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1 | INTRODUCTION

In the literature of the last decades, the problem of damage identification, on the basis of nondestructive testing, has
been the object of several studies in view of its applicability to those cases in which a simple visual inspection of the
damaged structural element is not sufficient. Execution of nondestructive tests in dynamic regime provides, in general,
a large number of information; however, in cases of simple structural systems, such as straight beams subject to damage,
static tests are easily executable and can provide additional information to dynamic identification.

The damage identification procedures based on measurements of response parameters by nondestructive tests do not
usually provide explicit solutions of the inverse, and they usually rely on numerical methods. Only recently, the prob-
lem of identification of single and multiple open cracks, modeled as linear rotational springs in single-span straight
beams, has been solved by means of explicit solutions, dependent on static measurements, of damage-induced variations
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in the deflection of the beam.!"?! A careful analysis of the explicit solutions provided by the latter studies allowed the
formulation of sufficient conditions on the position of the displacement measurements, for determination of both dam-
age locations and severities.

A different line of research to deal with cracks can be followed by modeling the equivalent rotational springs by
making use of distributions (generalized functions).[>*! According to the latter approach, cracks can be modeled as
Dirac's deltas in the flexural stiffness function of the beam leading to closed-form expressions in stability and dynamics
of craked beams.!>®! The latter closed-form expressions of the direct problem have been also successfully employed for
the analysis of multicracked frames.!”°! The generalized function approach has been employed for the damage identi-
fication in beam-like structures in a dynamic context. 1! Although the use of dynamic measurements for damage iden-
tification purposes is quite common in the literature™ ") in view of the easy repeatability of the dynamic tests during
the operational life, in the literature, few studies adopt a strategy based on data from static tests. In the pioneering study
by Sanayei and Onipede,!*®! an analytical method that makes use of static data test is employed to assess the damage in
frames. More recently, regarding the static identification of damage parameters in structures, further studies were
devoted to propose an alternative strategy for frames,!*! to assess instrumental errors with reference to beam-like struc-
tures,®! to the identification of damage in arches,?!! to the identification of diffuse damage in beam-like structures!??!
and to the identification of multiple concentrated cracks in beams by making use of evolutionary algorithms for the
optimization procedure.'?*!

In this paper, by utilizing the solution provided by the mentioned distributional approach, a further contribution
towards the identification of multiple cracks in straight beams by static response measurements, leading to explicit
expressions for damage positions and severities, is provided. In particular, the explicit solution of a multicracked beam
is first presented as dependent on four integration constants, related to the boundary conditions (b.c.), and on summa-
tion terms showing a sequential appearance of the intensity and position crack influence on the static deflection of the
beam. Then the above character of the solution is exploited for identification purposes by identifying the integration
constants, first, in the region of the beam not influenced by the cracks, successively, by triggering a cascade identifica-
tion of a single crack at a time in each monitored segment of the beam.

The advantage of the proposed procedure, based on the acquisition of displacement measurements by static tests
along a grid of points, is that for each couple of measurements, the position and severity of a single damage, along a
specified portion of the beam, can be identified by means of explicit expressions.

The methodology benefits of several properties preventing the propagation of errors and helping to recognize the
violation of the basic assumption on which it relies. In addition, the sensitivity of the identified parameters is investi-
gated with reference to both proportional and absolute noise.

Finally, the proposed damage identification procedure can be applied to any b.c., henceforth leads itself to applica-
tions for identification of cracks occurring in frame structures as also shown in the last part of the paper.

2 | ALOCALIZED FLEXIBILITY MODEL FOR A MULTICRACKED EULER-
BERNOULLI BEAM

In this section, a model for the evaluation of the influence of cracks on straight beams is briefly recalled. In particular,
the model makes use of generalized functions and, in the case of uniform beams, leads to explicit closed-form solutions
to be exploited for identification purposes.

Localized flexibility models (LFMs) are often used to represent the behavior of damaged beams and frames. In the
case of beams under plane flexural deformation, a notch or an open crack is modeled by inserting a massless rotational
elastic spring at the damaged cross section.!?***! Linear fracture mechanics arguments are usually adopted to describe
(open) cracks in beams.**! Recently, Caddemi and Morassi proposed a different justification of the rotational elastic
spring model of an open crack or notch in a beam.**! In the latter work, the authors proved that this LEM is the
variational limit of a family of one-dimensional beams when the flexural stiffness of these beams tends to zero in an
interval centered at the cracked cross section, and simultaneously, the length of the interval vanishes in a suitable
way. In the same paper, the accuracy of the LFM has been evaluated on the basis of a series of vibration tests carried
out on steel beams with single notch or multiple notches. Experimental results show that the accuracy of the LFM is
comparable with that of the classical Euler-Bernoulli model for a beam without defects.

Following the approach in Caddemi and Morassi,**! the equilibrium problem is here formulated for a beam with n
cracks.
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A beam of length L and bending stiffness E,I, = constant, subjected to a transversal load g(x), x being the spa-
tial abscissa running from 0 to L, is considered. The cracks are located at points of abscissa x;, i = 1, ..., n, with
0 <X <X <..<Xx, <L, and are modeled by rotational elastic springs of stiffness k;, i = 1, ..., n. The stiffness
ki, i=1, .., n, depends on the geometry of the defect. Values of k; for simple geometry of the cracked cross sec-
tion are available in the literature; see, for example, Paipetis and DimarogonasB” and Freund and Hermann.>*!

The transverse deflection of the beam axis is governed by the following differential equation:

@y 900 E M) 2

u'(x) = - > ——=6Y (x—x; (D
kLT E K O

under suitable end conditions at x = 0 and x = L. In the above expression, M(x;) = —E,I, u® (x;) is the (continuous)

bending moment acting at x = Xx;, where the superscript (k) indicates the kth derivative with respect to x and &(x — x;)
is the Dirac's delta with support at x = x;. Here, u®® s the kth derivative of u(x).

