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Explicit analytical expressions are derived for the gluon propagator in a generic linear covariant Rξ

gauge, by a screened massive expansion for the exact Faddeev-Popov Lagrangian of pure Yang-Mills
theory. At one-loop, if the gauge invariance of the pole structure is enforced, the gluon dressing function is
entirely and uniquely determined, without any free parameter or external input. The gluon propagator is
found finite in the IR for any ξ, with a slight decrease of its limit value when going from the Landau gauge
(ξ ¼ 0) toward the Feynman gauge (ξ ¼ 1). An excellent agreement is found with the lattice in the range
0 < ξ < 0.5 where the data are available.
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I. INTRODUCTION

Almost all the visible mass in the universe arises from
dynamical mass generation, a mechanism that converts
chiral current quarks into constituent quarks, each carry-
ing one third of the proton mass. The mechanism can be
understood as the effect of low-energy gluon clouds
dressing the current quark, so that the study of the gluon
propagator in the IR becomes of paramount importance
for a full comprehension of the mass generation [1–7].
Unfortunately, even in the pure gauge sector, perturbation
theory breaks down in the IR and the results of lattice
simulations [5,8–18] are regarded as the only benchmark
for the continuum approaches [19–38] that have been
developed. Among them, a purely analytical method has
been proposed in the last years [39–41], which is based
on a change of the expansion point of ordinary pertur-
bation theory and provides explicit and very accurate
expressions for the gluon propagator in the Landau gauge
[42]. The method relies on a screened massive expansion,
with massive propagators in the internal gluon lines of
Feynman graphs, and is derived from the exact Faddeev-
Popov Lagrangian of pure Yang-Mills theory, from first
principles, without adding any phenomenological param-
eter. The expansion can be seen to emerge from the
Gaussian effective potential [43,44] which provides a
simple argument for the dynamical mass generation
of the gluon and has been also studied at finite temper-
ature [44,45].

In this paper, the massive expansion is extended to the
more general case of a linear covariantRξ gauge and explicit
analytical expressions are provided for the gluon propagator
at any generic value of the gauge-fixing parameter ξ,
yielding new insight into the gauge dependence of the
propagator, that cannot be extracted by any other method.
Exploring the gauge dependence of the gluon propagator

is in itself important in order to individuate the properties
that are gauge invariant and might be directly related to
physical observables. Despite that, the covariant Rξ gauge,
which is under control at the perturbative level, is basically
unexplored in the IR because of convergence problems in
lattice calculations [46–48]. Quite recently, a lattice sim-
ulation has been extended up to ξ ¼ 0.5 [49], predicting a
saturation of the propagator deep in the IR, with very small
deviations from the results in the Landau gauge, but in
strong disagreement with some recent predictions of a
continuum study [25]. On the other hand, the lattice data
seem to be in qualitative agreement with the picture
emerging by Nielsen identities in Ref. [22]. Out of the
Euclidean space, no information has been reported so far
about the analytic properties in Rξ gauge.
On general grounds, because of Nielsen identities [50],

we know that the poles and the residues of the gluon
propagator, i.e., the principal part, must be gauge parameter
independent [51–53]. While no information on the exist-
ence and properties of the poles can be extracted from
lattice calculations in the Euclidean space, the massive
expansion provides explicit analytical expressions that can
be continued to the complex plane [41]. Some attempts at
reconstructing the spectral functions from the lattice data
have been reported [54,55] and are in qualitative agreement
with the predictions of the expansion [41].
At one-loop, by the massive expansion, a pair of

complex conjugated poles were found in the Landau gauge
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[45], as also predicted by different phenomenological
models [56–58], again in strong disagreement with other
continuum studies [59] based on the truncation of an
infinite set of Dyson-Schwinger equations. While the
genuine nature of the poles was already shown by studying
their behavior at finite temperature [45], their explicit gauge
invariance would provide further evidence that they are not
artifact of the expansion. Strictly speaking, by changing the
expansion point, the Becchi-Rouet-Stora-Tyutin (BRST)
symmetry of the quadratic part of the Lagrangian is broken
in the expansion and we should not expect that the pole
structure might be exactly gauge invariant at any finite
order. However, since the total Lagrangian is not modified,
the gauge parameter independence must be recovered if the
expansion provides a very good approximation of the exact
propagator. Thus the gauge parameter independence of the
pole structure would give a quantitative estimate of the
accuracy in the complex plane, where no comparison with
the lattice can be made.
By the same argument, the massive expansion can be

optimized by enforcing the gauge parameter independence
of the whole pole structure, yielding a fully self-contained
calculation from first principles, without any adjustable
parameter or external input. Moreover, once optimized in
the complex plane, the result is found in excellent agree-
ment with the lattice data in the Euclidean space, not only
in the Landau gauge, but for the whole range, up to ξ ¼ 0.5,
that has been explored in the lattice so far [49]. No dramatic
difference is found for larger values of ξ and even in the
Feynman gauge the gluon propagator is finite in the IR,
with a slight suppression of its saturation value compared to
the Landau gauge. Being gauge parameter independent, the
principal part of the propagator might be directly related to
physical observables like glueball masses, as recently
discussed by a quite general method [58].
The paper is organized as follows: in Sec. II the massive

expansion of Refs. [39,40] is extended to a generic Rξ

gauge; in Sec. III the expansion is optimized by requiring
that the pole structure is gauge parameter independent as
demanded by Nielsen identities; in Sec. IV the optimized
gluon propagator is shown for a wide range of the gauge
parameter ξ, including the Feynman gauge (ξ ¼ 1), and is
compared with the available lattice data; Section V contains
a brief discussion of the main results. Explicit analytical
expressions for the propagator in Rξ gauge are derived in
Appendix with many details on the calculation of the
graphs.

II. THE MASSIVE EXPANSION IN Rξ GAUGE

The massive expansion has been first developed in
Refs. [39,40] and related to the Gaussian effective potential
in Refs. [43,44]. It is based on a change of the expansion
point of ordinary perturbation theory for the exact gauge-
fixed Faddeev-Popov Lagrangian of pure Yang-Mills
SUðNÞ theory. The Lagrangian can be written as

L ¼ LYM þ Lfix þ LFP ð1Þ

where LYM is the Yang-Mills term

LYM ¼ −
1

2
TrðF̂μνF̂

μνÞ; ð2Þ

the tensor operator F̂μν is

F̂μν ¼ ∂μÂν − ∂νÂμ − ig½Âμ; Âν�; ð3Þ

LFP is the ghost term arising from the Faddeev-Popov
determinant and Lfix is the covariant gauge-fixing term

Lfix ¼ −
1

ξ
Tr½ð∂μÂ

μÞð∂νÂ
νÞ�: ð4Þ

The gauge field operators are

Âμ ¼
X
a

X̂aA
μ
a ð5Þ

where the generators of SUðNÞ satisfy the algebra

½X̂a; X̂b� ¼ ifabcX̂c; fabcfdbc ¼ Nδad: ð6Þ

In the standard perturbation theory, the total action is
split as Stot ¼ S0 þ SI where the quadratic part can be
written as

S0 ¼
1

2

Z
AaμðxÞδabΔ−1

0
μνðx; yÞAbνðyÞd4xd4y

þ
Z

ω⋆
aðxÞδabG−1

0 ðx; yÞωbðyÞd4xd4y ð7Þ

and the interaction is

SI ¼
Z

ddx½Lgh þ L3 þ L4�: ð8Þ

with the three local interaction terms that read

L3 ¼ −gfabcð∂μAaνÞAμ
bA

ν
c

L4 ¼ −
1

4
g2fabcfadeAbμAcνA

μ
dA

ν
e

Lgh ¼ −gfabcð∂μω
⋆
aÞωbA

μ
c: ð9Þ

In Eq. (7), Δ0 and G0 are the standard free-particle
propagators for gluons and ghosts and their Fourier trans-
forms are

