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A B S T R A C T

The structural response of masonry arches is strongly dominated by the arch geometry, the stone block di-
mensions and the interaction with backfill material or surrounding walls. Due to their intrinsic discontinuous
nature, the nonlinear structural response of these key historical structures can be efficiently modelled in the
context of discrete element approaches. Smeared crack finite elements models, based on the assumption of
homogenised media and spread plasticity, fail to rigorously predict the actual collapse behaviour of such
structures, that are generally governed by rocking and sliding mechanisms along mortar joints between stone
blocks. In this paper a new Discrete Macro-Element Method (DMEM) for predicting the nonlinear structural
behaviour of masonry arches is proposed. The method is based on a macro-element discretization in which each
plane element interacts with the adjacent elements through zero-thickness interfaces and whose internal de-
formability is related to a single degree of freedom only. Both experimental and numerical validations show the
capability of the proposed approach to be applied for the prediction of the non-linear response of masonry arch
structures under different loading conditions.

1. Introduction

Although arches, vaults and domes have been adopted since ancient
ages [1] for engineering works, their complete structural assessment is
not an easy task even today. Masonry arches transmit the self-weight
and the applied loads through load-paths that mainly involve com-
pressive stresses by taking advantage of gravity loads through their own
shape. The high nonlinearity, due to low-tensile resistance of masonry
or to the presence of dry stone-interfaces, does not allow the assump-
tion of linear elastic behaviour and leads to load dependent equilibrium
solutions strongly related to the arch geometry and its supports con-
ditions. A further very complex numerical issue is related to the pre-
sence of the backfill whose actual structural contribution is very diffi-
cult to model due to the non cohesive nature of the material generally
adopted [2]. For this reason in many cases it is generally preferred to
model the backfill structural role simply considering its stabilising ef-
fect related to its own weight and neglecting its mechanical contribu-
tion.

In the past, graphical based design approaches have been developed
and widely used for the structural design and the construction of
monumental structures [3]. However, these traditional methods, based
on the concept of the line of thrust, are difficult to apply in presence of
material nonlinearities and cyclic loads related to dynamic actions such

as earthquakes. On the other hand, the potential availability of efficient
and easy to apply numerical approaches could allow performing non-
linear structural analyses under different loading conditions, such as
dynamic excitations or moving loads, these latter typical of masonry
arch bridges.

The most important contributions to the understanding of the
structural behaviour of stone and masonry arches were provided by
Jacques Heyman in his famous treatises [3–7]. More recently, several
numerical strategies have been proposed based on linear [8–11] or
nonlinear Finite Element Models (FEM) [12,13], or Discrete Element
Method (DEM) [14,15].

Sarhosis et al. [16] presented a three dimensional computational
model, based on the DEM, which was used to investigate the effect of
the angle of skew on the load carrying capacity of twenty-eight single
span stone masonry arches with different geometric layouts.

Rizzi et al. [17] presented an analytical and numerical analysis of
the classical Couplet–Heyman problem in the statics of circular ma-
sonry arches.

Dimitri and Tornabene [18] developed an analytical model based on
limit analysis for describing the stability of pointed and basket-handle
arches and portals with respect to circular ones, for varying geometry
parameters. They compared the predictions of the analytical model
with results of numerical modelling by the classical DEM and obtained
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a satisfactory agreement showing the potentiality of the discrete ele-
ment framework as a method of evaluating the quasi-static behaviour of
unreinforced masonry structures. In the context of the DEM strategies,
Dimitri et al. [19] and De Lorenzis et al. [20,21] investigated the im-
portant role of buttresses, in the dynamic field, considering several
shapes of the buttress, typical of ancient constructions.

Gago et al. in [2], using modern structural analysis, explained the
favourable effect of the extrados infill in the stability of arched struc-
tures also highlighting the high collapse risk related to the backfill re-
moval.

Very recently Zhang et al. [22] investigated the nonlinear response
of brick-masonry arches, up to collapse, by using an accurate 3D meso-
scale description utilising solid elements for representing brick units
and 2D nonlinear interface elements for describing mortar joints and
brick–mortar interfaces. The masonry meso-scale strategy has been also
combined with an original domain partitioning approach that, allowing
for parallel computation, leads to powerful high accurate computa-
tional tool applicable for large structures.

In this paper an innovative Discrete Macro-Element Method
(DMEM), alternative to previously proposed approaches, for the simu-
lation of the nonlinear behaviour of masonry arches is presented. The
proposed approach takes advantage of the Discrete Element Method
(DEM) strategies at a ‘macro-scale’. Differently from the classical DEM
approach, in which each element is considered as a rigid body, in the
proposed DMEM strategy each macro-element possesses a shear de-
formability allowing to identify shear diagonal local failure. This shear
deformability is related to a single degree of freedom for each macro-
element. The mechanical interaction among adjacent macro-elements is
concentrated in zero-thickness interfaces distributed along the entire
length of the contact edges. The computational cost of the proposed
numerical approach is greatly reduced in comparison to that involved
in detailed nonlinear finite element simulations or DEM strategies based
on meso-scale discretizations.

The basic macro-element, which is adopted for the simulation of an
arch macro-portion, is described in Section 2. It consists of an articu-
lated irregular quadrilateral whose internal deformability is dependent
on a single degree of freedom. Three further Lagrangian parameters
identify the rigid motion of the element needed to complete its plane
kinematics description. The flexural and shear-sliding behaviours are
governed by along-edge zero-thickness interfaces, lying on the sides of
the quadrilateral and governing the interaction with the adjacent
macro-elements. Three specific non-linear one-dimensional constitutive
laws are considered in the model for simulating separately the flexural,
shear-diagonal and shear-sliding behaviour of the masonry medium,
assumed as an orthotropic homogenised continuous material. The ca-
libration of the model requires few parameters in order to define the
basic masonry mechanical properties. Such properties of the material
can be easily obtained from current experimental tests and/or sug-
gested by technical codes. The equivalence between the masonry arch
portion, that is represented at the macro-scale, and the macro-element

is here based on a very simple fibre calibration approach making the
interpretation of the numerical results straightforward and un-
ambiguous.