In Caddemi and Morassi,**! it was shown the integration procedure of Equation 1 for the case of clamped-clamped
b.c. Integration of Equation 1 for any b.c. leads to the following closed-form expression of the transversal displacement
function u(x):

n n
u(x) =c1 +ex ez |xX* + ZZAi(x—xi)U(x—xi)] +c [x3 + 6 2, 4ixi(x—x;) U (x—x;)
& s

(2)
‘ (x=x;) U (x—x;),

where U(x — x;) is the Heaviside's, unit step, distribution with support (x; o). Here, ¢'*/(x) indicates the kth primitive

function of the external load g(x), namely, g (x) = qu(sl)dsl, q? (x) = jzjzlq(sz)dszdsl, and so on. The parameters
Ai, 1 =1, .., n, appearing in the summation terms in Equation 2, represent the compliance of the rotational springs
E.l,
kL~

Equation 2 is the solution of a beam with multiple-concentrated open cracks dependent on four integration
constants cy, ¢,, c3, ¢4 to be determined by means of the b.c. at x = 0 and x = L, without enforcement of any continuity
conditions at the cracked cross sections.

Equation 2 will be exploited in this work to analyze beams with elastic end constraints also able to represent the case
of damaged beams embedded in frame structures.

equivalent to the n cracks related to the stiffness k;, i =1, ..., n, as follows: 1; =

3 | THE IDENTIFICATION PROCEDURE OF MULTIPLE CRACKS

The great advantage of proposing multiple damage identification procedures has been addressed in Caddemi and
Morassil"?! where explicit solutions have been also proposed on the basis of measurements by static tests.

In this work, by following a different strategy, the explicit expression of the static deflection function, given by
Equation 2, is adopted to propose a novel procedure for the identification of both position and intensity of multiple
cracks.

The damage identification strategy proposed in this work is based on the following statement:

« The transversal displacement u(x) provided by Equation 2, except for the integration constants ¢y, ¢,, ¢z, ¢4, depends
on the intensity and position of the cracks located at x; < x as evidenced by the terms involving the Heaviside's
functions, because U(x — x;) = 0, for x < x;, and U(x — x;) = 1, for x > x;.

The property of the solution in Equation 2 reported in the above statement suggests, starting from the first damage,
to employ two displacement measurements to recognize whether there is a damage on the left of the measurement
position and activate a sequential identification procedure. More precisely, for each beam interval where a single
damage occurs, by making use of the analytical expression given by Equation 2, evaluated at two different cross
sections, it is possible to provide closed-form expressions of the crack position and intensity as functions of the
measured static transversal displacements of the beam.
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The above sequential identification procedure requires an a priori identification of the integration constants cy, ¢, c3,
c4 necessary to initiate the crack detection of a single crack in turn.

In Sections 3.1 and 3.2, devoted to beams with elastic end constraints, the procedure to identify the integration con-
stants and the generic crack, starting from the first, respectively, are proposed in detail.

3.1 | Identification of the integration constants

In direct analysis problems, the integration constants cy, ¢,, ¢3, ¢4, appearing in Equation 2, can be evaluated by impos-
ing four b.c. at both ends on the beam. The relevant expressions are generally explicitly dependent on the cracks occur-
ring along the beam span.

However, for multicrack detection purposes, because the crack positions and intensities are unknown, the adoption the
standard b.c.-dependent expressions would imply difficulties in the formulation of the inverse identification problem. For
the latter reason, an analytical procedure for the identification of the integration constants derived by four additional trans-
versal displacement values, measured by static tests at cross sections other thanx =0, x= L, is proposed in this subsection.
The general case of beams with multiple cracks and elastic end constraints will be treated in what follows.

Precisely, for the case of a beam with elastic end constraints and a generic transversal external distributed load q(x),
four experimental static deflection measurements at the absciSSa€ Xpmo, X5 X0, Xmo» Under the hypothesis that
Ximo< Xye< X< X < X1 (as depicted in the sensor layout reported Figure 1), are here employed for the identification
of the integration constants c;, ¢, ¢3, C4-

In view of the closed-form solution given by Equation 2 and on the account of the statement asserted in the previous
section, the deflection function at Xy, X,,,, X, X, is dependent on the integration constants only. Equating the theo-

retical displacements u™(X,no), u(x,,,,), u" (x,,,), u™ (x,,), given by Equation 2, to the experimental measurements

U™ (Xmo ), U™ (x;n0> U (x:no) ,u (x,rlv;o) » as

uex(xmo) =u h(xmoa C1,C2,C3, C4)7
u® (x;no) = uth (xmm €1, €2, C3, C. 4))
el " (3)
u (xmo) =u ( Xmos €1, €2, €3, C 4)5
U (X) = U™ (X3 €1, €2, €3, Ca),
provides a system of equations to be solved with respect to c;, ¢,, €3, Cy4.
Equation 3, in view of Equation 2, can also be written explicitly as follows:
ex 2 3 qw (xmo)
u (xmo) = C1 + C2Xmo + C3Xpyy + CaXppy +——=—7—
Eol,
4 (x
3 g X
u (xmo) =a+ szmo + c3x mo T CaXpo + %7
o0+o
. 4)
ex "3 q[4] (xmo)
U (X)) = €1+ X + ex’’ ot Cax, s
Eol,
] ("
w3 X
U (X00) = €1 + CoXomy + C3Xomm + CaXms + M
Eyl,