Δ0
μνðpÞ ¼ Δ0ðpÞ½tμνðpÞ þ ξlμνðpÞ�

Δ0ðpÞ ¼
1

−p2
; G0ðpÞ ¼

1

p2
: ð10Þ
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having used the transverse and longitudinal projectors

tμνðpÞ ¼ ημν −
pμpν

p2
; lμνðpÞ ¼

pμpν

p2
ð11Þ

where ημν is the metric tensor.
The massive expansion is obtained by adding a trans-

verse mass term to the quadratic part of the action and
subtracting it again from the interaction, leaving the total
action unchanged.
In some detail, we add and subtract the action term

δS ¼ 1

2

Z
AaμðxÞδabδΓμνðx; yÞAbνðyÞd4xd4y ð12Þ

where the vertex function δΓ is a shift of the inverse
propagator

δΓμνðx; yÞ ¼ ½Δ−1
m

μνðx; yÞ − Δ−1
0

μνðx; yÞ� ð13Þ

and Δm
μν is a new massive free-particle propagator

Δ−1
m

μνðpÞ ¼ ð−p2 þm2ÞtμνðpÞ þ −p2

ξ
lμνðpÞ: ð14Þ

Adding that term is equivalent to substituting the new
massive propagator Δm

μν for the old massless one Δ0
μν in

the quadratic part.
In order to leave the total action unaffected by the

change, we must add the same term in the interaction,
providing a new interaction vertex δΓ. Dropping all color
indices in the diagonal matrices and inserting Eqs. (10)
and (14) in Eq. (13) the vertex is just the transverse mass
shift of the quadratic part

δΓμνðpÞ ¼ m2tμνðpÞ ð15Þ

and must be added to the standard set of vertices in Eq. (9).
The proper gluon polarization Π and ghost self energy Σ

can be evaluated, order by order, by perturbation theory. In
all Feynman graphs the internal gluon lines are replaced by
the massive free-particle propagator Δm

μν and all insertions
are considered of the (transverse) mass counterterm δΓμν

which plays the role of a new two-point vertex. It is shown
as a cross in Fig. 1 where some two-point self-energy
graphs are displayed. We will refer to the graphs with a
cross as crossed graphs.
Since the total gauge-fixed FP Lagrangian is not modi-

fied and because of gauge invariance, the longitudinal
polarization is known exactly and is zero, so that the total
polarization is transverse

ΠμνðpÞ ¼ ΠðpÞtμνðpÞ ð16Þ

and the (exact) dressed propagators read

ΔμνðpÞ ¼ ΔðpÞtμνðpÞ þ ΔLðpÞlμνðpÞ
G−1ðpÞ ¼ p2 − ΣðpÞ ð17Þ

where the transverse and longitudinal parts are

Δ−1ðpÞ ¼ −p2 þm2 − ΠðpÞ

ΔLðpÞ ¼ ξ

−p2
: ð18Þ

At tree level, the polarization is just given by the counter-
term δΓ of Eq. (15), so that the tree-term Πtree ¼ m2 just
cancels the mass in the dressed propagator Δ of Eq. (18),
giving back the standard free-particle propagator of Eq. (10).
Finally, summing up the loops and switching to Euclidean

space, the transverse dressed propagator can be written as

ΔðpÞ ¼ ½p2 − ΠloopsðpÞ�−1 ð19Þ
whereΠloopsðpÞ is given by the transverse part of all the loop
graphs for the (proper) polarization.
At one-loop, as discussed in Refs. [39,40], we sum all the

graphs with no more than three vertices and no more than
one loop, which are displayed in Fig. 1. In Appendix,
explicit analytical expressions are given for all the polari-
zation graphs of the figure.
The diverging integrals are made finite by dimensional

regularization and can be evaluated in the Euclidean space,
by setting d ¼ 4 − ϵ. An important feature of the massive
expansion is that the crossed graphs cancel all the spurious
diverging mass terms exactly, so that no mass renormal-
ization is required. That is a very welcome feature since
there is no bare mass in the original Lagrangian. At one-
loop, as shown in Appendix, in the MS scheme, the
diverging part of the proper transverse polarization can
be written as

ΠϵðpÞ ¼ Ng2

ð4πÞ2
�
2

ϵ
þ log

μ2

m2

�
p2

�
13

6
−
ξ

2

�
ð20Þ

which is the same identical result of standard perturbation
theory [60] and ensures that we obtain the correct leading

=Σ +

+

+= + +

++

+
(1a) (1b) (1c) (1d)

(2b) (2c)(2a)

Π

FIG. 1. Two-point self-energy graphs with no more than three
vertices and no more than one loop.
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behavior in the UV where the mass insertions are negli-
gible, as shown in Eq. (A49).
As usual the diverging part can be canceled by wave

function renormalization, by subtraction at an arbitrary
point. Of course, a finite term ∼const × p2 arises from
the subtraction and cannot be determined in any way. It also
depends on the regularization scheme and on the arbitrary
scale μ, so that its actual value remains somehow arbitrary. It
basically is the only free parameter of the approximation, as
discussed later. For an observable particle, the constant
would be fixed on mass shell, by requiring that the pole of
the propagator is at the physical mass with a residue equal to
1. The confinement of the gluon has been related to the
existence of complex conjugated poles [45], so that if, on the
one hand, there is nothing like an observable gluonmass, on
the other hand, the analytic properties at the poles and their
gauge parameter independence will be shown to be enough
for determining the propagator entirely and uniquely.
The finite part of the one-loop proper polarization, as

resulting from the sum of all the graphs in Fig. 1, reads

ΠfðpÞ ¼ −
3Ng2

ð4πÞ2 p
2½FðsÞ þ ξFξðsÞ þ C� ð21Þ

where s ¼ p2=m2 is the Euclidean momentum. The func-
tions FðsÞ and FξðsÞ are adimensional and do not depend
on any parameter. Their explicit expressions are derived in
Appendix by a detailed calculation of the integrals and the
final result is reported in Eqs. (A41), (A44). The constant C
arises from the subtraction of the diverging part by wave
function renormalization. For a generic subtraction point
p ¼ μ, the one-loop transverse propagator follows from
Eq. (19)

ΔðpÞ ¼ Zμ

p2 þ 3Ng2

ð4πÞ2 p
2½FðsÞ þ ξFξðsÞ − Fðμ2m2Þ − ξFξðμ

2

m2Þ�
ð22Þ

where Zμ is the arbitrary finite renormalization constant
Zμ ¼ μ2ΔðμÞ. Finally, the propagator can be written as

ΔðpÞ ¼ Z
p2½FðsÞ þ ξFξðsÞ þ F0�

ð23Þ

where the coupling and all other constants are absorbed by
a finite renormalization factor Z and the new constant F0

which depend on the subtraction point μ according to

Z ¼ ð4πÞ2Zμ

3Ng2

F0 ¼
ð4πÞ2
3Ng2

− Fðμ2=m2Þ − ξFξðμ2=m2Þ: ð24Þ

Eq. (23) provides an explicit analytical expression for the
one-loop gluon propagator. It contains three parameters:m,

