table 2: FOTF parameters simplex optimized.

𝑘 𝛼 𝜏 𝛼
1

𝛼
2

𝑤
𝑛

𝜉 Error
Model1 on Acq1 data 0.693 0.330 0.257 0.810 1.132 40.064 0.059 21.81%
Model2 on Acq2 data 1.374 0.300 0.499 0.700 1.222 39.175 0.066 21.45%
Model3 on Acq3 data 2.835 0.225 0.587 0.612 1.300 36.916 0.107 23.25%
Mean error model 0.482 0.376 0.196 0.798 1.101 39.536 0.055 22.82%

The first three are obtained from the measurement sets
Acq
𝑖
, while the fourth one is determined as a model with a

mean error computed over the three measurement sets.
The parameters of the transfer function𝐺(𝑠) that are 𝑘, 𝛼,

𝜏, 𝛼
1
, 𝛼
2
, 𝑤
𝑛
, and 𝜉 have been determined applying both the

simplex method and GAs.
The object function applied during the optimization

procedures takes into account both themodule and the phase
of the FOTF and consists in the sum of two terms:

OBJ1 =
√∑ (𝐺meas − 𝐺sim)

2

√∑𝐺2meas

, (7)

where𝐺meas is the gain of the measured signal and𝐺sim is the
module of the simulated one.

And the second term takes into account the phase

OBJ2 =
√∑ (Phmeas − Phsim)

2

√∑Ph2meas

, (8)

where Phmeas is the phase of the measured signal and Phsim is
the phase of the simulated one.

Tables 1 and 2 report the results related to the FOTF
parameters identification applying GAs and simplex method,
respectively.

The Bode diagrams of the obtained FOTF are given in
Figures 4, 5, 6, 7, 8, 9, 10, and 11.

Figures 4–7 show the frequency responses obtained via
GAs while Figures 8–11 via simplex method.

According to the error provided in Tables 1 and 2 both the
optimization procedures provide a good frequencymatching.

It is worth noticing that the models obtained via GAs
(Figures 4–7) provide a better fitting at low frequencies.

5. Conclusion

The paper proposes an enhanced fractional order transfer
function model of an IPMC membrane working as actuator.
The IPMCmodel has been determined exploiting experimen-
tal data.
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The model was proven to be very accurate at low fre-
quencies, and such frequency matching makes it suitable for
control system design.
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