"
4 xm 4 xm 4

MM M M M O M M M M
| i | i ] (N

X, X, X3 X4

xmo x x ml m

' ’ '
x 'xml X xm2 xm2 xm3 xm3 xm4

m0

FIGURE 1 Measurement layout along a beam with multiple cracks and deformable end constraints
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The matrix of the linear system in Equation 4 is of Vandermonde type. Therefore, its solution is unique, and the
integration constants ¢y, ¢,, ¢s, ¢4, have the following explicit expressions:

where

1 =

+

_x;nox;nox:;lo ex q[4] (xmo) wax:nox;’:to ex (. _q[4] (x;no)
u (xmo ) ( mo)
d; E,I, dy E.l,

)

_xmoxmoxmo [uex (x” ) q[4] (x:m)‘| + xmox;nox;;w [um (x”’ ) q[4] (x;w)
mo mo

E, d, "~ E,

d; E,I, d,

— x,rnox:no + x;nox:;to + x:nox:;zo ex q[4] (xmo) xmox:no + xmox;:lo + x:nox:;lo ex (. _q[4] (xm0>
c U™ (Xpmo) U™ (X, 71
0+ 0

Xmoxmo + x’”"xmo + xmoxmo
ds

leOx;rw + xMOx:;Lo + x;nox:;w ex (,." qw (x:l10)
+ U ()
d3 EoIo

C: = x;’no + x:no + x;zo uex< ) q[4] (xmo) Xmo +x:no + xlrl;lo ex(x’ )_q[“] (x;no) +
’ dl "o EoIo d2 mo EOIO
Xmo + x;no + x:;w ex (.. q[4] (x:no) Xmo + x;no + x:no ex (,." q[4] (x:l,’lo)
U (X, U (X ) =5
d3 Eolo d4 EOIO
1 g (xmo)] 1 N N | sy q¥ ()| 1 vy g (x,)
€4 = — U (Xpo)——— | — [u¥(x,, ) ——=24| +—|u¥(x,, ) —— | — u™(x,, ) ——
4 d1|: ( mo) E,I, d2 ( mo) E,I, + d3 ( mo) E,I, d4 ( mo) E,I, ’
P P m 5 P 5 0 m 3 5
dy = XmoXimoXmo X moXmoXmo ™ XmoXmo T XmoXpmoXmo™XmoXmo T XmoXpmoXmo T Xmo=XmoXmo>

’ " ” " 12 ’ " 12 n ’ " " '3 12 m

d = ~XmoXmoXmo T XmoXmeXmo T XmoXmo=XmoXmoXmo T XmoXmo =X moXmoXmo*mo + XmoXmo> (6)
’ " ’ " n2 " m n2 1 ’ " m ”n3 n2 m

d; = ~XmoX 10X mo T XmoXimeXmo =X moXmo + XmoXpoXimo =X moXmo T XmoXmoXmo + Xmo=X moXmo>
’ " ’ " m2 " m m2 ’ " m m3 m2 n

dy = “XmoX0Xmo T XmoXimeXmo T X moXmo—XmoXmoXmo T X moXmo ~XmoXmoXmo =X mo mo”mo*

Equation 5 provides the explicit expressions of the unknown integration constants c;, ¢,, ¢s, ¢4 as determined by the
experimental measurements independently of the knowledge of the cracks. The latter being the main object of the
inverse identification problem.

Alternative explicit expressions for the integration constants can also be obtained by starting the outlined proce-
dure from the right end of the beam. In that case, one would need four transversal displacement measurements
between the last crack occurrence and the right external constraints as also outlined in Figure 1 for the case of four

cracks.

It is worth noting that the expressions in Equation 5 are able to provide the integration constants of any specific b.c.
even concerning cases of no constraints or rigid constraints, such simply supported or clamped-clamped beams.

For those static tests in which the relevant b.c. are given with certainty, the explicit expression presented in
Equation 5 may assume simpler expressions, and the identification of the integration constants may require less
measurements.

As

an example, for the case of a simply supported beam, the b.c. at x = 0 imply that u(0) = u'(0) = 0 and the

integration constants ¢; = c; = 0. The remaining integration constants c,, c4, according to the proposed procedure,
can be identified by experimental transversal displacements measured along the beam span by a nondestructive static

test at the abscissae xmo,x;,w, such that xmo<x;,w <x1, according to the measurement position layout depicted in
Figure 2. In fact, in view of the closed-form solution given by Equation 2, transversal displacements u(Xp,, ), u(x;m) mea-
sured at X, X,,, are dependent on the integration constants only, which can hence be identified by means of the linear
system in Equation 4, which is reduced for the case at hand (c; = ¢; = 0) as follows:

4 (x . , s g¥(x
u® (xmo) = C2Xmo + C4xfno + % ) u™ (xmo> = CoXypp + CaXypy + M'
0+0

B, (7)
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FIGURE 2 Measurement layout along a simply supported beam with multiple cracks

The solution of the linear system in Equation 7 leads to the following expressions for the identification of the
integration constants c,, c,:

r (4] 4 (x
g (xmo)| 3 : 9" (o)

[Tl - [ex ()~

C g 2 )
xmoxm X mo _x%no (8)
ex (' q[4] ( mo) ex q[4] (xmo) /

1 u ( mo)_ E,I Xmo— |U (xmo)_ E,l, Ximo

Ca

; 3
XmoX o X o —xfno

Equation 8 provides the explicit expressions of the unknown integration constants c,, ¢, as identified by the
experimental measurements.

It is worth to notice that, in the latter case, in view of the a priori knowledge of the b.c., two displacement
measurements have been sufficient for the identification of the integration constants.