In Section 2 a detailed description of the kinematics of the proposed
macro-element is provided. Furthermore, a qualitative classification of
the typical failure mechanism of masonry arches is presented and it is
shown how the proposed approach is capable to provide a satisfactory
prediction of all the possible collapse mechanisms of a masonry arch.

In Section 3 the mechanical calibration of the element in terms of its
shear behaviour and its contouring interfaces, which govern the
membrane deformability of the element, are described. In the numer-
ical applications (Section 4), the model is applied for the simulation of
the nonlinear response of masonry arches for which experimental and
numerical results are available from previous research-studies reported
in the literature.

The obtained results show the capability of the proposed ‘parsimo-
nious’ (i.e. low cost) approach to be used for the structural assessment
of masonry arch structures both for researches and practical applica-
tions.

2. The DMEM formulation for masonry arches

The proposed nonlinear discrete macro-element for plane masonry
curved structural elements, such as arches, is defined according to an
original approach that enriches the classical discrete element strategy
generally based on rigid elements interacting by means of nonlinear
links.

The basic element here proposed can be described through a me-
chanical representation obtained as a nontrivial upgrade of a regular
macro-element, based on the use of rectangular elements, proposed for
the simulation of unreinforced and confined masonry structures
[23–26]. In this new formulation the element is conceived as a plane
irregular articulated quadrilateral, formed by four rigid sides connected
by internal hinges, hence, differently from the classical DEM, the ele-
ment is endowed with an internal shear deformability that is related to
a single degree of freedom. Furthermore, the interaction between ad-
jacent elements is modelled by along-sides nonlinear zero-thickness
continuous interfaces, Fig. 1. The latter, connecting two rigid sides of
different quadrilaterals, are responsible for the axial and flexural be-
haviour as well as the shear sliding between adjacent elements.

The kinematics of the proposed plane macro-element, although
described by four degrees of freedom only, allows a simple but accurate
description of the flexural, shear diagonal and shear sliding collapse
behaviour of masonry arches. Thanks to the capability of capturing the
main collapse mechanisms, the above introduced macro-element
modelling leads to an efficient simulation of arch structures loaded in
their own plane.

Some typical arch collapse scenarios, in which the relevant damage
patterns are highlighted, are reported in Fig. 2. Namely, Fig. 2a reports
an arch collapse mechanism dominated by a flexural failure

Fig. 1. The discrete macro-element: (a) discretization pattern of a masonry arch; (b) the interface for the case of a linearly variable width.
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mechanism, in which five hinges are activated. Fig. 2b shows the cap-
ability of the element to grasp shear local crisis of a finite portion of
masonry element. Fig. 2c highlights a shear failure scenario related to
shear sliding mechanism between stone blocks or concentrated in
mortar joints.

It is worth to notice that the overall elastic shear deformation of a
masonry arch, discretized by several macro-elements, can be partly
related to the diagonal deformations of the irregular quadrilateral and
partly attributed to concentrated sliding displacements along the in-
terfaces. In the proposed formulation, the shear-sliding mechanism is

aimed to govern the deformations between macro-elements related to
the occurrence of sliding along the interfaces (Fig. 2c). On the other
hand, the shear-type deformability enriches the element kinematics
and, differently from the classical DEM approach, allows the simulation
of possible diagonal shear cracking damage distribution or failure re-
lated to the shear collapse of a masonry element (Fig. 2b). Mixed failure
mechanisms can also be considered being each mechanism governed by
specific constitutive laws.

The versatile geometry of the element allows a consistent simulation
of masonry arch structures also in presence of complex geometrical
layouts or for those cases in which the texture, related to the orientation
of the mortar joints, could strongly affect the structural behaviour. In
these latter cases, the proposed model can be employed considering the
actual geometry and the real arrangement of the units through a con-
sistent mesh of irregular quadrilateral elements. One peculiarity of the
proposed approach is that the axial and flexural deformations of the
homogenised masonry arch portion, represented by the macro-element,
are both lumped in the zero-thickness interfaces.

2.1. Kinematics

The DME kinematics is presented in this section to describe both the
relative displacements at the interface between elements and the shear
deformation mechanism of the single macro-element.

The macro-element is constituted by an irregular plane quadrilateral
whose edges, connected by four rotational hinges, are assumed to be
rigid. Each side of the quadrilateral is characterised by its length lk,

= …k 1, ,4, and the internal angles between the adjacent edges αk,
= …k 1, ,4, as indicated in Fig. 3 (anti-clockwise numbering is adopted).

The in-plane kinematics of each element is governed by 4 degrees of
freedoms, three associated to the rigid body motion and the other re-
lated to the quadrilateral in-plane articulation. The chosen Lagrangian
parameters, indicated in Fig. 3, are the translational displacementsU ,V
and the rotation Φ of the centre of mass of the element ‘G’ (Fig. 3a) and
the parameter Γ, that identifies the variation of the angle α1 between the
edges departing from the origin of the local element reference system
(e e,x y), as depicted in Fig. 3b. All the Lagrangian parameters of the
macro-element are collected in the vector = U Vd [ Φ Γ]T .

In order to describe the mechanical behaviour related to the inter-
action with adjacent elements, the definition of the in-plane kinematics
of each side of the quadrilateral, as a function of the chosen Lagrangian
parameters, is introduced in the following subparagraph.

2.1.1. Interface displacements
Let us consider two adjacent elements p and q sharing the i-th in-

terface, where the p-th element is located on the left of the interface
whereas the q-th element is located at its right, Fig. 4. Denoting by ξ the

Fig. 2. Typical in-plane collapse mechanisms of a masonry arch: (a) Flexural
failure scenario related to the formation of several hinges; (b) shear failure
scenario due to the failure of a stone element or a finite portion of a masonry
arch; (c) shear failure scenario due to the localised sliding along a mortar joint.