Z and F0. However, the finite renormalization factor Z is
irrelevant, while m is the unique energy scale. Since the
exact Lagrangian does not contain any energy scale, m
cannot be determined by the theory: the mass parameter m
determines the overall energy scale and can only be fixed
by comparison with some physical observable. That is not a
limitation of the approximation but is a standard feature of
Yang-Mills theory. Moreover, being just a scale parameter,
the mass m is not a physical or dynamical mass and is not
even required to be gauge invariant. We will use the energy
scale of the lattice and fixm by comparison with the data of
simulations in the Landau gauge. Thus, the only free
parameter in Eq. (23) is the constant F0 which is related
to the arbitrary ratio μ=m. Since the result does depend on
F0, the expansion must be optimized by a criterion for
determining the best F0, yielding a special case of
optimized perturbation theory by variation of the renorm-
alization scheme, a method that has been proven to be very
effective for the convergence of the expansion [61].
Assuming that the expansion converges more quickly for

an optimal value of F0, the one-loop result might be very
close to the exact result for a special choice of the constant.
That is shown to be the case in Refs. [39–42] where an
excellent agreement with the lattice is found in the Landau
gauge. Unfortunately, the available data are not fully
consistent and a best fit yields slightly different values
of F0 andm for different data sets, as shown in Table I. The
deviations might be related to a slightly different choice of
units as recently discussed in Ref. [62]. We can extract a
global average F0 ≈ −0.9� 0.1. Of course, the actual value
of the constant F0 depends on the details of the definition of
the functions FðsÞ, FξðsÞ which are evaluated up to an
(omitted) arbitrary additive constant in Appendix. In this
paper, all the values of F0 refer to the definition given by
Eqs. (A41), (A44) for those functions.
In the Landau gauge, the best agreement is found for the

data set of Ref. [18], with a best fit parameter F0 ¼ −0.887
and a mass scale m ¼ 0.654 GeV, evaluated in the range
0 < p < 4 GeV. The resulting gluon propagator is shown
in Fig. 2 together with the lattice data.

III. OPTIMIZATION FROM FIRST PRINCIPLES

If the expansion is optimized in the Euclidean space, by a
direct comparison with the lattice data, any control of the
approximation is lost in Minkowski space and one might

TABLE I. Parameters of Eq. (23) optimized by the SUð3Þ data
of Ref. [18] (in the range 0—4 GeV) and Ref. [12] (0—2 GeV),
and by the SUð2Þ data of Refs. [9,10] (0—2 GeV).

Data set N F0 m (GeV) Z

Duarte et al. [18] SUð3Þ −0.887 0.654 2.631
Bogolubsky et al. [12] SUð3Þ −1.035 0.733 3.360
Cucchieri,Mendes [9,10] SUð2Þ −0.743 0.859 1.737
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wonder how robust the optimal choice would be when
continued to the complex plane. Moreover, a self-contained
optimization strategy, which does not require any external
input, would be essential for exploring new aspects that are
out of the reach of lattice calculations. In this section, we
show that the expansion can be optimized from first
principles in the complex plane by enforcing some general
exact analytic properties that arise from the BRST invari-
ance of the gauge-fixed Lagrangian.
The Nielsen identities [50] are exact equations con-

necting the gauge parameter dependence of some corre-
lation functions with other Green functions. Their proof
follows from the BRST invariance of the Faddeev-Popov
Lagrangian, Eq. (1), which has not been modified by our
change of the expansion point. They have been used as a
tool for establishing general invariance properties of the
pole structure in QCD [52] and in other Yang-Mills
theories [57].
Following the detailed derivation of Ref. [52], the exact

transverse projection of the gluon propagator ΔðpÞ must
satisfy the Nielsen identity

∂
∂ξ

1

ΔðpÞ ¼ GTðpÞ
�

1

ΔðpÞ
�
2

ð25Þ

where, omitting the diagonal color indices, GTðpÞ is the
transverse component

GTðpÞ ¼ tμνðpÞ
3

Gμν
aað−p; p; 0Þ ð26Þ

of the Green function Gμν
abð−p; p; 0Þ which is defined as

Gμν
abð−p; p; 0Þ

¼
Z

d4xd4yeip·ðx−yÞh0jT½DμωaðyÞAν
bðxÞω⋆

cð0ÞBcð0Þ�j0i

ð27Þ

in terms of the Nakanishi-Lautrup auxiliary field Ba and of
the covariant derivative of the ghost fieldDμωa. If the gluon
propagator has a pole in the complex plane at p2 ¼ p2

0ðξÞ,
then the inverse propagator has a zero and we can write the
identities

1

Δðp0ðξÞÞ
¼ 0;

d
dξ

1

Δðp0ðξÞÞ
¼ 0: ð28Þ

Then, the vanishing of the right-hand side of Eq. (25) at
p ¼ p0ðξÞ says that the partial derivative is also zero and
the pole p0 must be gauge parameter independent

d
dξ

p0ðξÞ ¼ 0: ð29Þ

By the same argument, the residues at the poles are also
gauge parameter independent [53]. In fact, if we differ-
entiate Eq. (25) with respect to p2

∂
∂ξ
�

d
dp2

1

ΔðpÞ
�
¼
�

d
dp2

GTðpÞ
��

1

ΔðpÞ
�
2

þ 2GTðpÞ 1

ΔðpÞ
�

d
dp2

1

ΔðpÞ
�
; ð30Þ

the right-hand side vanishes at p ¼ p0 because of Eq. (28),
so that the residue R, defined as

R ¼ lim
p→p0

ΔðpÞðp2 − p2
0Þ ¼ lim

p→p0

�
d

dp2

1

ΔðpÞ
�
−1
; ð31Þ

satisfies the exact equation

∂
∂ξR ¼ 0: ð32Þ

We conclude that, for the gauge-fixed Yang-Mills
Lagrangian, the principal part ΔP of the exact gluon
propagator

ΔPðpÞ ¼ R
p2 − p2

0

þ R⋆
p2 − p⋆

0
2

ð33Þ

must be gauge parameter independent. The argument fails if
GTðpÞ has a pole in p ¼ p0, which is usually not the case.
In the quadratic part of the Lagrangian, the BRST

symmetry is broken by the mass term that has been added
and has been subtracted again from the interaction. Thus,
while the total Lagrangian is BRST invariant, the symmetry

 0

 2

 4

 6

 8

 10

 12

 0.1  1

Δξ=
0 (p

)

p (GeV)

Duarte et al., SU(3)
Fit

Optimized

FIG. 2. The one-loop transverse gluon propagator ΔðpÞ of
Eq. (23) is shown for the best fit parameters F0 ¼ −0.887, m ¼
0.654 GeV in the Landau gauge ξ ¼ 0 (solid line), together with
the lattice data of Ref. [18]. The broken line is the same
propagator obtained by Eq. (23) with the optimized parameters
F0 ¼ −0.876, m ¼ 0.656 GeV determined by the gauge param-
eter independence of the pole structure in Sec. III.
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is broken at any finite order of the massive expansion. For
that reason, we do not expect that the one-loop propagator
might satisfy the Nielsen identity exactly. However, the
closer we reach to the exact result, the better is expected to
be the agreement with the exact identities. Thus, we can
exploit the dependence on the parameters F0, m in Eq. (23)
and optimize the expansion by requiring that the pole
structure of the propagator is gauge parameter independent.
That is equivalent to an optimal choice of the subtraction
point μ=m, which is usually fixed on mass shell for an
observable particle. Without any observable gluon mass at
hand, the invariance of the poles and residues turns out to
be enough for determining the one-loop gluon propagator
entirely and for any choice of the gauge parameter.
For a generic choice of the gauge parameter ξ, the

optimal parameters can be regarded as functions F0ðξÞ,
mðξÞ, to be determined by the requirement that the pole and
the residue do not depend on ξ. Of course, the finite
renormalization factor Z remains arbitrary and has no
physical relevance. Let us denote by Ψðz; ξ; F0; mÞ the
inverse dressing function in Eq. (23)

Ψðz; ξ; F0; mÞ ¼ Fð−z2=m2Þ þ ξFξð−z2=m2Þ þ F0 ð34Þ

which is an analytic function of the complex variable
z ¼ xþ iy. On the imaginary axis, for x ¼ 0, p2

