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a b s t r a c t

We are considering the problem of measuring and analyzing customer satisfaction concerning a product
or a service evaluated on multiple criteria. The proposed methodology generalizes the MUSA (MUlti-
criteria Satisfaction Analysis) method. MUSA is a preference disaggregation method that, following the
principle of ordinal regression analysis, finds an additive utility function representing both the
comprehensive satisfaction level of a set of customers and a marginal satisfaction level with respect to
each criterion. Differently fromMUSA, the proposed approach, that we will call MUSA-INT, takes also into
account positive and negative interactions among criteria, similarly to the multicriteria method
UTAGMS-INT. Our method accepts evaluations on criteria with different ordinal scales which do not need
to be transformed into a unique cardinal scale prior to the analysis. Moreover, instead of a single utility
function, MUSA-INT can also take into account a set of utility functions representing customers'
satisfaction, adopting the robust ordinal regression methodology. An illustrative example shows how
the proposed methodology can be applied on a customers’ survey.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Customer satisfaction evaluation plays a key role in the enter-
prises' organization, contributing through discovery and represen-
tation of customers' preferences to the definition of different
salient aspects of companies' strategies.

Among other advantages, customer satisfaction could increase
companies' competitiveness [36], identify potential market opportu-
nities, direct new actions to the quality improvement of a product or a
service [33], and could also have a positive effect on brand equity [49].

Several approaches have been already developed to evaluate
customer satisfaction (see [33] for a detailed list of the existing
methods). The most used approaches are the statistical ones: the
multiple regression analysis, the discriminant analysis, and the
conjoint analysis [27,29] that nowadays is one of the most
important marketing research tools (see [34] for an overview
and recent developments).

In conjoint analysis, customers are asked to evaluate combina-
tions of different values of the attributes considered for a product
or a service. On the basis of customers' answers, conjoint analysis
aims at identifying the most desirable attribute values to be
implemented in a product or a service.

Customer satisfaction analysis has also been approached using
dominance-based rough set theory [20] which aims at inferring
some simple decision rules from the consumers' data [21], differ-
ently from the conjoint analysis which represents customers'
preferences with a comprehensive utility function.

Another interesting approach to customer satisfaction analysis
consists in preference learning (see [13] for an updated state-of-
the-art) that, given some preferences on a set of objects, searches a
function to predict the preferences on a new set of objects. For
example, some preference learning applications are provided by a
search engine's ranking of web pages according to customers'
preferences, or by stores' rankings of particular products according
to the preferences expressed on-line by the clients.

Customers' satisfaction evaluation has also been studied
from a multiple criteria point of view, using the method MUSA
(MUlticriteria Satisfaction Analysis [31]). MUSA is a preference
disaggregation method that, following the principle of ordinal
regression analysis [38], finds an additive utility function
representing the satisfaction level of a set of customers based
on their expressed preferences collected in a satisfaction
survey's data. Using MUSA, the customers are asked to give a
comprehensive satisfaction level for a service or a product
under consideration, but also a marginal satisfaction level for
each one of its features (evaluation criteria). MUSA has many
advantages over the traditional customer satisfaction models,
since it fully considers the qualitative form of customers'
judgments and preferences that are usually expressed in this
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way in the consumers' questionnaires. The success of MUSA is
witnessed by many applications in different fields as, for
example, bank sector [30], agricultural marketing [48] and
transportation–communication sector [32]. Despite these posi-
tive aspects, MUSA is not able to represent positive and
negative synergies between specific features of a product or a
service, since it considers an additive utility function and,
consequently, its underlying hypothesis is preference indepen-
dence [41,53].

This is an important issue because it is a common experience that
in the evaluation of a product or a service, some features could
positively or negatively interact. For example, in the evaluation of a
supermarket, prices and special offers have, usually, a negative
interaction. In fact, prices and special offers are both important in
evaluating a supermarket, however, a supermarket with low prices has
also often many special offers and thus, considering together prices
and special offers, the total importance is smaller than the sum of their
marginal importances. Analogously, one can say that there is a positive
synergy between goods' quality and prices, because in general a
supermarket with high quality of goods has also high prices and thus
a supermarket with a high quality of goods and relatively low prices is
well appreciated, such that the total importance of goods' quality and
prices considered together is higher than the sum of the importance of
their marginal importances.

In Multiple Criteria Decision Aiding (MCDA, see [10] for an
updated state-of-the-art) positive and negative interactions
among criteria are very often represented using some fuzzy
integrals, such as the Choquet integral [5] or some of its
generalizations, e.g. the bipolar Choquet integral ([15,16]; see
also [22]) or the level dependent Choquet integral [19] (see [17]
for a survey about the use of Choquet integral in MCDA). Fuzzy
integrals, and among them the Choquet integral, are aggrega-
tion models that, besides other technical assumptions, require
a scale of measurement which is cardinal (more precisely, an
interval scale [47]) and common to all the criteria (features)
taken into consideration. Such a scale permits comparison of
evaluations on different criteria, so that, e.g. it becomes
possible to say that, for a given supermarket, the level of prices
is better than the special offers it proposes and, moreover,
these are better than the quality of the goods.

Even if the majority of conjoint analysis methods do not consider
interaction among attributes [4], there are several contributions, like
[1,14,28,35,42,44,46], that estimate by means of a statistical regression
not only a value for each level of each attribute, but also a value for
each combination of levels on a set of couples of attributes (possibly all
couples of attributes). Another approach proposed to represent inter-
action among attributes in conjoint analysis is based on the use of the
Choquet integral [50,37,43,51,52,54].

Since we want to take into account not more than ordinal
qualitative aspects of the scales of criteria, we propose MUSA-
INT, being a generalization of the multicriteria method
MUSA. MUSA-INT handles positive and negative synergies
between couples of criteria, using a formulation of the utility
function recently proposed in the multicriteria method
UTAGMS-INT [25]. Differently from the 2-additive Choquet
integral aggregation model, UTAGMS-INT represents positive
and negative synergies avoiding any arbitrary transformation
of the original ordinal scales into a unique artificial cardinal
scale.

The paper is organized as follows. In Section 2, we introduce
the basic concepts and the relative notation, a brief description of
the MUSA method, and the specific utility function adopted in our
customer satisfaction model. In Section 3, basic steps of the
proposed multicriteria customer satisfaction analysis are
described. Some further extensions of the proposed method are
presented in Section 4. Section 5 contains an illustrative example,

considering a set of customers' satisfaction questionnaires on
which MUSA-INT is applied. Conclusions and future directions of
research are collected in Section 6.

2. Basic concepts and the MUSA method

The basic elements of the proposed methodology are the
following:

� C ¼ f1;…; rg is the set of customers,
� I ¼ f1;…;ng is the set of evaluation criteria (features),
� Li ¼ fℓi1;…; ℓisi g; i¼ 1;…;n, is the set of levels of satisfaction for

criterion i: for example, for a given criterion i, the scale could be
Li ¼ fℓi1; ℓi2; ℓi3g, with ℓi1 ¼ “dissatisfied”, ℓi2 ¼ “satisfied”, ℓi3 ¼ “very
satisfied”; the levels ℓi1;…; ℓisi are increasingly ordered with
respect to the satisfaction level, i.e. the satisfaction represented
by ℓip is greater than the satisfaction represented by

ℓip−1; p¼ 2;…; si,� Lnþ1 ¼ fℓnþ1
1 ;…; ℓnþ1

snþ1
g is the set of levels of comprehensive

satisfaction: the levels ℓnþ1
1 ;…; ℓnþ1

snþ1
are increasingly ordered

with respect to the satisfaction level,
� satc;i∈Li is the satisfaction expressed by customer c∈C with

respect to criterion i∈I,
� satc;nþ1∈Lnþ1 is the comprehensive satisfaction expressed by

the customer c∈C,
� ui : Li-½0;1� is the marginal utility function of criterion i,
� U : Lnþ1-½0;1� is the utility of comprehensive levels of

satisfaction,
� SynþD Ið2Þ with Ið2Þ ¼ ffi1; i2gD Ig is the set of all couples of

criteria for which there is a positive interaction,
� Syn−D Ið2Þ is the set of all couples of criteria for which there is a

negative interaction,
� synþ

ij : Li � Lj-½0; ρ� is a function non-decreasing in both its

two arguments representing the strength of the positive inter-
action between criteria i; j∈I, such that fi; jg∈Synþ (ρ is a positive
real constant),

� syn−
ij : Li � Lj-½0; ρ� is a function non-decreasing in both its

two arguments representing the strength of the negative
interaction between criteria i; j∈I, such that fi; jg∈Syn− (as above,
ρ is a positive real constant).