It is worth noting that the presented procedure may be broadened to include identification of the flexural flexibility
1/E,I, with regard to those cases where the latter is not known with certainty. As a matter of example, if an additional
displacement measurement atx, , denoted as uex( ) is considered, the linear system in Equation 7 can be extended as

o
U (Xmo) = C2Xmo + c4xfm) + M’
Eol,
’ , , [4] _X’
U (X)) = € + CaX py + M’ (9)
EOIO
("
’ § PER e O
U (Xpp) = C2Xpp + CaXp + 4" (o)
EOIO

to be solved with respect to the unknowns c,, ¢4, 1/E,I, as

1 xsnoq[‘q (x;no) uex (x;no) moq[ ] (xmo) “ (x;’no) _x}%noq[éq (x:no) uex (x;'no) +
C = =

L o (X3) ¢ 3100 (K50 U () =0 () ()

1 xmoq[ ]( )uex (x;no)_xmqu (xmo)uex (x;no) ;'noq[ (xmo)uex( ;'n )
“T7s (¢ Y e a0 Voo | (10)
+xmoq ( )Ll (Xmo) +xmoq (xmo)u (xmo)_xmoq ( mo)u (xmo)

X

XoX o U (X, )xmox U (X0 ) XX (X0 ) +

1
EJ, S ’
oto +xm0xmou (Xmo) XX U™ (X0 ) xmoxmouex(xmo)

being

S= xmoxlfnoq[‘q (x:no)_xmox,l;oq[4]( ,mo)_xmoxmoq[ ]( ) +x o* moq[ ](xmo) +xmoxm0q[4] (x;'no)_x:noxlfnoq[‘q (xmo)' (11)

3.2 | Identification of the crack positions and intensities

Once the four integration constants have been identified, Equation 2 can again be exploited to identify the first and,
sequentially, the successive cracks starting from the left end of the beam.
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In fact, as declared by the statement in the previous section, the theoretical expressions of transversal displacements
measured at the abscissae xml,x;nl, such that x1<xm1<x;n1<x2, according to the sensor layout in Figures 1 and 2, are
dependent on the integration constants (already identified by means of Equation 5) and on the position and intensity x;
and 4, respectively, of the first crack.

Equating the theoretical displacements u(x,,;), u (x;nl), given by Equation 2, to the experimental measurements

U™ (X ), U™ (x,,; ), at the same abscissae, as

U (Xm1) = U (o1 X1, A1), U (X)) = U™ (X5 X1, 241)), (12)
provides a system of equations to be solved with respect to x; and 4, for the identification of the first crack.

Equation 12 can be written explicitly as follows:

ex 2 3 4" (em1) 9% (x1)
U (X ) = €1 4 CoXm1 + €3 X0 + 241 (X1 —x1)] + Ca X + 641 X1 (X —x1)] + 51 + A I (Xm1—x1),
o+o 0+0
(13)
, , , , , , 4l (x] P(xy), .
U (X1 ) = €1+ C2Xpy + C3 [x 42 (xml—xl)} + s {x S 46l (xml—xl)} +4 ) w2 ( 1)(xml—xl).
E,I, E,I,

By eliminating the unknown A; in Equation 13, the system can be solved explicitly in terms of the crack
position x; as

_ XmD (x;'nl) —X, D (X))

T D) =Dem) ()

where D(x) is given as

g (x)
B,

D(x) = u®(x)—c1—Cox—Cc3x*—cux’— 15)
and where it was assumed that the denominator in Equation 14 does not vanish.

Once the position x; of the first crack is evaluated by means of Equation 14, the first equation appearing in
Equation 13 can be solved with respect to 4,, as follows:

D(xml)

q 2 (x1)
E,I,

A= (16)

203 + 6C4X1 + (xml_xl)

The next step of the crack identification procedure consists in the employment of the experimental transversal
displacement measured at the abscissae x,,,3,x,,,, such that x,< x,,,,< x;nz< X3 as in Figures 1 and 2, to identify the posi-
tion and intensity x,, 4, of the second crack.

/
m2>

Precisely, equating the theoretical displacements u(x,),u" (x;nz), given by Equation 2, to the experimental
measurements U (X, ), u™ (x'mz), provides a system of equations to be solved with respect to x, and A, for the identifi-
cation of the second crack as follows:

u"“x(xmz) =C1 + X2 + C3 [anz + 2&1 (xmz—xl) + 2/12(xm2—x2)} “+C4 [xfnz + 6/11 X1 (xmz—xl) + 6/12x2(xm2—x2)}

n q[4] (Xm2) n q[z] (x1) q[z] (x2)
E,I, E,I, Eol,

U (X)) = €1+ X,y + €3 {x’zmz + 221 (X,,—x1) + 24, (x'mz—xz)] + ¢4 [x'fnz + 641 X1 (xX,,—X1) + 642X, (x;ﬂz—xg)}

M) g @
9" (Xa) | 4%001), (o q%0x2),
Egy T B, O g o )

M (Xm2—X1) + A (Xm2—X2),

a7

+

By eliminating the unknown A, in Equation 17, the system can be solved explicitly in terms of the crack
position x, as
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_ Xm2[D (%) + F (Xyna) | =X [D(m2) + F2)]

; ; , (18)
D(X,) + F(Xp5) =D (Xm2)— F(Xm2)
where D(x) is given in Equation 15, whereas F(x) is given as
2l (%
F(x) = =21 (x—x1) ¢ (x1) + 2¢3 + 641 |, (19)

E,I,

and where it was assumed that the denominator in Equation 18 does not vanish.
Once the position x;, of the second crack is evaluated by means of Equation 18, the first equation appearing in Equa-
tion 17 can be solved with respect to 4, as follows:

D(xmz) + F(xmz)

q? (x,)
E,l,

A = (20)

2¢3 + 6x5¢4 +

(Xma—x2)

The procedure described so far for the identification of the first two cracks can be easily conducted sequentially for
the successive cracks, according to the sensor layout depicted in Figure 1, leading to the following closed-form expres-
sions for the position and intensity of the ith crack:

_ Xmi [D (x;ni) + F (x;ni)]_x;ni [D(xmi) + F(Xpmi)]
T D) + F(Xp) =D )= FOm) @0

D(xmi) + F(xmi)

A= , (22)
g% (x;)
2¢3 4+ 6Xx5¢4 + Edl, (x,m-—xl-)
where D(x) is given by Equation 15, whereas F(x), originally provided by Equation 19, is now generalized as
i-1 2 (x
F(x) = — ) A (x—xx) g () + 2c3 + 6Caxx (23)
k=1 EoIo

and where it was assumed that the denominator in Equation 21 does not vanish.