E ¼ −z2 ¼
y2 is the Euclidean momentum. On the real axis, for y ¼ 0,
we recover the Minkowskian momentum p2

M ¼ z2 ¼ x2.
Thus, the variable z is the analytic continuation of the
physical momentum pM. The pole z20 ¼ −p2

0 is a zero of the
inverse dressing function Ψ and must satisfy the equation
Ψðz0; ξ; F0; mÞ ¼ 0. The gauge parameter independence of
the pole requires that

Ψðz0; ξ1; F0ðξ1Þ; mðξ1ÞÞ ¼ Ψðz0; ξ2; F0ðξ2Þ; mðξ2ÞÞ ð35Þ

yielding a set of two coupled real equations for the real
and imaginary parts. The equations can be solved for
F0ðξ2Þ and mðξ2Þ from a given initial value F0ðξ1Þ, mðξ1Þ.
Taking the Landau gauge as the initial point ξ1 ¼ 0 and
fixing a scale m0 ¼ mð0Þ as energy units, the functions
F0ðξÞ and mðξÞ are determined for any value of the gauge
parameter ξ from the initial value F0ð0Þ which remains the
only free parameter. Thus, we can encode the gauge
parameter independence of the pole in the optimized
propagator and evaluate it for any value of the parameter
ξ. The functions F0ðξÞ, m2ðξÞ are shown in Figs. 3 and 4
for different choices of the initial value F0ð0Þ in the
Landau gauge.
In the range −2 < F0ð0Þ < 0, the gluon propagator of

Eq. (23) has a single pair of complex conjugated poles,
while other values of F0ð0Þ, out of that range, seem to be
unphysical. For F0ð0Þ < −2 the expression in Eq. (23) has
poles in the Euclidean space and changes sign at the poles,
on the positive s axis. Moreover, according to Eq. (24), the

coupling g2 would become negative in that range
because the minimal value of FðsÞ is ≈2. For F0ð0Þ > 0

the coupling g2 becomes very small in Eq. (24) for any μ
and the pole topology becomes very different. As discussed
in the previous section, in the Landau gauge, the best
agreement with the lattice is found for F0 ≈ −0.9 which is
at the center of the physical allowed range.
It is remarkable that, close to the best fit value

F0ð0Þ ≈ −0.9, the contour lines ReΨ ¼ 0, ImΨ ¼ 0, at
the crossing point z0 (the pole), are basically not rotated by
any change of ξ. That can be seen in Fig. 5 where the
contour lines are displayed for ξ ¼ 0 and ξ ¼ 1 and are
shown to be approximately tangent at the intersection point.
In other words, when the initial value F0ð0Þ approaches the
best fit value F0ð0Þ ≈ −0.9, the conformal map z1 → z2,
defined by

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.2  0.4  0.6  0.8  1  1.2
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02

ξ
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Ψðz1; ξ1; F0ðξ1Þ; mðξ1ÞÞ ¼ Ψðz2; ξ2; F0ðξ2Þ; mðξ2ÞÞ ð36Þ

becomes a local identity at the fixed point (the pole
z20 ¼ −p2

0). Denoting by θ the rotation angle of the contour
lines in the map and setting ξ1 ¼ 0, ξ2 ¼ ξ, we can write

θðξÞ ¼ Arg

(
d
dzΨðz; 0; F0ð0Þ; mð0ÞÞ
d
dzΨðz; ξ; F0ðξÞ; mðξÞÞ

)
z¼z0

ð37Þ

and because of Eq. (31), the angle θ gives the phase change
of the residue R which can be written, as a function of ξ,

RðξÞ ¼ Rð0ÞeiθðξÞ ð38Þ

since the modulus jRj can always be made invariant by an
appropriate choice of the real renormalization constant
ZðξÞ. Explicit analytical expressions for the derivative of Ψ
are reported in Eqs. (A50), (A53) of Appendix.
We observe that the angle θ is not exactly zero, so that in

general, the Nielsen identity Eq. (25) and its consequences
Eqs. (29), (32) cannot be all satisfied. However, as shown in
Figs. 5 and 6, the angle θ becomes very small, for a wide
range of ξ, if the initial constant F0ð0Þ is close to the value
F0 ≈ −0.9 which already described the lattice data very
well in the Euclidean space. In other words, the optimal
propagator in the Euclidean space is also the one that best
satisfies the Nielsen identity in the complex plane, giving
us confidence in the general accuracy of the approximation.
We must mention that averaging over Gribov copies might
break BRST invariance in the lattice. However, we are
assuming that the Nielsen identities are not seriously
affected in lattice calculations.
Reversing the argument, the expansion can be optimized

in a self-contained way, by first principles and without any
external input, by assuming that the best choice for the

initial constant F0ð0Þ is the one that makes the angle θ
smaller in a wider range of ξ. Even if there are no technical
reasons for limiting the value of the gauge parameter, we
expect that perturbation theory would be more effective
when ξ is small and the expansion might be out of control
for very large ξ ≫ 1. Prudentially, the present study is
limited to the range ξ < 1.2, including the Feynman gauge.
The minimal phase deviation is observed for the initial

value F0ð0Þ ¼ −0.876. As shown in Fig. 6, for that choice,
the phase θ fluctuates around zero in the whole range
0 < ξ < 1.2, with very small deviations which are less than
0.003. Nevertheless, no fine tuning is required since θ is
very small around F0ð0Þ ≈ −0.9 and any slight change of
F0ð0Þ can be compensated by an appropriate choice of Z
andm. In fact, as shown in Fig. 2, when the present new set
of first-principle optimal parameters are inserted in
Eq. (23), the propagator is indistinguishable from the
previous one that was obtained by a best fit of the lattice
data. Actually, the optimal initial value F0ð0Þ not only
minimizes the phase deviation θðξÞ, but also makes m2ðξÞ
stationary and maximal for any fixed ξ, as shown in Fig. 3
where the optimal curve is plotted as a red line. That is a
geometric consequence of the pole being the tangency
point in Fig. 5. Moreover, the optimal function F0ðξÞ is the

ξ=1,  ImΨ = 

ξ=1,  ReΨ = 

ξ=0,  ImΨ = 

ξ=0,  ReΨ = 
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FIG. 5. Contour plots of ReΨ ¼ 0, ImΨ ¼ 0 in the complex
plane z ¼ xþ iy for ξ ¼ 1 (solid lines) and ξ ¼ 0 (dashed lines),
with F0ð0Þ ¼ −0.876 and m0 ¼ 0.656 GeV (see Table II). The
curves are approximately tangent (i.e., θ ≈ 0) at the intersection
point z0 (the pole) whenever F0 ≈ −0.9.
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most gauge parameter invariant curve in Fig. 4 (shown as a
red line).
The optimal parameters are summarized in Table II

together with very accurate polynomial interpolation for-
mula for the optimal functions F0ðξÞ,m2ðξÞ. Extracting the
energy scalem0 ¼ mð0Þ ¼ 0.656 GeV from the lattice data
of Ref. [18] in the Landau gauge, the invariant pole is found
at x0 ¼ M ¼ 0.581 GeV and y0 ¼ γ ¼ 0.375 GeV, which
might be regarded as the physical mass and the damping
rate of the quasigluon, respectively, as discussed
in Ref. [45].