In the MUSA method [31], inspired by the idea of ordinal
regression used in the UTA methods [38], one represents
customer satisfaction through the following additive utility function:

Uðsatc;nþ1Þ ¼ ∑
n

i ¼ 1
uiðsatc;iÞ; c∈C: ð1Þ

The utility function (1) is obtained by solving the following LP problem
[31]:

Minimize : ∑
r

c ¼ 1
ðsþc þ s−c Þ s:t: ð2Þ

Uðsatc;nþ1Þ ¼ ∑
n

i ¼ 1
uiðsatc;iÞ−sþc þ s−c for all c∈C

sþc ≥0; s−c ≥0 for all c∈C
uiðℓipÞ≥uiðℓip−1Þ; p¼ 2;…; si for all i∈I;

Uðℓnþ1
p Þ≥Uðℓnþ1

p−1 Þ; p¼ 2;…; snþ1;

)
ðmonotonicity conditionsÞ

uiðℓi1Þ ¼ 0 for all i∈I;

∑
n

i ¼ 1
uiðℓisi Þ ¼ 1;

Uðℓnþ1
snþ1

Þ ¼ 1;

9>>>>=
>>>>;

ðnormalization constraintsÞ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:
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where sþc and s−c are over- and under-estimation errors for every
customer's utility function respectively.

Differently from MUSA, the utility function considered in
our model is the one proposed in the multicriteria method
UTAGMS-INT (see [25]), which takes into account positive and
negative interactions between couples of criteria as follows:

Uðsatc;nþ1Þ ¼ ∑
n

i ¼ 1
uiðsatc;iÞ þ ∑

fi;jg∈Synþ
synþ

ij ðsatc;i; satc;jÞ

− ∑
fi;jg∈Syn−

syn−
ij ðsatc;i; satc;jÞ; c∈C: ð3Þ

3. Description of MUSA-INT

In this section, we present a new procedure for finding a utility
function representing the comprehensive satisfaction of a set of
customers C. The adopted utility function defined by (3) handles
synergies between satisfaction levels on two criteria, i and j: satc;i and
satc;j.

The multicriteria customer satisfaction analysis we are propos-
ing is composed of three main successive phases:

(i) finding a utility function U representing the satisfaction of all
customers from set C with a minimal sum of approximation
errors;

(ii) identifying a minimal set of couples of interacting criteria,
where minimality is referred to the inclusion;

(iii) finding a utility function discriminating as much as possible
satisfaction levels for both marginal and comprehensive
utility functions.

From a computational point of view, each phase consists in
solving a specific mixed integer linear program (MILP). Let us
examine each phase in detail.

3.1. Phase (i): finding a utility function representing the satisfaction
of all the customers

Since we want to get a utility function U representing the utility
of all customers from set C with a minimal sum of approximation
errors, we need to introduce non-negative error variables
sþc ; s−c≥0, corresponding to over- and under-estimation, respec-
tively, for every customer's utility as follows:

Uðsatc;nþ1Þ ¼ ∑
n

i ¼ 1
uiðsatc;iÞ þ ∑

fi;jg∈Ið2Þ
synþ

ij ðsatc;i; satc;jÞ

− ∑
fi;jg∈Ið2Þ

syn−
ij ðsatc;i; satc;jÞ−sþc þ s−c ; ð4Þ

for all c∈C.
The objective function to be minimized is the sum of the error

variables over all customers from set C (analogically to the original
UTASTAR method [38]):

∑
r

c ¼ 1
ðsþc þ s−c Þ: ð5Þ

In the same spirit of what was done in UTAGMS�INT [25], we
consider the following options for the positive and negative
interactions present in the value function (4) for each couple of
criteria fi; jg∈Ið2Þ:

(S1) synþ
ij ðsatc;i; satc;jÞ and syn−

ijðsatc;i; satc;jÞ are not mutually
exclusive, such that in the evaluation space of the two
criteria there is a switch between positive interaction and
negative interaction; in some parts of the space the positive
interaction prevails and in some others a negative interaction
prevails, or even, there is no interaction,

(S2) synþ
ij ðsatc;i; satc;jÞ and syn−

ijðsatc;i; satc;jÞ are mutually exclusive,
(S3) only one of the two interactions is considered, for example

the positive one.

According to [25], in order to ensure the monotonicity of the
utility function, we consider for all JD I the following constraint: if
satc;i≥satd;i, for all i∈J, and c; d∈C, then

∑
i∈J

uiðsatc;iÞ þ ∑
fi;jgD J

synþ
ij ðsatc;i; satc;jÞ− ∑

fi;jgD J
syn−

ij ðsatc;i; satc;jÞ

≥∑
i∈J
uiðsatd;iÞ þ ∑

fi;jgD J
synþ

ij ðsatd;i; satd;jÞ− ∑
fi;jgD J

syn−
ij ðsatd;i; satd;jÞ:

ð6Þ
Someone could object that constraint (6) could be obtained

more easily by imposing the same constraint only for all couples of
criteria fi; jg∈Ið2Þ. This is not true, because it is possible that
constraint (6) is verified for each couple of criteria fi; jg∈Ið2Þ, but
the same constraint is not true for a subset of criteria JD I, jJj42,
for which satc;i≥satd;i for all i∈J, and c; d∈C.

Because constraints described by inequality (6) are numerous,
and we would like to consider as simple model as possible, i.e.
with the lowest possible number of interactions, we shall suppose,
that each criterion i can interact with at most one another
criterion. Under this assumption, constraint (6) has to be consid-
ered only for each JD I, where jJj ¼ 2.

In case of option (S1), for each couple of criteria fi; jg∈Ið2Þ, the
following binary variable γij is introduced:

γij ¼
1 if fi; jg∈Ið2Þ are interacting;
0 if fi; jg∈Ið2Þ are not interacting:

(

Thus, the following constraints are considered in the first MILP
problem:

EðS1Þ

γij∈f0;1g
∑

j∈I\fig
γij≤1 for all i∈I;

synþ
ij ðℓisi ; ℓ

j
sj Þ≤ργij;

syn−
ij ðℓisi ; ℓ

j
sj Þ≤ργij;

8>>>>>>><
>>>>>>>:

ð7Þ

where, as said before, ρ is an upper bound for synþ
ij and syn−

ij , e.g.
equal to 1, and the second constraint ensures that each criterion
can interact with at most one another criterion.

In case of option (S2), we introduce as many binary variables

δþij ; δ
−
ij∈f0;1g as twice the couples of criteria, i.e. 2� n

2

� �
. The

meaning of every binary variable is the following:

δþij ðδ−ij Þ ¼
1 if fi; jg∈Ið2Þ are positively ðnegativelyÞ interacting;
0 if fi; jg∈Ið2Þ are not positively ðnegativelyÞ interacting:

(

For every couple of criteria fi; jg∈Ið2Þ, three situations can arise:

(1) i and j are interacting positively ðδþij ¼ 1Þ,
(2) i and j are interacting negatively ðδ−ij ¼ 1Þ,
(3) i and j are not interacting ðδþij ¼ δ−ij ¼ 0Þ.