The proposed damage identification procedure leads to explicit expressions of the integration constants c;, ¢,, 3, ¢4
(as described in Section 3.1), the damage position x;, and intensity A;. More precisely, Equation 5 provides c;, ¢, €3, ¢4
explicitly as functions of the experimentally measured displacements u® (Xpo), U™ (X, ), U (X,y,), U (x,,,, ), Whereas
Equations 21 and 22 provide x; and 4;, respectively, in terms of the displacements u® (x,;), ue"(x'mi), detected in the
undamaged region between the ith and the (i + 1)th crack to be identified.

Equations 21 and 22, in view of Equation 23, show the dependence of the position x; and intensity 4;, of the ith crack,
on the positions and intensities of the cracks denoted as k = 1, ..., i — 1. The latter circumstance implies that
Equations 21 and 22 apply to a sequential identification of each single crack separately and allow to detect and
quantify a crack along prescribed segments of the beam as indicated by the chosen sensor layout adopted in the
execution of the nondestructive test.

It is worth to notice that the sequential character of the proposed procedure can be considered an advantage because
it reduces the multicrack identification problem to a sequence of steps implying a single crack identification each. How-
ever, at the same time, it may also be considered a drawback due to the inevitable measurement/instrumental errors
propagation through the successive steps.

An extensive study on the influence of the errors on the proposed identification procedure is however reported in
the applications.

It should also be remarked that, according to the sufficient conditions involving the measurement layout indicated
in Caddemi and Morassi,!**' a couple of measurement displacements (one at the left and one at the right of each crack)
is always adopted in the experimental test as evidenced in Figures 1 and 2.



CADDEMI ET AL. Wl LEY 9 of 19

One of the advantages of the proposed procedure is that it can be stopped whenever it is desired, and the results
obtained up to that point are valid. The consequence is that the number of cracks the operator intends to identify
(and the region where they are sought) will indicate the number (and positions) of the sensors to be used and vice
versa. The procedure provides the correct crack identification even though less cracks than the actual ones are
sought. Finally, the actual number of cracks is identified when the adopted sensors stop indicating the presence of
cracks.

4 | FRAME STRUCTURES COMPOSED BY DAMAGED BEAMS

The case of a beam with deformable end constraints treated in Section 3.1 allows to treat the problem of identification of
multiple cracks along a beam of a complex and extended frame structure as in Figure 3. The proposed identification
procedure can, in fact, be applied by testing uniquely the damaged beam of interest, the frame surrounding the beam
being modeled by the unknown deformable end constraints. This is possible in view of the introduction of the integra-
tion constants c;, ¢,, €3, ¢4 in the identification process.

An example of damaged frame will be considered in the next section where measurement sensors are placed exclu-
sively along the span of a chosen beam where multiple cracks are to be detected once the integration constants
representing the surrounding frame have been identified.

It is important to notice that if the beam is constantly monitored, variations of the identified integration constants,
in absence of crack growth on the monitored beam, provide crucial information on damage occurrence in the surround-
ing frame.

The latter use of the proposed procedure provides indication on possible damage occurrences on the overall frame by
testing a restricted undamaged portion of the frame.

Because the proposed method applies to single beam elements of more complex frames, it would be time consuming
if it applies to all the elements, so the method should be intended as a local method. However, a preliminary application
of suitable global damage detection methods might provide indication of the possible damaged elements, to which the
proposed method can be locally applied. Convenient global damage detection methods might rely on dynamic measure-
ments, as proposed in Hao and Xial**! and Lam and Yang.[37]

5 | NUMERICAL APPLICATIONS

In this section, two numerical examples to verify the reliability of the proposed procedure are presented. Without loss of
generality in this paper for the numerical applications, the following expression of the external load will be employed

q(x) =gy + k% Py 8(x—xpy), (24)
=1

which embeds a constant distributed load g, and np-concentrated loads Py acting at xp_,. The two loads can act on the
beam at the same time or alternatively. However, the analytical derivations already reported are consistent whichever
external load typology is adopted.

(I O O O O O O

FIGURE 3 A frame structure with a
damaged beam
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5.1 | A simply supported beam

In this section, an application of the proposed identification procedure to a simply supported beam in presence of mul-
tiple cracks, on the basis of “experimental” displacement measurements simulated by a finite element model (FEM), is
presented.

The damaged simply supported beam subjected to concentrated static loads is depicted in Figure 4, together with the
measurement layout. In particular, the beam, with length L = 2,000 mm, has square steel cross section (Young's
modulus E, = 206,000 MPa) with height 4 = 50 mm. Furthermore, four cracks with depth d involving 50% of the
cross-sectional height h, at abscissae x; = 350, x, = 900, x; = 1,300, x, = 1,500 mm, are present.

In accordance to the conditions, regarding the measurement positions, presented in the proposed identification
procedure, measurement displacements are detected at the following cross sections:

Xmo = 150mm <x'm0 =25mm <Xy,

X1<Xpm1 = 550mm < x,,,; = 650mm < X,
X2<Xpmz = 950mm < x,,, = 1,050 mm < x3,
X3<Xpm3 = 1,350mm < x,,; = 1,450mm < x4,

X4<Xpms = 1,750mm < x,,, = 1,850mm < L.