IV. THE PROPAGATOR AT ξ ≠ 0

In the Euclidean space, the gluon propagator can be
evaluated analytically by Eq. (23), for any value of the
gauge parameter ξ, inserting the optimal parameters of
Table II which enforce the gauge parameter independence
of the pole structure in the complex plane. In order to
compare with the available lattice data of Ref. [49], the
finite renormalization constant Z is fixed by the same
momentum subtraction scheme of that work, i.e., requiring
that μ2ΔðμÞ ¼ 1 for any ξ and taking the same renormal-
ization point μ ¼ 4.317 GeV. That is equivalent to taking
the constant Z in Eq. (23) to be Z ¼ Ψðiμ; ξ; F0; mÞ.
The gluon propagator is shown in Fig. 7, for several

values of the gauge parameter ξ, together with some data
points extracted from Ref. [49]. The agreement with the
data is very good in the limited range ξ < 0.5 where they
are available. For ξ ≠ 0, the propagator is slightly sup-
pressed in the IR compared with the Landau gauge. We
must mention that previous continuum studies, based on the
truncation of an infinite set of exact Dyson-Schwinger
equations, reached contrasting and ambiguous results.
While a strong dependence on the gauge parameter was
predicted in Ref. [25], with large deviations from the
Landau gauge, a qualitative agreement with the lattice
was reported in Ref. [22] by the aid of exact Nielsen
identities which seem to play a key role. The gauge
dependence was found small but no quantitative prediction

could be made and even the sign of the change was not
defined by that method.
As shown in Fig. 7, up to and beyond the Feynman

gauge (ξ ¼ 1), no dramatic change occurs and the sup-
pression of the propagator increases very smoothly with the
increasing of ξ. The change can best be seen by evaluating
the ratio between ΔðpÞ at ξ ≠ 0 and at ξ ¼ 0, as shown in
Fig. 8 together with the lattice data of Ref. [49]. Even if the
lattice calculation is plagued by large statistical errors, with
scattered data and large error bars, the optimized propa-
gator seems to be in quantitative agreement with the data
and reproduces the correct trend predicted by the lattice.
We stress that the curves are not a fit of the data and the
agreement is reached from first principles without any
adjustable parameter.

TABLE II. Set of optimal parameters, obtained by enforcing the
gauge parameter independence of the pole structure in the range
0 < ξ < 1.2. The energy scale m0 and the finite renormalization
constant Zð0Þ are determined by the data of Ref. [18] which are
shown in Fig. 2.

OPTIMIZATION BY GAUGE INVARIANCE

F0ð0Þ ¼ −0.876, m0 ¼ mð0Þ ¼ 0.656 GeV, Zð0Þ ¼ 2.684
jθðξÞj < 2.76 × 10−3, 0 < ξ < 1.2

F0ðξÞ ≈ −0.8759 − 0.01260ξþ 0.009536ξ2 þ 0.009012ξ3

m2ðξÞ=m2
0 ≈ 1 − 0.39997ξþ 0.064141ξ2

z0=m0 ¼ 0.8857þ 0.5718i, tR ¼ ImRð0Þ=ReRð0Þ ¼ 3.132
M ¼ 0.581 GeV, γ ¼ 0.375 GeV (invariant pole)
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The dressing function is shown in Fig. 9. As predicted by
the lattice [49], the maximum is basically fixed at the same
energy for any ξ. We argue that the Nielsen identity gives
the correct scale factormðξÞ=mð0Þ that keeps the maximum
fixed, at variance and in strong contrast with the continuum
calculation of Ref. [25] which might miss that important
constraint.
In the studied range of ξ, the whole principal part of the

propagator in Eq. (33) is basically invariant up to a finite
renormalization factor. The pole p0 is fixed at the value of
Table II, while the phase of the residue is ArgRðξÞ ¼
1.262þ θðξÞ where jθðξÞj < 2.75 × 10−3, yielding the
ratio tR ¼ ImRðξÞ=ReRðξÞ ¼ 3.132� 0.03. This ratio is
important for determining the explicit parameters of the
rational part Eq. (33) which has been derived at tree level by
other phenomenological models like the refined Gribov-
Zwanziger model [56–58]. Being gauge parameter inde-
pendent, the parameters of the rational part might be
directly related to physical observables or condensates
[63,64] and a recent general method has been proposed
for extracting information on the glueball masses [58].
Using the notation of Ref. [64], the principal part of the
propagator, Eq. (33), can be written as

ΔPðpÞ ¼ ZGZ
p2 þM2

1

p4 þM2
2p

2 þM4
3

ð39Þ

where

ZGZ ¼ 2ReR

M2
1 ¼ M2 − γ2 þ 2MγtR ¼ 1.562 GeV2

M2
2 ¼ 2ðM2 − γ2Þ ¼ 0.394 GeV2

M4
3 ¼ ðM2 þ γ2Þ2 ¼ 0.229 GeV4 ð40Þ

having made use of the optimized parameters of Table II.
Below 1 GeV, the masses Mi seem to be compatible with

the statistical analysis of Ref. [64], even if the simple
rational part ΔP was used in that work for a fit of the lattice
data, ignoring the corrections which are included in the
present optimized one-loop propagator. In fact, the correc-
tions are gauge dependent and very small below 1 GeV, as
already shown in the Landau gauge by a direct evaluation
of the spectral function [41,65].
The Schwinger function ΔðtÞ can be evaluated by a

numerical integration, as a function of the Euclidean time t,
according to its definition

ΔðtÞ ¼
Z þ∞

−∞

dp4

2π
eip4tΔðp⃗ ¼ 0; p4Þ ð41Þ

and is shown in Fig. 10 for different values of the gauge
parameter. In the Landau gauge, the Schwinger function is
found in qualitative agreement with the result of Ref. [66],
with a positivity violation that occurs above the point t ¼
t0 ≈ 5.8 GeV−1 where the function crosses the zero and
becomes negative. The scale t0 is roughly the size of a
hadron and in Ref. [66] it was conjuctered to be a physical
gauge-invariant scale at which gluon screening occurs.
Actually, as shown in Fig. 10, the crossing point t0 is found
to be almost gauge parameter independent. Moreover, the
large t behavior seems to be dominated by the singularities
and the whole Schwinger function is very well approxi-
mated by inserting in Eq. (41) the simple principal part
ΔPðpÞ of Eq. (33), which is gauge parameter independent,
yielding the analytical result

ΔPðtÞ¼
� jRjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2þ γ2
p �

e−Mt cos

�
γt−θþ arctan

γ

M

�
ð42Þ

which is shown in Fig. 10 as a broken line.
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FIG. 9. The dressing function p2ΔðpÞ as a function of the
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We cannot end this section without a brief discussion of
the spectral function, which has attracted great interest
[54,55] even if its physical content is quite unclear in
presence of complex poles and confinement. In fact, the
usual Källen-Lehmann representation must be replaced by
the more general integral representation [65]

