TREATMENT OF INFECTED TIBIAL NONUNIONS WITH ILIZAROV TECHNIQUE AND BIOACTIVE GLASS

Gianluca Testa¹, Vito Pavone¹, Domenico Aloj², Giacomo Papotto¹, Andrea Vescio¹, Alessandro Massé³, Giuseppe Sessa¹

¹University of Catania, Catania, Italy ²P.O. Sant'Andrea Vercelli, Italy ³CTO Hospital, Turin, Italy

GntroOrtopedico di Quadlante

BACKGROUND

Ilizarov external fixation technique has been widely used for the treatment of long-bone infected nonunion. After surgical bone resection, the possible filling of remaining bone gap is possible using biomaterials with antibacterial proprieties..

Objectives:

Aim of this study is to report the multicentric experience of authors on treatment of infected nonunions of tibia with Ilizarov technique and antibacterial bioactive glass.

From April 2005 to December 2014 26 CASES OF INFECTED TIBIAL NONUNION

TREATMENT PROCEDURES

- 1) Removal of devices of previous fixation
- 2) Tibial medullary canal reaming and debridment
- 3) Tibial metaphyses osteotomy
- 4) Circular fixator (Ilizarov technique) and starting of bone transport
- 5) Filling of residual bone gaps with by bioactive glass S53P4
- 6) Soft tissue coverage, if required

STUDY DESIGN & METHODS

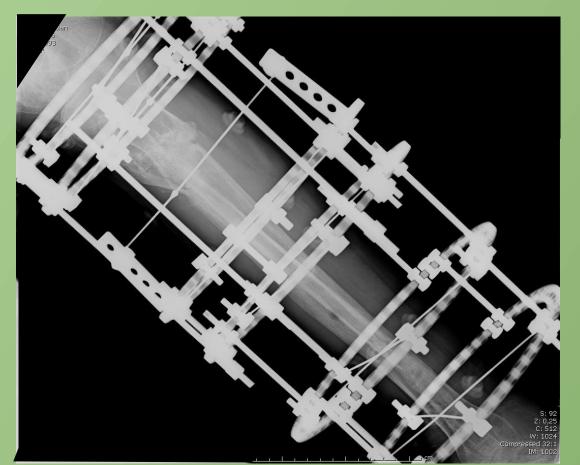
Between April 2009 and December 2014, 26 patients with infected tibial nonunion were treated with Ilizarov technique and possible use of bioactive glass S53P4. All patients were clinically and radiographically evaluated using using the Association for the Study and Application of Methods of Ilizarov (ASAMI) criteria and the American Orthopaedic Foot and Ankle Score (AOFAS).

Fig. 1. Ilizarov technique

Fig. 2. Filling gap by BGS53P4

RESULTS

Average age at the start of treatment was 51.1 years. The mean follow-up was 113 weeks. Clinical and radiographic results according to the ASAMI Bone Scoring System were excellent in 10 (38.5%) cases, good in 12 (46.1%) and according to ASAMI functional Scoring System they were excellent in 16 (61.5%) cases, good in 9 (34.6%). The average AOFAS score was 85.5 ± 6.2 .