Fig. 3. The element’s kinematics and the chosen Lagrangian parameters: (a) the rigid body motion and (b) the generalized shear distortion.
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normalised abscissa, variable between 0 and 1, referred to a local re-
ference system (e e,ξ η) of the i-th interface, the corresponding local
longitudinal and orthogonal displacements of the two opposite element
edges u ξ( ),p v ξ( )p and u ξ( ),q v ξ( )q can be expressed as function of cor-
responding auxiliary local degrees of freedom u v v, ,p 0 1p p and u v v, ,q 0 1q q

(Fig. 4) given by the displacements of the hinges at =ξ 0, 1, as follows:
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By collecting the local longitudinal and transversal displacement
functions in the vectors =ξ u ξ v ξu ( ) [ ( ) ( )]p

T
p p and

=ξ u ξ v ξu ( ) [ ( ) ( )]q
T
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(1) can be rewritten in compact notation as follows:
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The auxiliary local degrees of freedom of each edge of the two ad-
jacent elements p,q at the i-th interface can be related to the relevant
Lagrangian parameters as follows:

= =u A d u A dp p p q q q (4)

where A A,p q are compatibility matrices, whose components are simply
related to the element geometry. The compatibility matrices, relative to
the example reported in Fig. 4, are given as follows:
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where x y( , )Gp Gp and x y( , )Gq Gq represent the coordinates of the centre of
mass of the p-th and q-th elements, respectively. In view of Eq. (4),

providing the displacements of the elements edges, Eq. (2), can be ex-
pressed as a function of the corresponding element degrees of freedoms
as follows:

= =ξ ξ ξ ξu N A d u N A d( ) ( ) ; ( ) ( )p p p q q q (6)

therefore, the relative displacement function ̂ = −ξ ξ ξu u u( ) ( ) ( )q p of the
i-th interface can be expressed as follows:

̂ = −ξ ξ ξu N A d N A d( ) ( ) ( )q q p p (7)

2.1.2. The kinematics associated to the shear distortion Γ
Besides the kinematic characterisation of the interfaces between

macro-elements, aiming at modelling the axial, bending and sliding
behaviour of curved structures, the shear behaviour is intended to be
described by the kinematics of the macro-element itself that implies
angle variation of adjacent edges. The macro-element internal de-
formability, related to the Langrangian parameter Γ, implies displace-
ments in correspondence of the 3-rd and 4-th vertexes of the element
given by
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3. The mechanical behaviour

The formulation here proposed follows a phenomenological de-
scription of the mechanical behaviour of an arch portion in which the
zero-thickness interfaces rule the axial-flexural response and the shear
sliding behaviour of adjacent elements, while the in-plane shear ele-
ment deformability is related to the angular distortion of the articulated
quadrilateral. The mechanical characterisation of the zero-thickness
interfaces is here performed through a straightforward fibre calibration
procedure while the shear element deformability is calibrated through a
mechanical equivalence with a reference geometric-consistent con-
tinuous plane model.

Each macro-element is intended to represent an equivalent homo-
genised masonry portion, whose mechanical properties can be inferred
according to suitable homogenization techniques [27–29] here con-
veniently extended.

3.1. The interface stiffness matrix

A peculiar aspect of the proposed numerical method is that the
mechanical properties in the zero-thickness interfaces include both the
stone and the mortar joints mechanical behaviour of the adjacent ele-
ments, leading to a simple homogenization strategy. As a consequence,
the apparent interpenetration of the rigid edges of adjacent panels,
along the zero-thickness interfaces, does not point out a compatibility
violation but simply identifies states corresponding to compressive
strains.

The zero-thickness continuous interfaces are characterised by a
nonlinear behaviour described by the incremental relationship between
the increments of the internal force distributions along the longitudinal
and orthogonal directions of the interface, df ξ df ξ( ), ( )u v , collected in the
vector =d ξ df ξ df ξf ( ) [ ( ) ( )]T

u vint and the relative displacement incre-
ment ̂d ξu( ) of the vector ̂ ξu( ), introduced in Eq. (7), as follows:

̂=d ξ ξ d ξf k u( ) ( ) ( )Tint (9)

where ξk ( )T represents a ×2 2 tangent stiffness distribution of the i-th
interface at the abscissa ξ that can be defined as follows:

Fig. 4. Local relative displacements in the interface between two adjacent
macro-elements.
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where the subscripts u and v identify the longitudinal and orthogonal
directions of the generic i-th interface.

In view of Eq. (7), the force increment of the i-th interface d ξf ( )int ,
given by Eq. (9), can be also expressed as function of the degrees of
freedom increments of the corresponding adjacent elements, denoted as
d dd d,p q, as follows:

= −d ξ ξ ξ d ξ df k N A d N A d( ) ( ) [ ( ) ( ) ]T q q p pint (11)

Considering Eq. (11) and by applying the principle of virtual work
an ×8 8 tangent stiffness matrix related to the contribution of the i-th
interface, with respect to the global degrees of freedom of the two
adjacent elements p,q, is obtained as follows:
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The tangent stiffness matrix KT rules the nonlinear behaviour of the
i-th interface and its current value is related to the tangent interface
stiffness distribution ξk ( )T .

The integration of Eq. (12) has been performed according to a
uniform fibre discretation of the adjacent elements, as depicted in
Fig. 5, where the masonry macro-elements p and q, have been dis-
cretised according to nf cells of the homogenised masonry arch, and for
simplicity, a constant width of the arch elements is considered.

Precisely, the contribution ξk ( )T j to the stiffness matrix of the j-th
fibre at abscissa ξj, = …j n1, , f , is obtained by following a detailed ca-
libration procedure based on the main mechanical and geometrical
parameters of the masonry. According to the presented procedure, for
the interface stiffness matrix definition, the generic interface is re-
presentative of the elastic/inelastic axial, flexural and sliding beha-
viours of adjacent finite portions of masonry considered as an equiva-
lent homogeneous medium.