ReΔðp2Þ ¼ ΔPðp2Þ þ P:V:
Z þ∞

0

ρðμ2Þ
p2 − μ2

dμ2

ρðp2Þ ¼ −
1

π
ImΔðp2 þ iϵÞ ð43Þ

where the spectral function ρðp2Þ is gauge dependent and
does not contain any information on the gauge parameter
independent principal part ΔP which must be added to the
integral for reproducing the whole propagator. Moreover,
ρðp2Þ is even not positive defined for a confined particle. In
the Landau gauge, the spectral function was evaluated by
the massive expansion in Ref. [41] and the dispersion
relation of Eq. (43) was checked in Ref. [65] by a numerical
integration. The integral provides the difference between
the principal part and the whole propagator, so that the
difference can be large only if the total weight which comes
from the integration of ρðp2Þ is large. Moreover, ρðp2Þ
changes sign and the contributions arising from different
signs can partially cancel.
The one-loop spectral density can be easily evaluated by

the explicit expression of the propagator, Eq. (23), using the
optimal parameters of Table II, and is shown in Fig. 11 for
different values of the gauge parameter ξ. It has some gauge
dependent features, like a cusp at the two-particle threshold
p ¼ 2mðξÞ and a finite spike at p ≈mðξÞ. In the Landau
gauge, the spike is just a smooth maximum but is enhanced
for ξ > 0.08 by the appearance of a gauge dependent pole
near the real axis, at x ≈mðξÞ. Some details of the finite
peak on the real axis are shown in Fig. 12. Apart from the
peak, the spectral density is very small and even the peak

area gives a small contribution to the integral in Eq. (43)
because of the change of sign that occurs just at the peak, in
agreement with a confinement scenario. While the peak
resembles the spike which was observed in Ref. [59], its
physical nature is unclear and is certainly related to the
nature of the new gauge dependent pole which might be an
artifact of the one-loop approximation.
From a technical point of view, the new pole arises

because of the logarithmic divergence of the real part of
Fξð−z2=m2Þ at the branch point x ¼ m on the real axis. The
divergence occurs because of the bad IR behavior of the
crossed gluon loop,Π2c in Fig. 1, in the limit p → im, since
the denominator in Eq. (A19) becomes

k2½ðkþ pÞ2 þm2�nþ1 → k2½k2 þ 2k · p�nþ1 ∼ knþ3 ð44Þ

if there are n insertions of the counterterm in the transverse
gluon line. Thus the integral diverges in the IR and the
divergence becomes worse and worse at higher orders,
requiring some resummation which might cancel the
divergence in the exact result. For n ¼ 1 the divergence
appears as a branch point at s ¼ −1 for the logarithmic
term logð1þ sÞ of FξðsÞ in Eq. (A44). Near the branch
point, for x ≈m and any finite ξ ≠ 0, the real part of the
inverse dressing function ΨðzÞ, Eq. (34), can be written as

ReΨðzÞ ≈ ReΨregðzÞ þ ξAðmÞ log jz −mj ð45Þ

where Ψreg is the regular part and the prefactor AðzÞ of the
log is a rational function which is real on the real axis, with
AðmÞ ¼ −2=3. Then, taking z ¼ mþ reiϕ, the contour line
ReΨ ¼ 0 is given by

r ≈ exp

�
−
ReΨregðmÞ
ξAðmÞ

�
¼ e−C=ξ ð46Þ
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FIG. 11. The one-loop spectral density ρðp2Þ is shown for
different values of the gauge parameter.

-12

-10

-8

-6

-4

-2

 0

 2

 4

 0  0.5  1  1.5  2  2.5  3  3.5  4

ρ(
p2 )

p2 (GeV2)

ξ=0.00

ξ=0.10

ξ=0.50

ξ=1.00

-12

-8

-4

 0

 4

 0.25 0.3 0.35
-250
-200
-150
-100

-50
 0

0.413399765
-10

-5

 0

 5

 10

0.413400600

FIG. 12. The same curves of Fig. 11 on a different scale. The
peaks of ρðp2Þ are shown in the inserts on a very enlarged scale.
The rightmost inserts both have a width of 2 × 10−7 GeV2.

FABIO SIRINGO and GIORGIO COMITINI PHYS. REV. D 98, 034023 (2018)

034023-10



which is a very small circle centered at x ¼ m on the real
axis, with an exponentially small radius in the limit ξ → 0 if
C > 0. In the Feynman gauge, ξ ¼ 1, the contour line is
just visible in Fig. 5 as a small black semi-circle centered at
x ¼ mð1Þ ¼ 0.53 GeV on the real axis. It gets hardly
visible for ξ < 0.5.
At the same branch point, the imaginary part of FξðsÞ has

a large discontinuous step yielding a change of the whole
imaginary part

δðImΨÞ ≈ ξπAðmÞ ¼ −2.1 · ξ ð47Þ

which is quite larger than ImΨregðmÞ ≈ 0.17 and gives rise
to a sharp change of sign at x ¼ mðξÞ, even when ξ is small,
provided that ξ > 0.08. On the complex plane, the discon-
tinuous step is smeared out and the imaginary part ImΨ
changes sign on a contour line ImΨ ¼ 0 which originates
from the branch point x ¼ mðξÞ, just at the center of the
circle ReΨ ¼ 0. The resulting contour line ImΨ ¼ 0 is
visible in Fig. 5 as a solid red line ending at the center of the
black semicircle. The crossing point of the two contour
lines is the new pole that appears for ξ > 0.08. On the other
hand, if ξ < 0.08, the imaginary part ImΨ changes sign
below x ¼ mðξÞ, out of the circle, the contour lines do not
cross and the extra pole disappears when approaching the
Landau gauge.
By the previous analysis we conclude that the narrow

peak of the spectral function must have a very small width,
roughly given by the distance of the pole from the real axis
r ≈ expð−C=ξÞ, getting smaller and smaller when ξ ≪ 1, as
shown in Fig. 12. Moreover, ImΨ and ρðp2Þ change sign
across the peak and the overall effect of the peak on the
integral, in Eq. (43), is expected to be negligible.
It is likely that the sharp peak of the spectral function and

the gauge dependent pole get smoothed in the exact
propagator since the Nielsen identity, Eq. (25) would
forbid the existence of a pole which depends on the gauge
parameter ξ, unless the Green function GTðpÞ in Eq. (26)
has a pole at the same point. Having traced the source of the
pole and found it related to the logarithmic divergence of
the crossed graphs at p2 ¼ −m2, we cannot exclude that the
same divergence might occur in the ghost sector and in
other Green functions. Thus, in principle, we cannot rule
out that the pole might be genuine, even if probably related
to unphysical degrees of freedom of the ghost sector.

V. DISCUSSION

There is a growing consensus that QCD and Yang-Mills
theory are self-contained theories that dynamically generate
their own infrared cutoff. The numerical simulations on the
lattice have shown that the exact theory generates a
dynamical mass which screens the gluon interaction in
the IR. Therefore, any continuum first-principle study
should reproduce the same results without the aid of any
adjustable parameter, except for the overall energy scale

that must come from the phenomenology. It could be
argued that, because of Gribov ambiguity, in Rξ gauge the
Faddeev-Popov Lagrangian is just an approximation of the
full theory. The approximation works very well in the usual
perturbative approach but could be out of control in the IR
because of nonperturbative effects. A phenomenological
parameter has been introduced by several authors for
locating the Gribov horizon, yielding an interaction-
induced mass scale which screens the theory in the IR
[56–58,67–72]. However, even averaging over Gribov
copies, a dynamical mass is generated in the theory, as
shown by the gauge-fixed lattice calculations in the Landau
gauge. A recent analysis [73] has made clear that the
dynamical mass would be as effective as the Gribov
parameter for screening the theory and that its dynamical
appearance alone would eliminate the problem of Gribov
copies and complete the definition of the theory.
The same argument holds for the massive expansion

which is a screened expansion from the beginning and can
be safely used in the IR. Having changed the expansion
point, the gauge-fixed theory can be studied by plain
perturbation theory and the agreement with the lattice data
shows that, when the expansion is optimized, higher order
graphs are very small and negligible. Thus, ignoring the
Gribov ambiguity does not seem to be a problem as far as
perturbation theory works well. Again, it is a consequence
of the dynamical mass that screens the theory, yielding a
self-contained perturbative description from first principles.
It is not surprising that, without using any adjustable

parameter and without modifying the original gauge-
fixed Lagrangian, the massive expansion predicts the same
pole structure which was found by the refined Gribov-
Zwanziger model [56–58]. The two approaches are very
different but they study the same identical physical system,
so that if both are valid approximations they must reach the
same conclusions. Moreover, our analysis supports the
physical relevance of the principal part: having established
its gauge parameter independence [53], we argue that the
simple rational part ΔPðpÞ might play an important role in
the phenomenology, more than the (small) gauge depen-
dent spectral density. The conclusions of the present work
would be enforced by a comparison with position-space
lattice data, because of their sensitivity to the analytical
structure of the propagator. Unfortunately, at the moment,
for a generic covariant gauge, no such data are available.
An apparent drawback of the massive expansion is that

the BRST invariant action is arbitrarily splitted in two parts
that are not BRST invariant. The Nielsen identities cannot
be satisfied exactly at any finite order of the expansion.
However, because of the spurious dependence of the
approximation on the subtraction point μ=m, the expansion
can be optimized by enforcing the gauge parameter
invariance of the pole structure. Thus, the extension to
Rξ gauge, not only gives new information on the gluon
propagator in a generic gauge, but also provides a unique
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way to fix the optimal expansion even in the Landau gauge.
The good agreement with the available lattice data, which is
reached without any fit of adjustable parameters, increases
our confidence in the general validity of the method as a
first-principle benchmark for more phenomenological
models.
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APPENDIX: ONE-LOOP GRAPHS