In consequence, the following constraints are included in the
first MILP problem:

EðS2Þ

δþij ; δ
−
ij∈f0;1g

δþij þ δ−ij ≤1 for all fi; jg∈Ið2Þ;
synþ

ij ðℓisi ; ℓ
j
sj Þ≤ρδþij ;

syn−
ij ðℓisi ; ℓ

j
sj Þ≤ρδ−ij ;

∑
j∈I\fig

ðδþij þ δ−ij Þ≤1 for all i∈I;

8>>>>>>>>>><
>>>>>>>>>>:

ð8Þ
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where ρ can be set, e.g. equal to 1; the second constraint avoids
that there could be positive and negative interactions for the same
couple of criteria and the last constraint ensures that each
criterion can interact with at most another criterion only.

In order to simplify the notation, we shall describe the set of
constraints of option (S3) starting from set of constraints of the
option (S2):

� if we consider only positive interactions, then the correspond-
ing set of constraints EðS3þÞ is obtained from EðS2Þ by adding

δ−ij ¼ 0 for all fi; jg∈Ið2Þ,
� if we consider only negative interactions, then the correspond-

ing set of constraints EðS3−Þ is obtained from EðS2Þ by adding

δþij ¼ 0 for all fi; jg∈Ið2Þ.
Finally, the MILP formulation includes some technical constraints

concerning monotonicity and boundary conditions on the synergies,
marginal utilities and comprehensive utility. In particular, monotoni-
city constraints ensure that the marginal utility uiðℓipÞ for all i¼1,…,n,

and p¼ 1;…; si, and the comprehensive utility Uðℓnþ1
p Þ, p¼ 1;…; snþ1

are non-decreasing functions of ℓip and ℓnþ1
p , respectively, while

interaction functions synþ
ij ðℓip1 ; ℓ

j
q1 Þ, syn−

ij ðℓip1 ; ℓ
j
q1 Þ are non-decreasing

functions of both their two arguments ℓip1 , ℓjq1 , for all fi; jg∈Ið2Þ,
p1 ¼ 1;…; si, and q1 ¼ 1;…; sj. Boundary conditions ensure, instead,
that UðcÞ∈½0;1� for each c∈C, imposing that the utility of the profile
presenting the worst satisfaction on each criterion is equal to zero,
while the utility of the profile presenting the best satisfaction on each
criterion is equal to one.

In consequence, the set of constraints common to all the
options described before is the following:

Uðsatc;nþ1Þ ¼ ∑
n

i ¼ 1
uiðsatc;iÞ þ ∑

fi;jg∈Ið2Þ
synþ

ij ðsatc;i; satc;jÞ

− ∑
fi;jg∈Ið2Þ

syn−
ij ðsatc;i; satc;jÞ−sþc þ s−c for all c∈C:

uiðℓipÞ≥uiðℓip−1Þ; p¼ 2;…; si

Uðℓnþ1
p Þ≥Uðℓnþ1

p−1 Þ þ ε; p¼ 2;…; snþ1;

synþ
ij ðℓip1 ; ℓ

j
q1 Þ≥synþ

ij ðℓip2 ; ℓ
j
q2 Þ;

syn−
ij ðℓip1 ; ℓ

j
q1 Þ≥syn−

ij ðℓip2 ; ℓ
j
q2 Þ;

uiðℓip1 Þ þ ujðℓjq1 Þ þ synþ
ij ðℓip1 ; ℓ

j
q1 Þ−syn−

ij ðℓip1 ; ℓ
j
q1 Þ≥

≥uiðℓip2 Þ þ ujðℓjq2 Þ þ synþ
ij ðℓip2 ; ℓ

j
q2 Þ−syn−

ij ðℓip2 ; ℓ
j
q2 Þ

with p1≥p2 and q1≥q2;

p1; p2 ¼ 1;…; si; q1; q2 ¼ 1;…; sj for all f; jg∈Ið2Þ;

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ðmonotonicity conditionsÞ;

uiðℓi1Þ ¼ 0 for all i∈I;Uðℓnþ1
1 Þ ¼ 0;

syn−
ij ðℓi1; ℓj1Þ ¼ 0; synþ

ij ðℓi1; ℓ
j
1Þ ¼ 0 for all fi; jg∈Ið2Þ;

∑
n

i ¼ 1
uiðℓisi Þ þ ∑

fi;jg∈Ið2Þ
synþ

ij ðℓisi ; ℓ
j
sj Þ− ∑

fi;jg∈Ið2Þ
syn−

ij ðℓisi ; ℓ
j
sj Þ ¼ 1;

9>>>>>>=
>>>>>>;

ðboundary conditionÞ;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

En

where ε is an arbitrarily small positive quantity.
Depending on the choice of the option (S1), or (S2) or (S3), we

set ðE1Þ ¼ En∪Eð�Þ, where Eð�Þ is one of the sets of constraints: EðS1Þ,
EðS2Þ, EðS3þ Þ, and EðS3− Þ, previously defined. Some computational

details on the set of constraints ðE1Þ are presented in the Appendix.
It is important to pay attention to the selected value of ε since it

may affect the feasibility of ðE1Þ or the provided solution. For this
reason, it is recommended to use different values of ε and select
the one giving the minimum approximation error. The analyst
should assist the selection of ε.

In order to check the existence of a utility function representing
the satisfaction of all customers from set C, we have to solve the
following MILP problem:

Minimize : ∑
r

c ¼ 1
ðsþc þ s−c Þ s:t: ðE1Þ: ð9Þ

In real-word applications it is rather difficult to minimize the
objective function to zero. For this reason, the analyst should fix
the maximum acceptable error, called maxerror.

The above mixed-integer linear program returns the utility
function U and, moreover, for option (S1) the set Syn of couples of
criteria that can interact positively and negatively, and for options
(S2) and (S3), the sets Synþ and Syn− of couples of positively and
negatively interacting criteria, defined, respectively, as follows:

Syn¼ ffi; jg∈Ið2Þ : γij ¼ 1g;
Synþ ¼ ffi; jg∈Ið2Þ : δþij ¼ 1g; Syn− ¼ ffi; jg∈Ið2Þ : δ−ij ¼ 1g:

Let us remark that if program (9) gives γij ¼ 0 for option (S1), or

δþij ¼ δ−ij ¼ 0; for all fi; jg∈Ið2Þ for options (S2) and (S3), i.e. when

there are no interactions, the obtained utility function is the same
as the one supplied by the MUSA method [31]. For this reason,
MUSA-INT is a true generalization of MUSA.

If the objective function of program (9) can be minimized to
zero, then there exists at least one utility function U, having the
form of (3), representing the satisfaction of customers expressed
by set of constraints ðE1Þ; otherwise, if the minimum value of
objective function of (9) is positive, then there is no utility function
U, having the form of (3), able to represent satisfaction of
customers expressed by set of constraints ðE1Þ.

In the latter case, let opterr be the optimal value of the objective

function ∑
r

c ¼ 1
ðsþc þ s−c Þ resulting from (9). Two situations can arise:

� If opterr ≤maxerror, that is the error obtained in the previous
phase is acceptable for the analyst, then one can pass to phase
(ii) described in Section 3.2.