The shear sliding behaviour of adjacent elements, along the inter-
faces, being associated to a single degree of freedom, has been char-
acterised according to a uniaxial nonlinear behaviour, as clarified in the
next section.

It is worth to notice that, the choice to concentrate the mechanical

properties of the connected elements in zero-thickness interfaces is
common to other discrete numerical approaches such for example the
applied element method [30–34] and the rigid body spring model
[35–38], however these latter strategies do not operate at the macro-
scale.

Different levels of discretisation can be adopted in accordance to the
chosen number of fibres along the masonry arch section. Furthermore,
the presented procedure, for the evaluation of the interface stiffness
matrix, can accommodate any nonlinear model chosen to represent the
masonry constitutive law characterising the constitutive behaviour of
each masonry fibre.

3.1.1. The stiffness component orthogonal to the interface edge
The evaluation of the contribution of the j-th fibre, = …j n1, , f , to the

tangent stiffness component k ξ( )Tv in the direction orthogonal to the
interface of the i-th interface, is obtained as the combination in series of
two contributions inherited by elements p and q. For arches with linear
non-uniform geometry and constant width of the element, the area of
the j-th fibre varies linearly from A p0 j to A p1 j over the length l pj on the p-
th element and from A q0 j to A q1 j over the length lqj on the q-th element,
as indicated in Fig. 5.

According to the fibre geometry the contributions k k,p qj j to the
tangent stiffness component of the j-th fibre relative to the p-th and q-th
element are as follows:
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being E E,Tp Tqj j the tangent modulus of the nonlinear constitutive be-
haviour of j-fibre relative to the p-th and q-th element, respectively. The
integral appearing at the denominator of Eq. (14), extended over the
length of the fibre, by using a local coordinate z along the fibre axis, can
be evaluated leading to the following expressions:
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Fig. 5. Fibre discretisation of the i-th interface and the adjacent macro-elements representation.
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In order to consider the actual orientation of the i-th interface,
identified by the unit vector eη, with respect to the j-fibre relative to the
p-th and q-th element, the two contributions to the tangent stiffness
component, evaluated as in Eq. (15), are modified as follows:

= =k k k ke e e e| · | ; | · |p
i

p p η q
i

q q ηj j j j j j (16)

being e e,p qj j the unit vectors identifying the j-th fibre orientation along
the p-th and q-th element, as in Fig. 5.

3.1.2. The stiffness component along the interface edge
In view of the kinematics of the macro-element, described in the

previous section, the sliding mechanism of the two elements p, q ad-
jacent to the i-th interface is governed by a single relative displacement
component ̂u , and the contribution of the j-th fibre, = …j n1, , f , to the
tangent stiffness component k ξ( )T ju along the i-th interface edge is here
considered independent of the fibre position. Accordingly, the non-
linear behaviour of the interface ruling the sliding mechanism between
the two edges of the interface is here calibrated by adopting an overall
suitable nonlinear constitutive law of the cohesive-friction type.

Without loss of generality, only as a matter of example, for nu-
merical application purposes a Mohr-Coulomb approach is followed by
adopting a yielding dominium related to the actual contact area Ac of
the i-th interface, accounting for the presence of cracks, as follows:

̂= + +F c A μ N g u· · ( )y c
p (17)

where the mechanical parameters are the cohesion c and the friction
coefficient µ, while = ∑ =N f ξ( )j

n
v j1

f is the resultant of the orthogonal
forces fv at the i-th interface and ̂g u( )p represents an hardening func-
tion. For the case of rigid-plastic behaviour the tangent stiffness com-
ponent k ξ( )T ju along the i-th interface is as follows:
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where ∑ = f ξ( )j
n

u j1
f is the resultant of the forces fu along the i-th interface

direction.
It has to be noted that the adoption of the yielding dominium as in

Eq. (17) somehow accounts for the influence of the internal forces
normal to the i-th interface on the sliding mechanism. On the other
hand, the influence of the sliding mechanism on the stiffness along the
direction orthogonal to the interface is neglected. For the latter two
reasons the out-of-diagonal terms of the tangent stiffness matrix in Eq.
(10) are considered null. However, it has to be reminded that the me-
chanical model of the interface fibre discretization of the proposed
macro-element can accommodate any bi-axial constitutive law able to
account for the longitudinal-orthogonal mutual influence.

3.2. The macro-element in-plane shear diagonal stiffness

The in-plane shear deformability of the proposed macro-element is
controlled by a single Lagrangian parameter related to the angular
distortion Γ of the articulated quadrilateral, as introduced in Section 2.1
describing the element kinematics. The mechanical characterisation of
the shear element deformability is calibrated through a mechanical
equivalence, introduced in this section, with reference to a geome-
trically consistent continuous plane model.

The calibration of the macro-element shear stiffness KΓ is performed
by enforcing an equivalence with a homogeneous continuum model, i.e.
an isotropic plate of the same geometry and subjected to a displacement
field consistent to the kinematics of the articulated quadrilateral as in
Fig. 3b.

In order to enforce the equivalence between the discrete and the
continuous model, the displacement field of the plate is first provided as

function of the variation of angle Γ, ruling the deformation mode. It is
worth to notice that the presented approach implies that the strain field
consistent with a pure shear behaviour is recovered in the case of
regular quadrangular element.