In this Appendix, explicit analytical expressions are
derived for the one-loop polarization graphs of Fig. 1.
The graphs are evaluated using the free-particle (gauge-
dependent) propagator of Eq. (14) and inserting the trans-
verse counterterm of Eq. (15) as a new two-point vertex
which is shown as a cross in the figure. We refer to the
graphs with one insertion of the counterterm as crossed
graphs.

1. Graphs Π1b, Π1c, and Π1d (tadpoles)

In the Euclidean space, the constant tadpole Π1b can be
written as

Π1b ¼ −
Ng2ðd − 1Þ2

d

Z
ddk
ð2πÞd

1

k2 þm2
ðA1Þ

having dropped the longitudinal loop which is scaleless and
vanishes in dimensional regularization. Setting d ¼ 4 − ϵ,
in the MS scheme,

Π1b ¼
3

4

ð3Ng2Þ
ð4πÞ2 m2

�
2

ϵ
þ log

μ2

m2
þ C

�
ðA2Þ

where C is a constant which depends on the regularization
scheme.
The crossed graphs do not contain any longitudinal gluon

line since the counterterm δΓ is transverse in Eq. (15). The
graph Π1c can be written as a derivative

Π1c ¼−m2
∂Π1b

∂m2
¼−

3

4

ð3Ng2Þ
ð4πÞ2 m2

�
2

ϵ
þ log

μ2

m2
þC−1

�
:

ðA3Þ

As expected, the diverging terms cancel in the sum
Π1b þ Π1c. The double-crossed tadpole Π1d is finite and
including its symmetry factor it reads

Π1d ¼
1

2
m4

∂2Π1b

∂ðm2Þ2 ¼ −
3

8

ð3Ng2Þ
ð4πÞ2 m2 ðA4Þ

so that the sum of the constant graphs is

Π1b þ Π1c þ Π1d ¼
3

8

ð3Ng2Þ
ð4πÞ2 m2: ðA5Þ

2. Ghost loop Π2a

The ghost loop Π2a is a standard graph and does not
depend on ξ. In the Euclidean space it is given by the
integral [32]

Π2aðpÞ ¼ −
Ng2

ðd − 1Þ
Z

ddk
ð2πÞd

k2⊥
k2ðpþ kÞ2 : ðA6Þ

The integral is straightforward and setting d ¼ 4 − ϵ the
diverging part is

Πϵ
2aðpÞ ¼

ð3Ng2Þ
ð4πÞ2

p2

36

�
2

ϵ
þ log

μ2

m2

�
ðA7Þ

while the finite part reads

Πf
2aðpÞ ¼

ð3Ng2Þ
ð4πÞ2

m2

36
ðC0s − s log sÞ ðA8Þ

where s ¼ p2=m2 and the constant C0 depends on the
regularization scheme.

3. Gluon loop Π2b

The gluon loop Π2b can be written as

Π2bðpÞ ¼ Π0
2bðpÞ þ ξΠξ

2bðpÞ þ ξ2Πξξ
2bðpÞ ðA9Þ

where Π0
2bðpÞ is the graph in the Landau gauge, ξ ¼ 0. In

the Euclidean space, setting d ¼ 4, it reads [32]

Π0
2bðpÞ¼

Ng2

6

Z
d4k
ð2πÞ4

k2⊥F 0ðk;pÞ
ðk2þm2Þ½ðkþpÞ2þm2� ðA10Þ

where k2⊥ ¼ ½k2 − ðk · pÞ2=p2� and the kernel F 0 can be
derived by the explicit expressions of Ref. [32]

F 0ðk; pÞ ¼ 10ðk2 þ p2Þ þ ðkþ pÞ2
k2

þ p4 þ 10p2k2 þ k4

ðkþ pÞ2 :

ðA11Þ

It is useful to decompose it as

F 0ðk; pÞ
12

¼ k2 þ p2

k2
þ p2

ðkþ pÞ2 −
p2k2⊥

3ðkþ pÞ2k2 ðA12Þ

and using the identity
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1

q2ðq2 þm2Þ ¼
1

m2

�
1

q2
−

1

q2 þm2

�
ðA13Þ

the graph can be split as

Π0
2bðpÞ ¼ 2Ng2½IAðpÞ þ 2IBðpÞ þ ICðpÞ� ðA14Þ

where

IAðpÞ ¼
Z

d4k
ð2πÞ4

k2⊥ð1 − 2p2

m2 −
p2k2⊥
3m4 Þ

ðk2 þm2Þ½ðkþ pÞ2 þm2�

IBðpÞ ¼
p2

m2

Z
d4k
ð2πÞ4

k2⊥ð1þ k2⊥
3m2Þ

k2½ðkþ pÞ2 þm2�

ICðpÞ ¼ −
p2

3m4

Z
d4k
ð2πÞ4

k4⊥
k2ðkþ pÞ2 : ðA15Þ

The integrals can be evaluated analytically [40,67,68] by
dimensional regularization for d ¼ 4 − ϵ, yielding a diverg-
ing part

Π0ϵ
2bðpÞ ¼ −

3Ng2

ð4πÞ2
�
m2 −

25

36
p2

��
2

ϵ
þ log

μ2

m2

�
ðA16Þ

and a finite part

Π0f
2b ¼

3Ng2

ð4πÞ2
m2

72

�
2

s
þ C1 þ C2sþ s3 log s

− sLAðsÞ − sLBðsÞ
�

ðA17Þ

where C1, C2 are constants which depend on the regulari-
zation scheme, s ¼ p2=m2 and LA, LB are the logarithmic
functions

LAðsÞ ¼ ðs2 − 20sþ 12Þ
�
4þ s
s

�
3=2

log

 ffiffiffiffiffiffiffiffiffiffiffi
4þ s

p
−

ffiffiffi
s

pffiffiffiffiffiffiffiffiffiffiffi
4þ s

p þ ffiffiffi
s

p
!