� If opterr4maxerror, then one can increase the maximum
number of criteria with which each criterion can interact, until
problem (9) gives a solution with opterr ≤maxerror: Let us
suppose that each criterion can interact with at most a fixed
number of criteria denoted by η. In this case, we need to add
the following constraints to ðEnÞ:
∑
i∈J

uiðℓipi Þ þ ∑
fi;jgD J

synþ
ij ðℓipi ; ℓ

j
pj
Þ− ∑

fi;jgD J
syn−

ij ðℓipi ; ℓ
j
pj
Þ

≥∑
i∈J

uiðℓiqi Þ þ ∑
fi;jgD J

synþ
ij ðℓiqi ; ℓ

j
qj Þ− ∑

fi;jgD J
syn−

ij ðℓiqi ; ℓ
j
qj Þ; ð10Þ

if pi≥qi; for all i∈J : jJj ¼ ηþ 1.
Moreover, constraints

∑
j∈I\fig

γij≤1 for all i∈I in ðEðS1ÞÞ;

and

∑
j∈I\fig

ðδþij þ δ−ij Þ≤1 for all i∈I in ðEðS2ÞÞ;

should be, respectively, replaced by

∑
j∈I\fig

γij≤η

and

∑
j∈I\fig

ðδþij þ δ−ij Þ≤η:

3.2. Phase (ii): identifying of a minimal set of couples
of interacting criteria

The set Syn of couples of criteria that can interact positively and
negatively, or the pair ðSynþ; Syn−Þ of sets of couples of interacting
criteria, obtained in phase (i), is not necessarily minimal, in the
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sense that there could exist other sets Syn′ or Syn′þ and Syn′− of
couples of positively or negatively interacting criteria that could
represent the utility of all customers with the same or similar

approximation error ∑
r

c ¼ 1
ðsþc þ s−c Þ, and such that Syn′DSyn for

option (S1) or Syn′þDSynþ and Syn′−DSyn− for options (S2) and
(S3), with at least one of the two inclusions being strict.

In order to identify a minimal set Syn or a minimal pair
(Synþ; Syn−) of sets of couples of interacting criteria, while possibly
accepting a small deterioration of the approximation error result-
ing from the previous phase, we have to solve the following MILP
problem:

Minimize : f s:t:

ðE1Þ;
∑
r

c ¼ 1
ðsþc þ s−c Þ≤opterr þ α;

9>=
>;ðE2Þ ð11Þ

where f ¼ ∑
fi;jg∈Ið2Þ

γij for option ðS1Þ or f ¼ ∑
fi;jg∈Ið2Þ

ðδþij þ δ−ijÞ for options

ðS2Þ; ðS3Þ, opterr is the optimal value of the total approximation

error ∑
r

c ¼ 1
ðsþc þ s−c Þ resulting from the solution of (9), and

0≤α≤maxerror−opterr is a tolerance parameter controlling the
possible deterioration of the total optimal approximation error.

The parameter α controls the trade-off between the number of
criteria interacting and the total approximation error of the utility
function. The analyst can tune α depending on his/her acceptance
of the number of interacting criteria. In fact, s(he) could be
interested in working with a small number of interacting criteria,
giving up to a utility function more adequate to the customers'
survey. Such analyst's attitude can be justified by the fact that it is
easier to improve the customer satisfaction by focusing on a
smaller number of interacting criteria.

In result of solving MILP problem (11), one gets a utility
function U (possibly different from the utility function resulting
from (9)) and depending, on the option (S1), (S2), or (S3), Syn or a
minimal pair (Synþ; Syn−) of sets of couples of positively and
negatively interacting criteria, minimal in the sense of inclusion.

3.3. Phase (iii): finding the most discriminating utility function

In order to find a utility function U (possibly different from the
one obtained in the previous phase) discriminating as much as
possible all levels of satisfaction by the marginal utility functions
uið�Þ, or by the comprehensive utility function Uð�Þ, while keeping
the same number of interacting couples of criteria, as obtained
from (11), one has to solve two MILP problems. The first one tends
to discriminate as much as possible the satisfaction levels of the
comprehensive utility function:

Maximize : ε¼ εcomprehensive s:t:

ðE2Þ;
∑

fi;jg∈Ið2Þ
γij ≤optsyn for ðS1Þ;

∑
fi;jg∈Ið2Þ

ðδþij þ δ−ij Þ≤optsyn for ðS2Þ and ðS3Þ

9>>>>>=
>>>>>;
ðE3Þ ð12Þ

where ε is a variable present in the constraint Uðℓnþ1
pþ1Þ≥Uðℓnþ1

p Þ þ ε,

opterr and α have the same meaning as in program (11), while
optsyn is the optimal value of the objective function of program (11).

The solution of MILP problem (12) gives a utility function
maximizing the minimal difference Uðℓnþ1

p Þ−Uðℓnþ1
p−1 Þ; p¼ 2;…; snþ1.

In fact, the minimum of those differences is equal to εcomprehensive, i.e
the optimal value of ε given by program (12).

The analyst could be interested in finding the most discrimi-
nating function not only with respect to the comprehensive utility,
but also with respect to the marginal utilities. In order to find such
discriminating marginal utility functions, one has to solve the
following MILP problem:

Maximize : ε¼ εmarginal s:t:

ðE′2Þ;
∑

fi;jg∈Ið2Þ
γij≤optsyn for ðS1Þ;

∑
fi;jg∈Ið2Þ

ðδþij þ δ−ij Þ≤optsyn for ðS2Þ and ðS3Þ

9>>>>>=
>>>>>;
ðE′3Þ ð13Þ

where ðE′2Þ is composed of the same constraints as ðE2Þ, apart from
constraints

� uiðℓipÞ≥uiðℓip−1Þ; p¼ 2;…; si for all i∈I;

� Uðℓnþ1
p Þ≥Uðℓnþ1

p−1 Þ þ ε; p¼ 2;…; snþ1;

that are replaced by

� uiðℓipÞ≥uiðℓip−1Þ þ ε; p¼ 2;…; si for all i∈I,

� Uðℓnþ1
p Þ≥Uðℓnþ1

p−1 Þ þ εcomprehensive � ð1−βÞ; p¼ 2;…; snþ1,

with β∈½0;1� representing the percentage of the comprehensive
discrimination threshold that the analyst is ready to lose in order
to gain on discrimination with respect to the marginal utilities.

Even in this case, the parameter β can be tuned with the aim of
increasing the discrimination with respect to the marginal utilities,
since the analyst could wish to focus on the marginal utilities,
instead of the comprehensive utility. Consequently, the analyst
could direct his/her actions to the marginal features (criteria) to
improve the customer satisfaction.

Let us observe that the sequence of the resolution of the two
problems (12) and (13) is not the only possible. One could also
decide to maximize first the marginal utility and then the global
utility, or maximize both types of utilities at the same time.

In some cases, in order to find a discriminating utility function,
both with respect to the comprehensive and the marginal satisfac-
tion levels, it may be necessary to increase the admissible total
approximation error or increase the number of interacting couples
of criteria. In this case, one needs to solve again the two
optimization problems (12) and (13), increasing the chosen value
of α in (E2) or substituting the constraints ∑

fi;jg∈Ið2Þ
γij ≤optsyn for

option (S1) or ∑
fi;jg∈Ið2Þ

ðδþij þ δ−ijÞ≤optsyn for options (S2) and (S3),

with ∑
fi;jg∈Ið2Þ

γij ≤ðoptsynþ γÞ and ∑
fi;jg∈Ið2Þ

ðδþij þ δ−ijÞ≤ ðoptsynþ γÞ, respec-

tively, where γ represents the number of additional interactions
accepted by the analyst.