The displacement field =x y u x y u x yu ( , ) [ ( , ) ( , )]T x y of a generic point
of the corresponding irregular plate is defined by its components along
the x and y directions u x y u x y( , ), ( , )x y respectively, that can be ex-
pressed according to the intrinsic coordinates ς and λ, defined in the
range −[ 1,1], as follows:

∑ ∑= =
= =

u ς λ u m ς λ u ς λ u m ς λ( , ) ( , ); ( , ) ( , )x
i

ix i y
i

iy i
1

4

1

4

(19)

Being u u, ,ix iy = …i 1, 4, the translational displacements of the nodes
of the quadrilateral, Fig. 3, and m ς λ( , )i the classical bilinear polynomial
functions given by:

= =

= =

− − + −

+ + − +

m ς λ m ς λ

m ς λ m ς λ
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4 2
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4 4
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4 (20)

Since the macro-element deformation does not depend on the rigid
body motion it is sufficient to consider a kinematics in which one side of
the quadrilateral is rigidly constrained. Without loss of generality, by
constraining the first edge (between the nodes 1 and 2), the displace-
ment of vertices 3 and 4 only are considered, as a consequence the
summations in Eq. (20) can be limited to the last two terms. The cor-
responding deformation field is given by
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In view of Eqs. (20) and (21) the deformation field can be written as
follows:

=ς λ ς λε B u( , ) ( , ) r (22)
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According to the macro-element kinematics, described in Section 2,
the nodal displacement vector ur can be expressed in terms of the
variation of angle Γ as follows:

=u C Γr r (24)

where the vector Cr , in view of Eq. (8), is given as:
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Accounting for Eqs. (24) and (25) the deformation field vector given
by Eq. (22) can now be expressed as follows:

=ς λ ς λε B C( , ) ( , ) Γr (26)

Furthermore, by assuming a plane stress condition, the stress field
=ς λ σ ς λ σ ς λ τ ς λσ ( , ) [ ( , ) ( , ) ( , )]T x y xy , collecting normal σ σ,x y and shear τxy

stress components in the x y, plane, related to a linear elastic isotropic
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constitutive law, is given by:

=ς λ ς λσ D ε( , ) ( , ) (27)

where
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Once the strain and stress field have been obtained, the internal
virtual work δLint can be written as follows:

∫ ∫=
− −
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where the Jacobian function = −∂
∂

∂
∂

∂
∂

∂
∂J ς λ( , ) x
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λ

x
λ

y
ς has been introduced

and δ (·) indicates any virtual variation of the indicated quantity.
Substitution of Eqs. (26) and (27) in Eq. (31) leads to:
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T T
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being t the constant width of the element. The double integral in Eq.
(30) represents the scalar stiffness KΓ of a generic four-node plate with a
constant width associated to the Lagrangian parameter Γ. The stiffness
KΓ can be approximated by means of a Gaussian integration scheme in
the space of the intrinsic coordinates ς and λ of the plate leading to the
following expression:

∑ ∑=
= =

K w w t ς λ ς λ J ς λC B D B C[ ( , ) ( , ) ] ( , )
k

N

l

N

k l r k l k l r k l
T T

Γ
1 1

G G

(31)

where the coefficients w w,k l represent the Gaussian weights and
×N NG G is the number of Gaussian points adopted for the integration.
Once the elastic shear stiffness KΓ of the macro-element has been

defined, based on the equivalent isotropic plate, its uniaxial nonlinear
evolution is defined by suitable choices for the yielding domain able to
account for the confinement action of adjacent elements. In particular,
two possible yielding domains, suitable for masonry media, can be
considered, namely the Mohr-Coulomb or the Turnsek and Cacovic [39]
criteria. Further cyclic constitutive laws incorporating stiffness de-
gradation can also be adopted, as reported in [23,25], with reference to
the rectangular macro-element.

4. Numerical applications

The proposed macro-element approach has been implemented in
the software HiStrA [40], specifically devoted to nonlinear analyses of
Historical Masonry Structures. The applications reported in the fol-
lowing aim at validating the proposed DMEM, both in the linear and
nonlinear field, through a comparison with analytical, numerical and
experimental results already available in the specific literature. In
particular, the results of two different experimental campaigns have
been taken into account.

The first application is relative to an experimental campaign, led by
Ramos et al. on a masonry circular arch [41], for which both static and
dynamic tests have been performed.

The second considered benchmark is relative to another circular
masonry arch, extensively studied in the literature [42], by means of
limit analysis and nonlinear finite element approaches.

The choice of the circular arches occurred to obtain a validation of
the model with experimental and numerical data already available in
the literature. However, the proposed approach is not limited to cir-
cular arches only. Each element has a generic quadrangular shape that
can be adapted to different geometrical layouts according to an as-
sumed mesh, similar to a FEM modelling.

Without loss of generality, the constitutive laws described in the
previous sections are conveniently particularized as better described in
the following.

The axial behaviour of each masonry fibre is characterised by an
elastic–plastic behaviour with linear post peak softening branches
whose ductility is governed by fracture energy values in tension, Gt , and
compression, Gm, as qualitatively reported in Fig. 6.

The tensile Ft and compressive Fm strengths of each fibre are as-
sumed to be related to the minimum cross area Apjmin

of the fibre along
its span as a function of ftp and fmp, respectively the tensile and com-
pressive yielding strengths of the homogenised masonry medium of the
p-th element. The compressive and tensile behaviour is also char-
acterised by a linear softening associated to the corresponding fracture
energies identified in Table 1 by the capital letter G. Consequently, the
ultimate displacements u ξ u ξ( ), ( )t j m ju u can be conveniently expressed as
reported in Table 1.

With regard to the sliding behaviour a post-elastic linear softening is
here employed, associated to a sliding fracture energy Gs. In particular,
with reference to Eq. (18), the function ̂g u( )p is given by

̂ ̂=g u cA
G

u( ) ( )
2

p

s

p
2

(32)

Finally, for the diagonal shear mechanism, an elastic-perfectly
plastic behaviour is considered.