The displacement measurements have been generated by means of a finite element plane model of the beam by
making use of a1 mm X 2 mm rectangular mesh as also shown in Figure 4.

Finally, the results of the proposed identification procedure are summarized in Table 1, where the identified values
of the position and the ratios d;/h are compared with the crack values assumed for the FEM and the relative errors are
reported. The same results are also reported, in terms of graph, in Figure 5.

5.2 | Robustness of the identification procedure

The presented multicrack identification procedure relies on the assumption that each crack is located between two pairs
of measurements. However, in this section, the performance of the proposed procedure will be assessed in case the men-
tioned basic hypothesis is removed. Precisely, two cases can be considered:

(a) absence of crack between two consecutive pairs of measurements and
(b) presence of two (or more) cracks between two consecutive pairs of measurements.

To check the robustness of the procedure under the above mentioned scenarios, the example reported in Figure 6 is
considered. The beam length is equal to 4,000 mm, and the Young's modulus of the beam and the moment of inertia of

P, P: P; P,
| X1 X X | X4
] ] i
AN : > g : SN
DANAN \\\\KI\\ PANN\N \\\i\’\ AN \KS N \\\\N &\Kﬁ DANAN \\\\KI\\
Xno X mo Xt X mi Xn2 X 'm2 Xns X w3 Xt X ma

FIGURE 4 Scheme of the simply supported beam with the finite element model
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TABLE 1 FEM values and identified values of the crack positions and intensities

FEM Identified

x; (m) d;/h X; (m) Error (%) di/h Error (%)
0.35 0.5 0.3506 0.17 0.5122 2.44

0.90 0.5 0.9009 0.10 0.5129 2.58

1.30 0.5 1.3000 0.00 0.5126 2.52

1.50 0.5 1.5000 0.00 0.5121 2.42

Note. FEM = finite element model.
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0.8+ : -
0.7+ ; ; 4
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0.4 R
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FIGURE.S Identl.ﬁed Va}lges of the X [mm ]
crack positions and intensities !
I NN / \ / \
1| J1 N N ! b . -
| 1 1l 1
AN '\ AN ;‘C\ AN \-\\r\ AN t\'\\
Xmo X mo Xml X ml Xm2 X m2 Xm3 X m3

FIGURE 6 Layout of the considered cracked beam

the cross section are E = 210,000 MPa and I = 66,666,666.66 mm®* (b = 100 mm and h = 200 mm), respectively. The
beam is subjected to a uniform load g = 5 N/mm. Three cracks are located along the axis of a simply supported beam,
at the abscissae x, = 1,800 mm, x’, = 2,200 mm, and x; = 3,200 mm. All the cracks have the same severity equal to
A = 151.8738 corresponding to a crack depth d/h = 0.2293.138! Eight measurement points are located at the abscissae
Xmo = 250 mm, X',,,, = 400 mm, X,,,; = 1,150 mm, X ,,,; = 1,300 mm, X,,,, = 2,550 mm, X ,,,, = 2,700 mm, X,,,3 = 3,600 mm,
and x',,3 = 3,750 mm. Differently from the actual crack locations, the considered experimental layout implies the
hypothesis of three cracks present along the axis of the beam, each of them located along one of the gray areas reported
in Figure 6. In particular, the first two measurements Xx,,, and x',,, will be employed to identify the integration con-
stants, and the following three pairs of measurements x,,,; and x',,;, i = 1, ..., 3, will be employed to locate three cracks.
The actual damage scenario corresponds to the occurrence of the above mentioned conditions (a) and (b).

By running the identification procedure, the obtained results are reported in Table 2. Some interesting comments
can be made on the obtained results:

(i) When no crack is present before a pair of measurements, the proposed procedure recognizes that the identified
crack has zero flexibility, that is, no crack is identified;

(i) when two cracks are located before a pair of measurements, the proposed procedure identifies a single crack to be
considered equivalent to the actual ones; and
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TABLE 2 Identified values for the beam reported in Figure 6

Actual damage scenario Identified scenario

Crack Location (m) d/h x; (m) d/h
X1 = = = 0
X 1.80 0.2293 2.00 0.3481
x'2 2.20 0.2293

X3 3.20 0.2293 3.20 0.2293

(iii) both the previous circumstances imply that the exact identification of the third crack is not compromised.

With regard to comment (ii), the single-identified crack is considered equivalent to the actual crack layout in view of
comment (iii) that guarantees the correctness of the subsequent crack identification. In order to reconstruct the actual
crack layout, the identification procedure can be applied for a couple of measurement points roving from the left end to
the right end of the beam, as shown in Figure 7. Discontinuities in the identified crack position are expected as a
measurement point crosses a crack.

In Figure 8, the results for the considered test scheme as in Figure 7 are reported. The application was obtained
considering a mutual distance between the two roving stations equal to 150 mm. It can be noticed that, as the pair of
measurements moves, the identified crack location is first equal to zero (no crack is present) and then, when the first
measurement crosses the first crack, the identified crack position x;; exhibits a jump. As both measurements pass over
the first crack, x;; reaches a constant value providing the location of the first crack (lowest dashed line). Generally
speaking, Figure 8 shows that every time a measurement point crosses a crack, a jump in the crack location identifica-
tion is encountered. According to the graph reported in Figure 8, the actual crack distribution can be correctly
reconstructed.

It is important to note that the latter property enhanced by analysis of Figure 8 is encountered even for a couple of
roving measurement over a restricted portion of the beam in view of comments (ii) and (iii).