In Section 4, we shall describe how to identify alternative
minimal sets Syn or pairs ðSynþ; Syn−Þ of sets of couples
of interacting criteria being compatible with a fixed tolerance
parameter α. In the case of multiple minimal sets Syn for
option (S1) or pairs ðSynþ; Syn−Þ for options (S2) and (S3), it is
interesting to compute the intersection of all the sets Syn, Synþ

and of all the sets Syn−, without deteriorating the approximation
error. Let us observe that this interpretation of alternative
minimal sets Syn or minimal pairs ðSynþ; Syn−Þ is analogous
to the concept of reducts in rough set theory [45]. Moreover,
the intersection of all the sets Syn, Synþ, and of all the sets
Syn−, is analogous to the concept of core in rough set theory
[45].
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4. Further extensions

The three-phase method described above can be considered
a standard procedure; first, we check the existence of a
utility function of type (3) compatible with the customers' answers
(phase (i)), then we look for a minimal set of couples of inter-
acting criteria (phase (ii)), and finally we look for a utility function
having the maximum discrimination power (phase (iii)). In this
section, some interesting extensions of this procedure are
presented.

4.1. Finding other minimal sets of couples of interacting criteria

In general, there may exist more than one minimal set Syn or
minimal pair ðSynþ; Syn−Þ and, for this reason, it could be interest-
ing to find them all.

In case of option (S1), in order to find another minimal set Syn2,
one has to solve the following optimization problem:

Minimize : ∑
fi;jg∈Ið2Þ

γij s:t:

ðE2Þ;
∑

fi;jg∈Syn1

γij ≤ jSyn1j−1

9=
;ðEM2 Þ ð14Þ

where Syn1 is the set of interacting criteria found in phase (ii).
The last constraint in ðEM2 Þ ensures that a new set of indices
of couples of interacting criteria is different from the previous
one.

Let us suppose that at the ðk−1Þth iteration we found the
minimal set Synk−1. In order to check if there exists another
minimal set Synk, it will be sufficient to solve the following
optimization problem:

Minimize : ∑
fi;jg∈Ið2Þ

γij s:t:

ðE2Þ;
∑

fi;jg∈Syn1

γij ≤ jSyn1j−1;

∑
fi;jg∈Syn2

γij ≤ jSyn2j−1;
⋯

∑
fi;jg∈Synk−1

γij ≤ jSynk−1j−1

9>>>>>>>>>>=
>>>>>>>>>>;
ðEMk

Þ ð15Þ

If problem (15) is infeasible, then there is no minimal set Synk, so
that the set M of all minimal sets Syn is given by

M¼ fSyn1;…; Synk−1g:

If, instead, problem (15) is feasible, then Synk is a newminimal pair
with

Synk ¼ ffi; jg∈Ið2Þ : γij ¼ 1 in the solution of problem ð15Þg

In case of options (S2) and (S3), in order to find another minimal
pair ðSynþ

2 ; Syn
−
2Þ, one has to solve the following optimization

problem:

Minimize : ∑
fi;jg∈Ið2Þ

ðδþij þ δ−ij Þ s:t:

ðE2Þ;
∑

fi;jg∈fSynþ
1 ∪Syn

−
1 g
ðδþij þ δ−ij Þ≤ jSynþ

1 ∪Syn
−
1 j−1

9>=
>;ðEM2 Þ ð16Þ

where Synþ
1 and Syn−

1 are the sets of couples of positively and
negatively interacting criteria found in phase (ii).

Let us suppose that at the ðk−1Þ th iteration we found the
minimal pair ðSynþ

k−1; Syn
−
k−1Þ. In order to check if there exists

another minimal pair ðSynþ
k ; Syn

−
k Þ, it will be sufficient to solve

the following optimization problem:

Minimize : ∑
fi;jg∈Ið2Þ

ðδþij þ δ−ij Þ s:t:

ðE2Þ;
∑

fi;jg∈fSynþ
1 ∪Syn

−
1 g
ðδþij þ δ−ij Þ≤ jSynþ

1 ∪Syn
−
1 j−1;

∑
fi;jg∈fSynþ

2 ∪Syn
−
2 g
ðδþij þ δ−ij Þ≤ jSynþ

2 ∪Syn
−
2 j−1;

⋯
∑

fi;jg∈fSynþ
k−1∪Syn

−
k−1g

ðδþij þ δ−ij Þ≤ jSynþ
k−1∪Syn

−
k−1j−1

9>>>>>>>>>>>=
>>>>>>>>>>>;

ðEMk
Þ ð17Þ

If problem (17) is infeasible, then there is no minimal pair
ðSynþ

k ; Syn
−
k Þ, so the set M of all minimal pairs ðSynþ; Syn−Þ is given

by

M¼ fðSynþ
1 ; Syn

−
1 Þ;…; ðSynþ

k−1; Syn
−
k−1Þg:

If, instead, problem (17) is feasible, then ðSynþ
k ; Syn

−
k Þ is a new

minimal pair with

Synþ
k ¼ ffi; jg∈Ið2Þ : δþij ¼ 1 in the solution of problem ð17Þg

and

Syn−
k ¼ ffi; jg∈Ið2Þ : δ−ij ¼ 1 in the solution of problem ð17Þg:

4.2. Customer satisfaction evaluation using a set
of compatible preference models

When analyzing the customers' survey presented in Table 1, the
experts of the company could be interested to know what action
should be made in order to improve the customer satisfaction of the
service or product provided. For example, let us consider a service
evaluated on three criteria, purchase process, product and additional
service, expressed on three different levels of satisfaction: Dissatisfied,
Satisfied and Very Satisfied. The experts could be interested in
answering the following question: “is the profile of customer satis-
faction P1 ¼ ðSatisfied; Very Satisfied; SatisfiedÞ appreciated more
than the profile of customer satisfaction P2 ¼ ðVery Satisfied;
Satisfied; Very SatisfiedÞ?” To answer this question, the experts have
to consider the set U of utility functions of type (3) satisfying the set of
constraints (E1) related to the considered customers' survey. Such
utility functions are called compatible with customers' preferences.
Then, a natural question arises whether profile P1 is at least as good as
profile P2 for at least one or for all compatible utility functions from U .
By answering this type of questions, the experts can get an additional
insight into more meaningful decision investments concerning the
service or product provided by the company. For example, if the
experts find that profile P1 is better than profile P2 for all compatible
utility functions from U , they can conclude that an action directed to
increase satisfaction level from Satisfied to Very Satisfied on ‘purchase
process’ is likewisely more appreciated by the customers than another
action directed to an analogous improvement on both ‘product’ and
‘additional service’. To perform this type of analysis, one can use the
Robust Ordinal Regression (ROR)methodology being a family of MCDA
methods introduced in [23] (for a recent survey on the topic see
[9,26]). ROR has been applied to ranking problems (see UTAGMS [23],
GRIP [12]), to sorting problems (see UTADISGMS [24]), and also in
methods using outranking relations (ELECTREGKMS [18]) or Choquet
integral (NAROR [3]) as preference models.

Given an initial set of preference information provided by a
Decision Maker (DM), the ROR aims at obtaining a final recommenda-
tion for the decision problem at hand, taking into account not only one
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preference model compatible with this preference information, but
also the whole set of compatible preference models simultaneously. In
fact, as it is often the case in the inference procedures, several decision
models could be compatible with the information provided by the
DM, but each one of them could lead to different preferences on the
remaining alternatives, not considered by the DM at the stage of
expressing the preference information. The choice of one particular
preference model among all compatible ones could be considered
arbitrary, and so it is more meaningful to take into account the whole
set of compatible preference models simultaneously. Supposing the
preference model in the form of a set of compatible utility functions,
the conclusions drawn by ROR are based on two preference relations:

� the necessary preference relation for which alternative a is
necessarily preferred to alternative b, if a is at least as good as b
for all utility functions compatible with the preference infor-
mation provided by the DM,

� the possible preference relation for which alternative a is
possibly preferred to alternative b if a is at least as good as b
for at least one utility function compatible with the preference
information provided by the DM.