4.1. Simulation of an experimental campaign on a circular masonry arch
subjected to static loads and dynamic characterisation

This experimental campaign has been conducted at the laboratory
of the Civil Engineering Department of the University of Minho with the
aim of identifying damage in masonry arches. To this purpose, a cir-
cular arch, built with clay bricks (100× 50×25mm3) bounded with
mortar with poor mechanical properties [43], is considered. The geo-
metrical layout of the investigated arch is reported in Fig. 7, con-
sidering a width of the arch equal to 450mm, however a detailed de-
scription of the specimen and the performed experiment can be found
in [41]. In the experimental campaign modes and frequencies of vi-
brations have been identified in the undamaged configuration at first;
then, in order to induce a damage in the arch, to be successively
identified, several cycles of loading and unloading were performed by
applying a concentrated vertical force located at the quarter of the span,
as reported in Fig. 7.

Fig. 6. Constitutive law adopted for the axial behaviour of the fibres.

Table 1
The mechanical characteristics of the nonlinear fibre equivalent to two adjacent
fibres.

Elastic stiffness Compressive and tensile yielding
fibre forces

Compressive and
tensile fibre ultimate
displacements

=
+

k ξ( )Tv j
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i kqj
i
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i kqj

i
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The first numerical simulations here performed aim at providing a
model validation in the linear domain through a comparison in terms of
eigen-properties. Aiming at performing both an experimental and nu-
merical validation, the eigen-properties obtained by the proposed
model have been compared with the experimental values as well as the
results obtained through a plane linear FEM simulation performed by
using the software environment SAP2000 [44].

All the mechanical properties of the homogenised material, adopted
in the numerical simulations according to the experimental data, are
reported in Table 2. In particular fm and ft are the strengths in com-
pression and tension, Gm and Gt are the compressive and tensile frac-
tural energy values.

Finally the cohesion c, the friction coefficient μ and the fractural
shear energy Gs govern the Mohr-Coulomb yielding criterion and its
ductility. The elastic properties, governed by the modulus E and G, have
been determined as suggested in [45].

The comparison in terms of the first four mode shapes is reported in
Fig. 8, where the corresponding natural frequencies are shown as well.
It can be observed how the considered model is able to provide the
same vibration modes obtained by the two-dimensional FEM analysis.

A more detailed comparison among the frequencies is reported in
Table 3 in which the first four eigenvalues have been considered. The
differences in terms of frequencies with respect to the experimental and
the FEM results are within the limits of 7.90% and 2.32% respectively;
it is worth to note that only the first three eigen-values have been ex-
perimentally evaluated.

With the aim to evaluate the influence of the shear deformability of
the macro-element in the linear range, a circular arch characterised by
different aspect ratios t/R=0.1, 0.15, 0.20, 0.25 has been analysed
considering the same radius and material properties of the previous
example but different thicknesses. The eigen-values of the investigated
arches have been than evaluated by accounting and/or ignoring the
shear deformability. As reported in Table 4, frequency differences
ranging from 1.56% to 9.17% are observed, highlighting the influence
of the shear deformability, particularly for squat arches.

To validate the proposed approach in the nonlinear field, a non-
linear static analysis was performed on the arch. In order to simulate its
actual behaviour, first the self weight was applied and then the con-
centrated load, according to the layout reported in Fig. 7. The con-
sidered monitored displacement is the vertical component of the loaded
point.

In Fig. 9 the comparison in terms of load-displacement curves is
reported, showing how the considered model provides a good predic-
tion of the nonlinear behaviour of the experimental test, in terms of

envelope curve. The peak load achieved during the cyclic experimental
test is 1.45 kN, while in the monotonic numerical simulation performed
with the proposed approach the peak load is 1.36 kN. The residual force
at the end of the softening branch is about 1.05 kN against a value of
about 1.01 kN in the experiment. In the same picture, the curves ob-
tained by Ramos through a nonlinear FEM simulation [45], are re-
ported. The FEM numerical simulations considered two different values
of the tensile strength (in Fig. 9 the cases of ft=0.2MPa and
ft=0.4MPa are reported) and assumed a tensile fracture energy equal
to 1/10 of the tensile strength (expressed in N/mm).

The nonlinear response of the first example is associated to the
activation of four flexural hinges. According to the obtained numerical
results all the hinges reach the limit tensile strength but do not attain to
the ultimate compressive strength. As a result, the structure maintains a
residual capacity that is related to the residual reaction of the plastic
hinges. It is worth to notice that when the progressive reduction of the
compressive area leads to the ultimate compressive strength, the re-
sidual capacity of the arch will necessary drop to zero.

In Fig. 10 the numerical predictions are shown at different load
levels corresponding to the sequential initial opening of the flexural
hinge. A magnification factor of the deformed shapes equal to 100 is
adopted. In the same Fig. 10 the inelastic stored strain in the direction
orthogonal to the interfaces, defined in [46], is reported in greyscale.

Aiming at investigating the influence of the main parameters gov-
erning the nonlinear static behaviour of the arch, a sensitivity analysis
with respect to the tensile strength and the tensile fracture energy has
been reported in the following. Fig. 11a reports the capacity curves
obtained by considering four further values of the tensile strengths
(ft=0.1, 0.2, 0.3, 0.4 N/mm) together with the already performed
analysis relative to ft=0.25MPa, and a tensile fracture energy
Gt=0.02 N/mm. It can be observed how the tensile strength highly
influences the ultimate load and the post-peak behaviour.

The influence of different values of the fracture energy (Gt=0.01,
0.02, 0.03, 0.04 N/mm) for a fixed value of the peak tensile strength,
ft=0.25MPa, is investigated in Fig. 11b, it can be observed how both
the peak load and the global ductility are strongly influenced by the
assumed fracture energy.

4.2. Comparison with other numerical results on a benchmark circular
masonry arch

In this section a numerical validation of the proposed model is re-
ported considering a set of elementary applications in order to compare
the results of the proposed discrete model with the results of refined
nonlinear FEM and limit analysis methods already published in litera-
ture. Namely, a stone circular arch bridge, which has been extensively
studied in the past [42,47,48] is considered.

The main plane geometrical parameters, thickness, inner span and
inner rise, are summarized Fig. 12 and the width of the arch is equal to
1m.