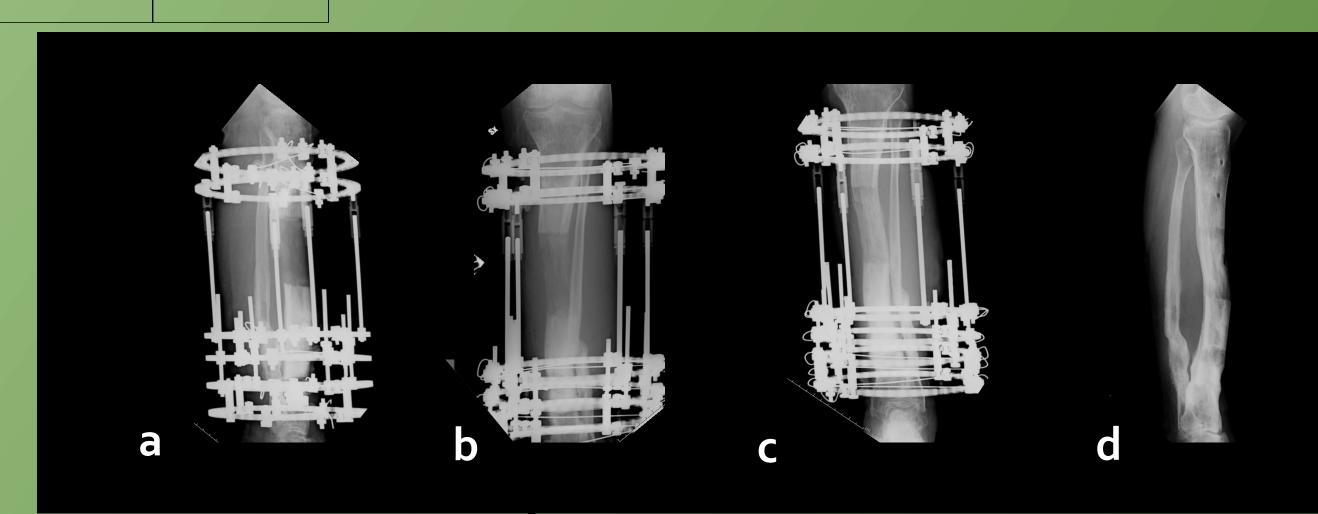

Authors	Patients	Frame	Excellent (%)	Good (%)	Fair (%)	Poor (%)	Failures
Present study	26	Ilizarov	61,5	34,6	3,9	0	0
Rohilla et al. ²²	35	Ilizarov	45.7	48.5	2.9	0	2.9
Maini et al. ²³	30	Ilizarov	27	40	10	23	0
Chaddha et al. ²⁴	25	Ilizarov	24	36	16	36	0
Yin et al. ²⁵	66	Ilizarov	40	43	17	0	0
Patil et al. ⁷	78	Ilizarov	41	41	6	6	6
Farmanullah et al. ²⁶	58	Ilizarov	57	31	7	5	0
Authors	Patients	Frame	Excellent (%)	Good (%)	Fair (%) Po	oor (%)
Present study	26	Ilizarov	38,5	46,1	3,9		0
Rohilla <i>et al</i> . ²²	25	т1.		24.2	0		<i>-</i> 7
Romma et at.	35	Ilizarov	60	34,3	0		5,7
Maini et al. ²³	30	Ilizarov	70	10	0		20
				,			•
Maini et al. ²³	30	Ilizarov	70	10	0		20
Maini <i>et al</i> . ²³ Chaddha <i>et al</i> .24	30 25	Ilizarov Ilizarov	70 52	10 4	0		20

Tables 3-4. Comparison of ASAMI score of several studies

	FUNCTIONAL RESULTS	N
Excellent	Active, no limp, minimum	16
	stiffness (loss of < 15°knee	(61,5%)
	extension / < 15° dorsiflexion of	
	ankle), no reflex sympathetic	
	dystrophy, insignificant pain	
Good	Active with one or two of the	9
	following: Limp, stiffness, reflex	(34,6%)
	sympathetic distrophy, significant	
	pain	
Fair	Active with three or all of the	1
	following: Limp, stiffness, reflex	(3,9%)
	sympathetic distrophy, significant	
	pain	
Poor	Inactive (unemployment or	0
	inability to return to daily activitie	
	because of injury)	

Table 1. ASAMI Score: Functional results

Amputation



Failures

Fig. 3. Bone gap filled with BGPS53P4

		BONE RESULTS	N
	Excellent	Union, no infection, deformity <	10
5%)		7 degree, limb-lenght	(38,5%)
		discrepancy < 2.5 cm	
	Good	Union + any two of the	12
		following: absence of infection,	(46,1%)
		deformity < 7 degree, limb-	
3%)		length discrepancy of < 2.5 cm	
70)	Fair	Union + only one of the	4
		following: absence of infection,	(15,4%)
		deformity < 7 degree, limb-	
/\		length discrepancy of < 2.5 cm	
6)	Poor	Nonunion/re-fracture/union +	0
		infection + deformity > 7 degree	
		+ limb-length discrepancy > 2.5	
		cm	
	Tall Ta	bloo ACAMI coore. Done recults	

Table 2. ASAMI score: Bone results.

Fig. 4 – Male, 42 years. Mid-shaft Infected non-union of the left leg. A) Bone resection and application of circular fixator; B) Regenerated bone after one month; C) After five months; D) After two years.

CONCLUSIONS

Treatment of infected tibial nonunion by the Ilizarov technique was effective in bone segment regeneration. To fill remaining bone gap, bioactive glass S53P4 could be used, allowing the decrease of re-interventions, enabling a potential financial advantage in terms of cost reduction.