In the following, we adapt the concept of ROR to MUSA-INT
considering the following binary relations on the set of profiles

L¼ ∏
n

i ¼ 1
Li. Given any two profiles, P1; P2∈L:

� profile of customer satisfaction P1 is possibly preferred to
profile P2, (P1≿PP2), if profile P1 is at least as good as profile
P2 for at least one compatible utility function of U ,

� profile of customer satisfaction P1 is necessarily preferred to
profile P2, (P1≿NP2), if profile P1 is at least as good as profile P2
for all compatible utility functions of U .

Let us stress that in our context, there is no DM but only an
analyst supporting the experts of the company in the analysis of
customer satisfaction; for this reason the preference information
provided by the DM in the ROR context is replaced by the answers
to the customers' survey (expressed by the set of constraints ðEnÞ)
in our method.

Analogously, the concept of compatible utility function in this
context is slightly different from the one used in ROR. Here, we call
compatible a utility function obtained for an approximation error
lower or equal to maxerror, while in the classical ROR methods, a
preference model is called compatible with the preference infor-
mation provided by the DM when it can represent this information
without any error.

In order to compute the necessary and possible preference
relations between two profiles of customer satisfaction
ðsata;1; sata;2;…; sata;nÞ and ðsatb;1; satb;2;…; satb;nÞ, one should pro-
ceed in the following way.

Considering the sets of constraints,

∑
n

i ¼ 1
uiðsatb;iÞ þ ∑

fi;jg∈Ið2Þ
synþ

ij ðsatb;i; satb;jÞ − ∑
fi;jg∈Ið2Þ

syn−
ij ðsatb;i; satb;jÞ

≥ ∑
n

i ¼ 1
uiðsata;iÞ þ ∑

fi;jg∈Ið2Þ
synþ

ij ðsata;i; sata;jÞ − ∑
fi;jg∈Ið2Þ

syn−
ij ðsata;i; sata;jÞ þ ε; ðE1Þ;

∑
c∈C

ðsþc þ s−c Þ≤maxerror;

9>>>>>>>>=
>>>>>>>>;
ENða;bÞ

and

∑
n

i ¼ 1
uiðsata;iÞ þ ∑

fi;jg∈Ið2Þ
synþ

ij ðsata;i; sata;jÞ − ∑
fi;jg∈Ið2Þ

syn−
ij ðsata;i; sata;jÞ

≥ ∑
n

i ¼ 1
uiðsatb;iÞ þ ∑

fi;jg∈Ið2Þ
synþ

ij ðsatb;i; satb;jÞ − ∑
fi;jg∈Ið2Þ

syn−
ij ðsatb;i; satb;jÞ; ðE1Þ;

∑
c∈C

ðsþc þ s−c Þ≤maxerror;

9>>>>>>=
>>>>>>;

EPða; bÞ

where maxerror is the maximum accepted total approximation
error, and ε in the constraint Uðℓnþ1

p Þ≥Uðℓnþ1
p−1 Þ þ ε is an auxiliary

variable, one can conclude the following:

� profile ðsata;1; sata;2;…; sata;nÞ is necessarily preferred to profile

ðsatb;1; satb;2;…; satb;nÞ if ENða; bÞ is infeasible or εN ≤0, where

εN ¼max ε, subject to ENða; bÞ,
� profile ðsata;1; sata;2;…; sata;nÞ is possibly preferred to profile

ðsatb;1; satb;2;…; satb;nÞ if EPða;bÞ is feasible and εP40, where

εP ¼max ε, subject to EPða; bÞ.

Analogous conclusions can be drawn using a set of approxi-
mately compatible utility functions. Then, one has to consider the
following two sets of constraints:

∑
n

i ¼ 1
uiðsatb;iÞ þ ∑

fi;jg∈Ið2Þ
synþ

ij ðsatb;i; satb;jÞ

− ∑
fi;jg∈Ið2Þ

syn−
ij ðsatb;i; satb;jÞ þ sþ1 −s

−
1≥

≥ ∑
n

i ¼ 1
uiðsata;iÞ þ ∑

fi;jg∈Ið2Þ
synþ

ij ðsata;i; sata;jÞ

− ∑
fi;jg∈Ið2Þ

syn−
ij ðsata;i; sata;jÞ þ sþ2 −s

−
2 þ ε;

ðE1Þ;
∑
c∈C

sþc þ s−c
� �

≤maxerror;

sþ1 þ s−1 ≤opt1;
sþ2 þ s−2 ≤opt2

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

EN1 ða; bÞ

Table 1
Consumers' satisfaction survey.

Customer Comprehensive
satisfaction

Product (1) Purchase
process (2)

Additional
service (3)

1 Satisfied Very
Satisfied

Satisfied Dissatisfied

2 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
3 Very Satisfied Very

Satisfied
Very Satisfied Very Satisfied

4 Satisfied Very
Satisfied

Dissatisfied Satisfied

5 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
6 Very Satisfied Very

Satisfied
Very Satisfied Very Satisfied

7 Satisfied Very
Satisfied

Dissatisfied Very Satisfied

8 Satisfied Very
Satisfied

Dissatisfied Very Satisfied

9 Satisfied Satisfied Satisfied Satisfied
10 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
11 Satisfied Satisfied Very Satisfied Dissatisfied
12 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
13 Very Satisfied Very

Satisfied
Very Satisfied Very Satisfied

14 Satisfied Satisfied Very Satisfied Dissatisfied
15 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
16 Very Satisfied Very

Satisfied
Very Satisfied Satisfied

17 Very Satisfied Very
Satisfied

Very Satisfied Very Satisfied

18 Very Satisfied Very
Satisfied

Very Satisfied Satisfied

19 Satisfied Satisfied Satisfied Satisfied
20 Dissatisfied Satisfied Dissatisfied Dissatisfied
x Very Satisfied Satisfied Very Satisfied Satisfied
y Satisfied Satisfied Satisfied Very Satisfied
w Dissatisfied Dissatisfied Very Satisfied Satisfied
z Satisfied Dissatisfied Satisfied Very Satisfied
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and

∑
n

i ¼ 1
uiðsata;iÞ þ ∑

fi;jg∈Ið2Þ
synþ

ij ðsata;i; sata;jÞ

− ∑
fi;jg∈Ið2Þ

syn−
ij ðsata;i; sata;jÞ þ sþ1 −s

−
1

≥ ∑
n

i ¼ 1
uiðsatb;iÞ þ ∑

fi;jg∈Ið2Þ
synþ

ij ðsatb;i; satb;jÞ

− ∑
fi;jg∈Ið2Þ

syn−
ij ðsatb;i; satb;jÞ þ sþ2−s

þ
2 ;

ðE1Þ;
∑
c∈C

ðsþc þ s−c Þ≤maxerror;

sþ1 þ s−1 ≤opt1;

sþ2 þ s−2 ≤opt2;

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

EP1ða; bÞ

where sþ1 ; s
−
1; s

þ
2 ; and s−2 are error variables of the utility values

relative to profiles a and b, while opt1 and opt2 represent the
maximum accepted errors in each one of the considered profile's
utility.

Since the new set of constraints, EN1 ða; bÞ and EP1ða; bÞ, enlarges
the decision space of the utility functions compatible with the
customers' preferences, the following two preference relations,
analogous to the ones introduced above, are defined:

� a strong necessary preference relation, for which a is strongly
necessarily preferred to b if a is at least as good as b for all
utility functions approximately compatible with the customers'
preferences,

� a weak possible preference relation, for which a is weakly
possibly preferred to b if a is at least as good as b for at least
one utility function approximately compatible with the custo-
mers' preferences.