The finite element analysis model [42] consists of quadrilateral,
four-node, bilinear, plane strain elements with two translational de-
grees of freedom per node. A typical value for the length of each finite
element is 0.05m. A total number of 3036 elements was used. In the
FEM model unilateral interfaces are included between the parts of the
structure and for the parametric investigation the number of uniformly
distributed interfaces has been gradually increased. Large displacement
effects are neglected and the arch is considered to be fixed to the
ground.

Fig. 7. Geometric layout of the experimental test and described in [41].

Table 2
Mechanical properties adopted for the numerical model of the arch tested in [41].

E [MPa] ft [MPa] Gt [N/mm] fm [MPa] Gm [N/mm] G [MPa] c [MPa] μ Gs [N/mm] w [kN/m3]

3790 0.25 0.02 7.8 90 1516 0.3 0.4 7.0 15
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SAP2000 Proposed model

M
od

e 
1

38.26 Hz 37.37 Hz

M
od

e 
2

79.56 Hz 77.81 Hz

M
od

e 
3

145.69 Hz 142.92 Hz

M
od

e 
4

212.02 Hz 208.95 Hz
Fig. 8. Comparisons of the first four modes of vibration obtained by the DMEM (HISTRA) and continuous FEM (SAP2000).

Table 3
Comparison in terms of frequencies.

Modes Experimental Continuous model (SAP2000) Proposed discrete model (HISTRA)

T [s] f [Hz] T [s] f [Hz] T [s] f [Hz] Errexp [%] ErrSAP [%]

1 0.0281 35.59 0.0261 38.26 0.0268 37.37 5.00 2.32
2 0.0139 72.11 0.0126 79.56 0.0129 77.81 7.90 2.20
3 0.0071 140.08 0.0068 145.69 0.0070 142.92 2.03 1.90
4 _ _ 0.0047 212.02 0.0048 208.95 _ 1.45

Table 4
The influence of the shear-diagonal deformability in the frequencies.

Modes t/R= 0.10 t/R= 0.15 t/R= 0.20 t/R= 0.25

G= 1516MPa G→∞ Diff [%] G= 1516MPa G→∞ Diff [%] G= 1516MPa G→∞ Diff [%] G= 1516MPa G→∞ Diff [%]

1 56.94 57.83 1.56 83.53 86.42 3.46 108.08 114.61 6.04 130.25 142.20 9.17
2 116.31 119.28 2.55 163.14 171.32 5.01 197.67 210.77 6.63 220.36 235.00 6.64
3 213.63 221.76 3.81 299.82 308.30 2.83 328.44 339.40 3.34 356.44 384.68 7.92
4 274.78 279.62 1.76 304.41 322.46 5.93 362.20 394.42 8.90 399.47 426.74 6.82
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The macro-element numerical model was implemented by con-
sidering a stone by stone discretization with 39 elements corresponding
to 156 in-plane degrees of freedom. The mechanical properties of the
stone blocks have been chosen according to those adopted in the FEM
model reported in [42] and summarized in Table 5. The elastic de-
formation of the blocks is described by the Young modulus (E) and
Poisson coefficient (ν), the simplified hypotheses of zero tensile
strength (ft) and cohesion (c), and unlimited compressive strength (fm),
have been adopted for the bed joints. Furthermore unlimited ductility is
considered for the sliding behaviour.

The numerical simulations have been performed applying the self-
weight of the arch at first, and then a concentrated vertical load with
increasing amplitude. Two different load scenarios have been con-
sidered according to the position of the vertical load: in one case the
load is applied at the mid-span (case 1), while in the second case at the
quarter span (case 2). The results of the two analyses, in terms of col-
lapse mechanisms, are reported in Fig. 13. In both cases the behaviour
is characterised by the occurrence of flexural hinges without the acti-
vation of sliding mechanisms along the stone interfaces. In the case of
the mid-span applied load five plastic hinges occur (because of the
symmetry of the geometry of the arch and of the load), while four
plastic hinges occur in the other case. The collapse mechanisms are
consistent with those obtained in the simulations already reported in
the literature [42].

The force-displacement results are reported in Fig. 14 in terms of

total vertical base reaction (F) vs the vertical displacement of the ap-
plication point of the external force.

A good agreement with the limit and FEM analyses in terms of ul-
timate load can be recognised, however the spread plasticity FEM ap-
proach shows a different trend of the pushover curves with respect to
the proposed DMEM.

The collapse mechanism of the arch can be dominated by the flex-
ural or the shear behaviour according to the value of the friction

H1

H2 H3
H4

Fig. 9. Capacity curves: comparison between the proposed model and the ex-
perimental results.

Fig. 10. Damage scenarios for different levels of the monitored displacement and final collapse mechanism.
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Fig. 11. Capacity curves: comparison between the proposed model and the
experimental results for different levels of (a) tensile strength and (b) tensile
fracture energy.
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coefficient attributed to the interfaces (and keeping the other me-
chanical properties according to Table 5). In order to identify the in-
fluence of the value of the friction coefficient on the limit load, as well
as on the corresponding failure scenarios, several numerical analyses
have been performed gradually reducing its value for both the load

scenarios.
In Fig. 15 the collapse value of the applied load is shown as a

function of the friction coefficient. The collapse value of the applied
load has been conventionally referred to the load that produces a

Fig. 12. Geometric layout of the experimental test studied in [42].

Table 5
Mechanical properties adopted for the numerical model of the arch studied in
[42].

Flexural behaviour (transversal N-Links) Sliding behaviour (longitudinal N-
Links)

E [MPa] ν w [kN/
m3]

ft [MPa] fm [MPa] c [MPa] μ

5000 0.3 22 0 ∞ 0 0.6

Fig. 13. Collapse mechanisms of the arch: (a) mid-span load and (b) quarter of
span load.
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Case 1 - Limit Analysis

Case 2 - Limit Analysis

Case 1 - FEM

Case 2 - FEM

Case 1 - Proposed approach

Case 2 - Proposed approach

Fig. 14. Pushover curves of the arch and comparisons of the proposed model (continuous lines) with limit analysis (dashed lines) and FEM approach (dash dot lines):
mid-span load (thick lines) and quarter of span load (thin lines).