The achieved results can be easily extended to a crack located in proximity of the left end of the beam. In fact, the
first set of measurements is employed to identify the integration constants under the hypothesis that no crack is
located on their left. However, equivalent integration constants can be identified even in presence of a crack located
before the first measurement; again, the term equivalent is adopted in the sense that the identified integration

\/ \ ‘\ / \/ /
| '
, ?;% g\? X2 X2 X3 RN\
SN \$$
Xm X'm
—..

FIGURE 7 Layout of the procedure with roving measurements
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FIGURE 8 Location of the progressively identified crack
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constants embed the effect of the cracks located before the first measurements and guarantee the correctness of the
subsequent crack identification. Finally, if a crack is located among the measurements, this circumstance can be rec-
ognized by moving the measurements; in fact, in this case, the identified integration constants will change as the mea-
surements move.

In case the latter procedure indicates the presence of a crack in the vicinity of the left of the beam, simultaneous
identification of both the integration constants and the first crack might be pursued by modifying the algebraic system
in Equation 4 or 7 by adding two equations to include the influence of crack intensity and position. Although the latter
modification allows to deal with a different basic hypothesis, it implies analytical difficulties due to the nonlinearity of
the resulting system.

53 | A damaged frame

The proposed damage identification procedure, presented in the previous section, differently from the procedures pro-
vided in the literature, includes the identification of the integration constants, and for this reason, it applies to any b.c.
The latter circumstance includes the case of a damaged beam embedded in a frame structure subjected to static loads.

In this section, an application of crack identification to the damaged steel frame depicted in Figure 9 (width
L = 2,000 mm, height H = 2,000 mm), to show the potentiality of the proposed procedure, is considered.

The frame has constant square cross section with height = 5 cm. In particular, the beam element supported by the
two columns is subjected to two cracks at abscissa x; = 80 cm and x, = 120 cm with depth d involving 50% of the cross-
sectional height h and is loaded with two concentrated forces P;, P, with 1,000 N intensity each.

According to the identification procedure presented in Section 3, the damaged element beam supported at the ends
by two columns can be considered as a beam with unknown end constraints.

Because, in this case, the b.c. require four integration constants to be identified, according to the proposed identi-
fication procedure, four displacement measurements are needed at the left of the first damage. Hence, measurement
displacements are detected along the beam span at X,y = 150mm<x, , = 250mm<x, , = 550mm< x,,, = 650 mm,
for the identification of ¢y, ¢,, ¢3, €45 at X1< X1 = 950mm< x;nl = 1,050 mmc< x, between the first and the second cracks
for the identification of the first crack; and finally at x,< x,,; = 1,350 mm< x'm2 = 1,450 mm<L for the identification of
the second crack. Further displacement measurements detected at x,,<x,, = 1,750mm<x,, = 1,850mm< L are
redundant. However, the latter can be useful in case the sequential identification procedure is initiated from the right
end x = L.

The displacement values of the measurement cross sections of the deformed structure, reported in Figure 10, have
been generated by means of a FEM.

The damage identification procedure proposed in the previous section led to the results summarized in Table 3 and
shown in the graph reported in Figure 11.

The error levels of the results obtained by means of the proposed identification procedure are also reported in
Table 3 showing the validity of the procedure in presence of uncertainties due to the adopted model.

Py P

QO QO x QO x, QO oo
B '/ . [‘7777 B 77777777 VV" ™
Xno Xmo Xy, xm Xt Xt Xz Xy X, X0

FIGURE 9 A frame with two concentrated cracks



14 of 19 Wl LEY CADDEMI ET AL.

e,

FIGURE 10 Deformed shape of the frame in Figure 9 evaluated by means of finite element model

TABLE 3 FEM values, identified values, and errors of the crack positions and intensities

FEM Identified Error (%)

X (m) 0.8 0.802 0.19
di/h 0.5 0.505 1.08
X, (m) 1.2 1.199 0.08
dy/h 0.5 0.507 1.40
Note. FEM = finite element model.

I : : — . .

]| S . FRNPRISNNDS HE SSUNERSE SO SHSNRNTIS S SRR WA S

0.8 wod b oo — G

0.7+ i — | .

0.6f . - b

% /7] S S SE— - — R J—— — —

0.4 ¢ i i ¢ i i : =

0.3k PRSSSSTRSN (NS | R SN S —

O e e ; st

00 I.I50 2!50 5.I50 6]50 9.I5010I.50 13“50}4I50 17‘50}8'50 2000 FIGURE 11 - Identified values of the

crack positions and intensities in the

X [mm
1 [ / frame of Figure 9

5.4 | Crack identification in presence of noisy measurements

The following results refer to two simply supported beams with a length L = 3,500 mm and subjected to a uniform
transversal load ¢ = 5 N/mm (Figure 12). The Young's modulus of the beams and the moment of inertia of the cross
section are E = 210,000 MPa and I = 66,666,666.66 mm* (b =100 mm and h = 200 mm), respectively. Two damage sce-
narios are considered, namely, single- (Figure 12a) and double-cracked (Figure 12b) beams. Both beams have a crack
located at the abscissa x; = 1,600 mm with a depth » = d/h = 0.2293, whose corresponding compliance 4; = 151.8738
can be computed according to Billelo.*®! In addition, the double-cracked beam has a second crack, characterized by the
same severity, located at the abscissa x, = 2,500 mm.

Since the beam is simply supported, two measurements are needed to assess the two unknown integration constants
C, and C, (equal to 0.0071 and —1.0417 * 10~°, respectively), and two are needed to identify each crack position and
intensity.
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FIGURE 12 Influence of noise—layout of the test: (a) single- and (b) double-cracked beams

(b)

To assess the influence of noise on the measurements, both proportional and absolute errors are considered. The
measurements adopted in the identification procedure can be computed as follows:

“(Xm)

u m
U (xm)

U (xm) (1 + €R),

u(xm) + 4R, (25)

where ¢, and ¢, are the considered proportional and absolute errors, respectively, and R represents a random variable
with uniform distribution in the interval [—1,1].