Let us remark that we have considered two different qualifica-
tions (strong and weak) for the necessary and possible preference
representation. In fact, since taking into account the error vari-
ables enlarges the set of compatible utility functions, if a is at least
as good as b with respect to all approximately compatible utility
functions, then a is strongly necessarily preferred to b. On the
contrary, if a is not at least as good as b for any compatible model
in case error variables are considered, then even considering
utility functions admitting some error, we cannot find any utility
function for which a is at least as good as b.

5. Illustrative example

We shall illustrate MUSA-INT using an example originally
considered by Grigoroudis and Siskos [31], concerning 20 custo-
mers evaluating a service provided by an enterprise. In order to
show the full potential of our method, we have augmented the
customer dataset presented in [31] by four customers, denoted by
x; y;w; and z. The main features of our illustrative example are
listed hereafter:

(1) evaluation of the service involves three criteria concerning:
product (1), purchase process (2) and additional service (3);

(2) three levels of satisfaction (Very Satisfied (V), Satisfied (S),
Dissatisfied (D)) are considered with respect to both, every
criterion and comprehensive satisfaction of the service;

(3) the customer's satisfaction survey is composed of answers
provided by 24 customers and displayed in Table 1.

In the following, we will play the role of the analyst supporting
the customer satisfaction expert.

For customers x; y;w; and z, it is easy to show that the axiom of
the preferential independence is violated [41].

Supposing that the utility function of all the customers has an
additive form and does not handle synergies between criteria, we
can observe the following:

(1) since customers x and y have the same levels of satisfaction
with respect to criterion ‘product’, and the comprehensive
satisfaction level of x is greater than the comprehensive
satisfaction level of y, we get

u1ðxÞ þ u2ðxÞ þ u3ðxÞ4u1ðyÞ þ u2ðyÞ þ u3ðyÞ
⇒u2ðxÞ þ u3ðxÞ4u2ðyÞ þ u3ðyÞ;

(2) since customers w and z have the same levels of satisfaction
with respect to criterion ‘product’, and the comprehensive
satisfaction level of w is lower than the comprehensive
satisfaction level of z, we get

u1ðwÞ þ u2ðwÞ þ u3ðwÞou1ðzÞ þ u2ðzÞ þ u3ðzÞ
⇒u2ðwÞ þ u3ðwÞou2ðzÞ þ u3ðzÞ;

(3) since customers x and w have the same levels of satisfaction
with respect to criteria ‘purchase process’ and ‘additional
service’, and customers y and z have the same levels of
satisfaction with respect to criteria ‘purchase process’ and
‘additional service’, we obtain

u2ðxÞ þ u3ðxÞ ¼ u2ðwÞ þ u3ðwÞ and
u2ðyÞ þ u3ðyÞ ¼ u2ðzÞ þ u3ðzÞ:

From (1), (2) and (3) we get a contradiction since at the same time
it should be true that u2ðxÞ þ u3ðxÞ4u2ðyÞ þ u3ðyÞ and u2ðxÞþ
u3ðxÞou2ðyÞ þ u3ðyÞ.

As a result, we conclude that the customers' comprehensive
satisfaction cannot be represented by an additive utility function,
and thus, the MUSA method using this type of utility function is not
able to fully represent the comprehensive satisfaction of the custo-
mers shown in Table 1.

For this reason, to represent the customers' comprehensive
satisfaction shown in Table 1, we apply MUSA-INT, adopting a
utility function with positive and negative synergy components (3).

In the following we shall consider option (S1) only, that is
the case where there could exist both positive and negative
interactions for the same couple of criteria. The computations for
the other two options ((S2) and (S3)) can be done analogously.

As described in phase (i), we would like to consider the
simplest possible utility function, that is the one involving the
minimum number of interactions. For this reason, to start we
suppose that each criterion can interact with at most one another
criterion. Solving the MILP problem (9) in which ε has been fixed
to 0.1, we get the total approximation error opterr¼0.5. This means
that, under the hypothesis that each criterion can interact with at
most one another criterion, there does not exist any utility
function of type (3) representing the satisfaction of all customers.

Since maxerror, indicating the maximum acceptable error, is set
equal to 0.3, we decide to increase the maximum number of
criteria with which each criterion can interact. This means that
now each criterion can interact with at most two other criteria and
not only one, as before. In consequence of this assumption,
constraints of type (10) should be added to the set of constraints
En. After introducing all these constraints, and solving again MILP
problem (9), we get sþc ¼ s−c ¼ 0 for all c∈C, and therefore
opterr¼0. This time, there exist a utility function of type (3)
representing the satisfaction of all customers. From the MILP
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problem (9), we obtain γ12 ¼ γ13 ¼ 1 that is Syn¼ ff1;2g; f1;3gg;
this means that criterion ‘product’ (1) interacts with both criteria
‘purchase process’ (2) and ‘additional service’ (3).

After fixing α¼ 0, that is no admitting any deterioration of the
total admissible error, in phase (ii) (see Section 3.2), we solve MILP
problem (11) to determine a set of couples of interacting criteria.
Solving the MILP problem (11), we get the same interactions as we
found previously. This means that the set Syn of couples of criteria
is the minimum one with respect to the inclusion.

In phase (iii) (see Section 3.3), we proceed in two steps to find
the most discriminating utility function. In the first step, when
maximizing the discrimination of satisfaction levels of the com-
prehensive utility, we find εcomprehensive ¼ 0:5 while the utility
function and the interactions are shown in Table 2. In this case,
the couples of criteria f1;2g and f1;3g present only positive
interactions while couple of criteria f2;3g is not interacting.

At this point, in the second step, in order to maximize the
discrimination of satisfaction levels of the marginal utilities we
solve the MILP problem (13) finding the utility function shown in
Table 3. Looking at Table 3(b), we observe that couples of criteria
f1;2g and f1;3g present positive and negative interactions while
the couple of criteria f2;3g is not interacting. In particular,
comparing the levels of the interactions for each pair of levels,
we observe that the negative interaction is greater or equal to the
positive interaction. For example, looking at the interactions of the
pair (V,D) for the couple of criteria f1;3g, we have synþ

13ðV ;DÞ ¼ 0:1
and syn−

13ðV ;DÞ ¼ 0:4.
In phase (ii) of the illustrative example presented above, we

found the minimal set Syn1 ¼ ff1;2g; f1;3gg. Looking for other
minimal sets, we solve the MILP problem (14) that does not give
other solutions. This means that Syn1 is the only minimal set of
couples of interacting criteria and therefore the satisfaction of the
customers can be described in a unique way, that is considering
positive and negative interactions for the couples of criteria f1;2g
and f1;3g. Applying the ROR as described in Section 4.2, and
after fixing opt1 ¼ opt2 ¼ 0:1, we show here some interesting
observations:

� profile ðD; S;VÞ is strongly necessarily preferred to profile
ðD;V ; SÞ,

� profile ðS;V ;DÞ is necessarily preferred but not strongly neces-
sarily preferred to profile ðV ;D; SÞ,

� profile ðV ; S;DÞ is neither weakly possibly nor possibly pre-
ferred to profile ðS;V ; SÞ.

The first result, for example, could be interpreted by saying that
considering “Dissatisfied” level for ‘product’ , the customers prefer

to have “Satisfied” level for ‘purchase process’ and “Very Satisfied”
level for ‘additional service’ rather than “Very Satisfied” level for
‘purchase product’ and “Satisfied” level for ‘additional service’.

6. Conclusions

In this paper, we proposed MUSA-INT, a new multicriteria custo-
mer satisfaction analysis method able to take into account positive and
negative interactions among criteria, even if the customers' judgments
are qualitative and not quantitative. To explain the customer's pre-
ferences, the method employs an additive utility function augmented
with components representing positive and negative interactions
between two satisfaction levels of two criteria.