Fig. 15. Ultimate load vs friction coefficient: mid-span load (continuous line)
and quarter of span load (dashed line).

Fig. 16. Collapse mechanisms of the arch with the occurring of sliding: quarter
of span load and μ=0.3.

Fig. 17. Ultimate load vs load position for two different values of the friction
coefficients: μ=0.6 (continuous line) and μ=0.3 (dashed line).
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vertical displacement of 10mm in the section where the load is applied.
It can be observed that for values of the friction coefficient greater than
about μc=0.4, the load is constant and equal to 150 kN, in this range
only flexural hinges occur, being the friction coefficient sufficient to
prevent shear-sliding along the interfaces. When the friction coefficient
is lower than μc the collapse mechanism involves a shear sliding close to
the section in which the load is applied and the value of the load pro-
gressively reduces, following a roughly linear trend, until the value of
0.1 corresponding to a case in which neither the self-weight loading
condition can be accomplished. The bifurcation value of friction coef-
ficient μc is in the range 0.38–0.4 for the case of applied eccentric load
and 0.4–0.42 for the case of mid-span load.

In Fig. 16, a typical collapse mechanism of the arch associated to the
occurring of sliding is reported. This is characterised by two plastic
hinges involving the shear and the flexural behaviours located in cor-
respondence of the applied load and at the right base; in addition a
spread flexural damage can be observed at the extrados symmetrically
with respect to the applied concentrated load.

A further parameter which strongly influences the ultimate carrying
capacity of the structure is the load position (x), particularly in the case
of masonry arch bridges. In the application reported in the following
the role of the position of the vertical load in the ultimate capacity of
the arch is investigated. Two values of the friction coefficient have been
considered, namely μ=0.6 and μ=0.3.

The obtained results are summarized in Fig. 17, where the ultimate
load (related to an ultimate conventional displacement equal to 25mm)
is reported as a function of the normalised abscissa of the load position
considering one half of the arch. The obtained results show that the
minimum ultimate load is related to positions of the concentrated
vertical load close to the value of the normalised abscissa 0.3 for both
the investigated cases.

The collapse mechanisms associated to some significant positions of
the load are reported in Table 6, with the indication of the

Table 6
Influence of the load position: collapse mechanisms.

x/L μ=0.3 μ=0.6

0.1

Fu=98.42 kN Fu=219.99 kN
0.25

Fu=56.90 kN Fu=83.46 kN
0.4

Fu=59.82 kN Fu=82.58 kN
0.5

Fu=69.47 kN Fu=150.52 kN

(a)

(b) 

Fig. 18. Influence of the tensile fracture energy: (a) mid-span load and (b)
quarter of span load.
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corresponding limit value. The cases corresponding to the higher fric-
tion coefficient show collapse mechanisms characterised by the occur-
rence of four flexural hinges (with the exception of the case of central
load characterised by five hinges). The cases corresponding to the lower
friction coefficient are all characterised by flexural or shear hinges
depending on the position of the load.

The arch behaviour has been also investigated considering different
values of tensile strength and fracture energy. The first parametric in-
vestigation considers a fixed value of tensile strength, =f 0.02MPat ,
and different fracture energy values between the limit cases of →G 0t
(brittle behaviour) and → ∞Gt (infinite ductility), for the mid-span
(Fig. 18a) and one-quarter span positions (Fig. 18b) of the load. The
influence of the tensile fracture energy has been assessed by considering
four different values ( = ∞G 0.01,0.05,0.1, N/mmt ). It can be observed
how the fracture energy affects the ultimate load of the arch although
maintaining a good ductility behaviour also for a low value of fracture
energy, in this latter case the ultimate load is close to the lower bound
provided by the limit analysis, Fig. 14.

The influence of the tensile strength has been investigated by con-
sidering the load scenarios for the values of the tensile strength

=f 0,0.01,0.02,0.04MPat and perfectly ductile behaviour → ∞Gt , the
results are reported in Fig. 19. It can be observed how the tensile
strength strongly influences the ultimate load capacity of the arch in
both the load configurations.

5. Conclusions

In this paper a Discrete Macro-Element (DME) approach for the
assessment of the nonlinear behaviour of masonry arches is presented.
The method can be regarded as a discrete method in which each ele-
ment possesses an internal deformability and represents the corre-
sponding masonry element, at the macro-scale, according to a simpli-
fied kinematics. A single degree of freedom accounts for the internal

shear deformability, three further degrees of freedom describe the rigid
motion of each macro-element. Namely, each macro-element can be
assimilated to a hinged quadrilateral with an internal deformability and
contouring interfaces which govern the interaction with the adjacent
elements. The calibration of the model requires few parameters in order
to define the basic masonry mechanical properties. The equivalence
between the macro-masonry arch portion and the macro-element is
based on a very simple fibre calibration strategy that makes the inter-
pretation of the numerical results straightforward and unambiguous.

In spite of its simplicity and ability to limit the needed computa-
tional effort to perform numerical simulations, this approach appears to
be able to simulate the main in-plane failure mechanisms of masonry
arch structures, also in presence of irregular geometry layouts.

Several comparisons with experimental and benchmark numerical
results demonstrate the reliability and suitability of the model in the
evaluation of the bearing capacity of arched masonry structures.

The proposed methodology is also suitable to model retrofitting
techniques based on Fiber Reinforced Polymer strategies, as proposed
in [49]. It is worth to mention that geometric nonlinearity could sig-
nificantly affect the results, particularly with reference to the post-peak
behaviour in the nonlinear range. The adopted linear kinematics re-
presents a limit of the current formulation, the extension to a general
macro-element strategy, accounting for material and geometrical non-
linearities in curved geometry masonry structures, is currently a work
in progress.
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