To test the robustness of the procedure, the identification algorithm is repeated with increasing values of the error.
Two strategies are here adopted to improve the robustness of the procedure, namely, one that employs additional
measurements and one that employs additional load scenarios. The two procedures are better described and verified
in the following.

5.4.1 | Crack identification employing additional measurements

This identification strategy is based on the adoption of a number of measurements higher than those strictly needed. In
particular, with reference to the single-cracked beam shown in Figure 12a, besides the case where the measurements
strictly needed are employed (located at the abscissae 350, 700, 1,700, and 1,900 mm), the procedure is repeated consid-
ering an increasing number of additional measurements and employing the Moore-Penrose inversion algorithm. To this
purpose, two other cases are considered. In the first case, two measurements are added (located at 1,150 and 2,100 mm),
and in the second, two more measurements are considered (located at 1,400 and 2,300 mm).

The sensitivity to the noise was assessed by means of Monte Carlo simulations, as reported in Figure 13 over 5,000
samples for the cases of proportional error. The average value of the crack locations and intensity over the performed
runs is reported as function of the performed samples.

For the case of proportional error, Figure 13, the error has been ranged in the interval ¢, = 0.1-1%. The results
reported in the following show how 5,000 samples are enough to converge to a stable value of the average of the iden-
tified values. It is clear how, as the error in the measurements increases, the identified values tend to distance the actual
values. However, the additional measurements have a beneficial effect to limit the errors in the identification
procedure.

The results previously reported, together with those relative to the absolute errors (ranged in the interval
€, = 107°-10"? mm, which correspond to a relative error with respect to the maximum deflection equal to 0.13-
1.3%), are summarized in Figure 14 where the error in the identified values is reported as a function of the error
in the measurements for the three considered cases (2, 3, and 4 measurements for each segment). In terms of relative
values, the range studied for the absolute error is comparable with that adopted for the applications with propor-
tional error. The error range adopted in the present applications appears to be comparable with respect to that
encountered in the execution of real static tests.!

The errors for the crack position and depth are computed as follows:

L 7 (26)
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FIGURE 13 Influence of noise: influence of proportional errors on a single-cracked beam
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FIGURE 14 Influence of noise—error in the identified values versus error in the measurements: (a) crack location and (b) depth

considering noise proportional to the measurements and (c) crack location and (d) depth considering noise with absolute errors

where x7, x4 represent the real and identified locations of the ith crack, respectively, and 7,7 represent the real and

identified depths of the ith crack, respectively.

In the following, in order to assess the propagation of the errors along the beam, the double-cracked beam is
considered (Figure 12b). Four measurements for each segment are considered, at the abscissae 350, 700, 1,150, 1,400,

1,700, 1,900, 2,100, 2,300, 2,700, 2,900, 3,100, and 3,300 mm.

Again, the two unknown integration constants C, and C, are equal to 0.007021 and —1.0417 * 10710,
The results relative to the proportional and absolute errors are summarized, considering the mean values after 5,000
samples, in Figure 15. It can be noticed that, for the considered case, higher errors are obtained for the second crack in

terms of crack depth but not for the crack location.
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FIGURE 15 Influence of noise—error in the identified values versus error in the measurements: (a) crack location and (b) depth
considering noise proportional to the measurements and (c) crack location and (d) depth considering noise with absolute errors

5.4.2 | Crack identification employing additional load scenarios

Alternatively, to increase the number of available data, a possibility is to repeat the experimental test under different
load scenarios. In particular, the measurement points are kept at the same locations, and the test can be repeated
considering a roving concentrated load.

In the following, the same application reported in Figure 12 is repeated considering the beam subjected to
three different load scenarios, namely, a concentrated load of intensity P = 10,000 N located at the abscissae
xp = 875, 1,750, and 2,625 mm. Again, the additional data are treated according to the Moore-Penrose inversion
algorithm.

For the single-cracked beam, the measurement points are located at 350, 1,150, 1,900, and 2,300 mm, whereas for
the double-cracked beam, two additional stations at 2,900 and 3,300 mm are added. The results are summarized in
Figure 16 for the cases of proportional and absolute errors.

For the double-cracked beam reported Figure 12b, the results are summarized in Figure 17 for the cases of propor-
tional and absolute errors.

It is worth to note that the two methods can be combined aiming at increasing the robustness of the procedure; that
is, additional measurements can be considered and the test can be repeated for different load scenarios.

-
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FIGURE 16 Influence of noise—error in the identified values versus error in the measurements: (a) crack location and (b) depth

considering noise proportional to the measurements and (c) crack location and (d) depth considering noise with absolute errors
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6 | CONCLUSIONS

Very rarely in the literature closed-form expressions for the identification of damage along beam-like structures have
been presented. Only recently, explicit solutions have been provided for the case of cracks occurring in beams with
specific b.c. in the context of quasi-statically applied loads.

In this work, a different identification procedure leading to alternative explicit expressions for the position and
intensity of cracks has been proposed regardless of the number of the cracks and the specific b.c. This has been possible
by exploiting the properties of the closed-form solution of a beam with multiple cracks and including the integration
constants in the parameters to be identified by the inverse procedure.

The presented procedure seems to be promising in view of its applicability to the case of multiple cracks occurring
along frame structures. The procedure is also appealing in view of the possibility to deduce information concerning the
occurrence of damage in the portion of the frame that has not been instrumented by monitoring a restricted undamaged
portion of the frame.

Several numerical applications and incisive discussions demonstrated the effectiveness of the identification
procedure also in presence of noise and provided new findings towards a better understanding of the damage detection
problem properties.
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