Some strong points of our method are listed hereafter:

� the criteria are expressed on ordinal scales, without the
necessity of expressing all the criteria on a common ordinal
or cardinal scale, as this is the case of the Choquet integral or
some other fuzzy integrals;

� the model reveals the interactions among criteria in the
customer satisfaction evaluation of a product or a service;

� the interactions among criteria have a meaningful interpreta-
tion for the customer as a bonus (for positive interaction) or
penalty (for negative interaction), added to or subtracted from
the sum of marginal utility values;

� there is a parsimonious representation of the interactions by
considering minimal pairs of sets of couples of interacting
criteria;

� one can identify all minimal pairs of sets of couples of
interacting criteria;

� as the preference model (utility function) representing the
customers' satisfaction is, in general, not unique, it is possible
to take into account the whole set of compatible preference
models adopting the Robust Ordinal Regression methodology.

We envisage some possible directions of future research:

(1) Consideration of positive or negative interaction not only
between couples of criteria, but also triples, quadruples and,
generally, sets of criteria of cardinality greater than 2. Using
the example of a supermarket, it may be reasonable to admit
that there is a specific surplus in the appreciation due to the
presence at the same time of low prices, special offers and
quality. In this case, the considered utility function will

Table 2
Parameters of the most discriminating utility function resulting from optimal solution of MILP problem (12).

(a) Marginal utilities and
      interactions

u1 u2 u3 U
D 0 0 0 0
S 0 0 0 0.5
V 0 0 0 1

1 1 0

(b) Values of the interactions for all pairs of levels

syn+
12 syn−

12 syn+
13 syn−

13 syn+
23 syn−

23

VV 0.5 0 0.5 0 0 0
VS 0 0 0.5 0 0 0
VD 0 0 0.5 0 0 0
SV 0.5 0 0.5 0 0 0
SS 0 0 0.5 0 0 0
SD 0 0 0 0 0 0
DV 0 0 0.5 0 0 0
DS 0 0 0 0 0 0
DD 0 0 0 0 0 0

�23�13�12
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become

Uðsatc;nþ1Þ ¼ ∑
n

i ¼ 1
uiðsatc;iÞ þ ∑

A∈Synþ
G

synþ
A ðsatc;i; i∈AÞ

− ∑
A∈Syn−

G

syn−
A ðsatc;i; i∈AÞ; c∈C ð18Þ

where Synþ
G ; Syn

−
GD2I are the families of all the subsets

of criteria for which there is a positive interaction and a negative
interaction, respectively. Considerations of interaction among
criteria in subsets with cardinality greater than 2 requires to
pay a specific attention to the trade-off between the better
knowledge one gets about customer satisfaction and the addi-
tional computational effort required to get this knowledge.

(2) The representation of customers' preferences using an out-
ranking model instead of a utility function; in this case, the
interaction can be represented taking into account the con-
cordance index of ELECTRE method presented in [11], or the
bipolar PROMETHEE proposed in [6].

(3) Consideration of a hierarchal structure of criteria in the
customers' survey. Indeed, very often the customers are
required to evaluate features of a product or a service orga-
nized in a hierarchical way. For instance, taking into account
our illustrative example, product satisfaction could be split
into satisfaction with respect to aspects A1, A2 and A3, so that
we have an evaluation on the three aspects and a comprehen-
sive evaluation with respect to ‘product’. A similar level of
detail can be considered for ‘purchase product’ and ‘additional
service’. In this case, we could consider an ordinal regression
approach concordant with the principle of Multiple Criteria
Hierarchy Process [2,7,8].

(4) Application of all ROR extensions, such as SMAA applied to
Robust Ordinal Regression [39,40].
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Appendix A

A.1. Computational details

In the following, we shall characterize only the computational
effort of the MILP problem (9) solved in phase (i), because the

other MILP problems solved in phases (ii) and (iii) have a similar
number of constraints and variables.

Considering r customers, n criteria, si levels for criterion i and
snþ1 levels of the comprehensive utility we get

� Variables:

ðS1Þ ∑
n

i ¼ 1
si þ snþ1 þ 2 ∑

n−1

i ¼ 1
∑
n

j ¼ iþ1
ðsisjÞ þ 2r þ n

2

� �
;

ðS2Þ ∑
n

i ¼ 1
si þ snþ1 þ 2 ∑

n−1

i ¼ 1
∑
n

j ¼ iþ1
ðsisjÞ þ 2r þ 2

n

2

� �
;

ðS3Þ ∑
n

i ¼ 1
si þ snþ1 þ ∑

n−1

i ¼ 1
∑
n

j ¼ iþ1
ðsisjÞ þ 2r þ n

2

� �
:

For example, in our case, where n¼3, si ¼ 3; i¼ 1;…;4, and
there are 24 customers, we have 117 variables for option (S1),
120 variables for option (S2) and 90 variables for option (S3).

� Constraints:

ðS1Þ r þ nþ 1þ 2
n

2

� �
þ ∑

n

i ¼ 1
ðsi−1Þ þ ðsnþ1−1Þ

þ3 ∑
n−1

i ¼ 1
∑
n

j ¼ iþ1
∑
si

p ¼ 1
∑
sj

q ¼ 1
ðpq−1Þ

" #
þ 1þ nþ 2

n
2

� �

ðS2Þ r þ nþ 1þ 2
n

2

� �
þ ∑

n

i ¼ 1
ðsi−1Þ þ ðsnþ1−1Þ

þ3 ∑
n−1

i ¼ 1
∑
n

j ¼ iþ1
∑
si

p ¼ 1
∑
sj

q ¼ 1
ðpq−1Þ

" #
þ 1þ nþ 3

n

2

� �

ðS3Þ r þ nþ 1þ n

2

� �
þ ∑

n

i ¼ 1
ðsi−1Þ þ ðsnþ1−1Þ

þ2 ∑
n−1

i ¼ 1
∑
n

j ¼ iþ1
∑
si

p ¼ 1
∑
sj

q ¼ 1
ðpq−1Þ

" #
þ 1þ nþ n

2

� �

In our example, we have 295 constraints for option (S1), 298
constraints for option (S2) and 208 constraints for option (S3).

Let us observe that the number of constraints can be reduced,
as stated also previously in the paper, using the transitivity
of ≥. For example, let us consider 9 elements in the set
A¼ fa; b; c; d; e; f ; g;h; ig and a transitive relation R on the cartesian
product A�A, shown in Table 4(a). Let us observe that in Table 4
(a), 27 couples belong to R, while in Table 4(b), using the
transitivity of R we have only 12 couples, reducing in this way
15 couples.

Table 3
Parameters of the most discriminating utility function resulting from optimal solution of MILP problem (13).

(a) Marginal utilities and
      interactions

u1 u2 u3 U
D 0 0 0 0
S 0.6 0.4 0.4 0.5
V 1 0.8 0.8 1

1 1 0

(b) Values of the interactions for all pairs of levels

syn+
12 syn−

12 syn+
13 syn−

13 syn+
23 syn−

23

VV 0.3 1 0.1 1 0 0
VS 0 0.6 0.1 0.6 0 0
VD 0 0.4 0.1 0.4 0 0
SV 0.3 0.8 0.1 0.8 0 0
SS 0 0.6 0.1 0.4 0 0
SD 0 0.2 0 0.4 0 0
DV 0 0.8 0.1 0.4 0 0
DS 0 0.4 0 0.4 0 0
DD 0 0 0 0 0 0

�23�13�12
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Reasoning in this way, we can considerably reduce the number
of constraints. In fact, for option (S1) we obtain 160 constraints, i.e.
135 less, while for options (S2) and (S3) we get 163 and 118
constraints, i.e. 135 less and 90 less, respectively.
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