LBðsÞ ¼
2ð1þ sÞ3

s3
ðs2 − 10sþ 1Þ logð1þ sÞ: ðA18Þ

The other terms, Πξ
2b and Πξξ

2b, arise by substituting one
and two transverse lines, respectively, with the longitudinal
ones. By the general scheme of Ref. [32], for d ¼ 4, they
follow as

Πξ
2bðpÞ ¼

Ng2

6

Z
d4k
ð2πÞ4

F 0ξðk; pÞ
ðk2 þm2Þðkþ pÞ2

þ Ng2

6

Z
d4k
ð2πÞ4

F ξ0ðk; pÞ
k2½ðkþ pÞ2 þm2� ðA19Þ

Πξξ
2bðpÞ ¼

Ng2

6

Z
d4k
ð2πÞ4

F ξξðk; pÞ
k2ðkþ pÞ2 ðA20Þ

where

F 0ξðk; pÞ ¼ ð3k2 − k2⊥Þðk2 − p2Þ2
k2ðkþ pÞ2

¼ 3ðkþ pÞ2 − ð10p2 þ k2Þk2⊥
ðkþ pÞ2

−
p4k2⊥

k2ðkþ pÞ2 − 12ðp · kÞ;

F ξ0ðk; pÞ ¼ 3k2 þ 12p2 þ 12ðk · pÞ − k2⊥

− k2⊥
�
11p2 þ 2ðk · pÞ

k2
þ p4

ðkþ pÞ2k2
�
;

F ξξðk; pÞ ¼ p4k2⊥
k2ðkþ pÞ2 : ðA21Þ

The quadratic term is trivial since the integral Πξξ
2b is

scaleless and by a dimensional argumentΠξξ
2bðpÞ ¼ const ×

p2. The constant can be absorbed by a finite wave function
renormalization and the term can be ignored.
The two integrals in Eq. (A19) must be the same, as can

be easily seen by substituting k → ð−k − pÞ in Eq. (A21).
Taking twice the explicit expression ofF ξ0, the integral can
be written as

Πξ
2bðpÞ ¼ Ng2½IξAðpÞ þ IξBðpÞ þ IξCðpÞ þ IξDðpÞ� ðA22Þ

where

IξAðpÞ ¼
Z

d4k
ð2πÞ4

1

½ðkþ pÞ2 þm2�

IξBðpÞ ¼
1

3

Z
d4k
ð2πÞ4

12p2 þ 12ðk · pÞ − k2⊥
k2½ðkþ pÞ2 þm2�

IξCðpÞ ¼ −
p4

3m2

Z
d4k
ð2πÞ4

k2⊥
ðk2Þ2ðkþ pÞ2

IξDðpÞ ¼
1

3

Z
d4k
ð2πÞ4

k2⊥½p
4

m2 − 11p2 − 2ðk · pÞ�
ðk2Þ2½ðkþ pÞ2 þm2� ðA23Þ

By dimensional regularization, taking d ¼ 4 − ϵ, the
integrals can be evaluated analytically in the MS scheme.
The first integral is the same occurring in Eq. (A2)

IξAðpÞ ¼ −
m2

ð4πÞ2
�
2

ϵ
þ log

μ2

m2
þ CA

�
ðA24Þ

The other integrals are

IξBðpÞ¼
2m2

ð4πÞ2
��

2

ϵ
þ log

μ2

m2

��
25

24
sþ1

8

�
þCBsþC0

B

þ24sð1−s2Þ−ð1þsÞ3
24s2

logð1þsÞþ 1

24s

�
ðA25Þ
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IξCðpÞ ¼ −
m2s2

4ð4πÞ2
��

2

ϵ
þ log

μ2

m2
þ CC

�
− log s

�
ðA26Þ

IξDðpÞ¼
m2s2

4ð4πÞ2
��

2

ϵ
þ log

μ2

m2
þCC

�
þð1−s2Þ

s2
logð1þsÞ

�

þ m2

12ð4πÞ2
�
−31s

�
2

ϵ
þ log

μ2

m2
þCD

�
þC0

D

þð1þsÞð31s2−31sþ4Þ
s2

logð1þsÞ−4

s

�
ðA27Þ

where all constants CX, C0
X depend on the regularization

scheme. In Eq. (A27), the first two lines arise from the p4

term of IξDðpÞ and the diverging term cancels the corre-
sponding divergence of IξCðpÞ in Eq. (A26).
Adding up the different integrals we obtain a diverg-

ing part

Πξϵ
2bðpÞ ¼ −

Ng2

4ð4πÞ2 ð3m
2 þ 2p2Þ

�
2

ϵ
þ log

μ2

m2

�
ðA28Þ

and a finite part

Πξf
2b ¼

Ng2

ð4πÞ2
m2

4

�ð1þ sÞð1−sÞ3
s2

logð1þ sÞþ s2 logs−
1

s

�
ðA29Þ

where we have omitted the irrelevant constants.
Finally, the gluon loop has the following structure

Π2b ¼
�
Π0ϵ

2b þ ξΠξϵ
2b

�
þ
�
Π0f

2b þ ξΠξf
2b

�
: ðA30Þ

4. Standard one-loop graphs

The standard one-loop result of perturbation theory does
not contain any contribution from the crossed graphs. In a
generic linear covariant gauge, the standard one-loop
polarization Π1ðpÞ is obtained as the sum

Π1ðpÞ ¼ Π1b þ Π2aðpÞ þ Π2bðpÞ ðA31Þ

and summing up the explicit expressions reported above,
we find a diverging part

Πϵ
1ðpÞ¼

Ng2

ð4πÞ2
�
2

ϵ
þ log

μ2

m2

��
p2

�
13

6
−
ξ

2

�
−
3

4
m2ð1þ ξÞ

�
ðA32Þ

and a finite part

Πf
1ðpÞ¼−

Ng2

4!ð4πÞ2p
2

�
Cpþ

1

s
½CmþfðsÞþξfξðsÞ�

�
ðA33Þ

where

fðsÞ ¼ s½LAðsÞ þ LBðsÞ þ ð2 − s2Þ log s − 2s−2�

fξðsÞ ¼ 6

�
s−1 − s2 log s −

ð1þ sÞð1 − sÞ3
s2

logð1þ sÞ
�
:

ðA34Þ

In the limit m → 0 the diverging part in Eq. (A32) agrees
with the well known result of perturbation theory [60]. In
the limit ξ → 0 the finite part in Eq. (A33) gives the known
result in the Landau gauge [67,68]. The constants Cm and
Cp are arbitrary since they depend on the regularization
scheme and on the arbitrary energy scale μ in Eq. (A32). In
the standard perturbation theory, they are the finite parts
resulting from the cancellation of the divergences by mass
and wave function renormalization, respectively. In pure
Yang-Mills theory, there is no mass term in the original
Lagrangian and no mass renormalization for the cancella-
tion. However, all constant mass terms cancel exactly by
inclusion of the crossed graphs.

5. Total polarization (including the crossed graphs)

All crossed graphs, containing one insertion of the trans-
verse mass counterterm, can be added to the total one-loop
polarization by a simple derivative, as discussed above, for
the tadpole. The sum of all graphs in Fig. 1 follows as

ΠtotðpÞ ¼
�
1 −m2

∂
∂m2

�
Π1ðpÞ þ Π1d: ðA35Þ

Using the identity�
1 −m2

∂
∂m2

�
¼
�
1þ s

∂
∂s
�

ðA36Þ

and adding up the terms, we obtain a total diverging part

Πϵ
totðpÞ ¼

Ng2

ð4πÞ2
�
2

ϵ
þ log

μ2

m2

�
p2

�
13

6
−
ξ

2

�
ðA37Þ

and a total finite part

Πf
totðpÞ ¼ −3

Ng2

ð4πÞ2 p
2

�
1

s

�
5

8
þ ξ

4

�

þ 1

3 · 4!
½f0ðsÞ þ ξf0ξðsÞ� þ const

�
ðA38Þ

where f0ðsÞ and f0ξðsÞ are the derivatives of the functions
fðsÞ and fξðsÞ, respectively.
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Finally, inserting the polarization in Eq. (19) and cancel-
ing the divergence by the usual wave function renormaliza-
tion, the renormalized dressed propagator reads

ΔðpÞ ¼ Z
p2½FðsÞ þ ξFξðsÞ þ F0�

ðA39Þ

where Z is an arbitrary finite renormalization factor, F0 is a
finite additive constant and the adimensional functionsF,Fξ

do not depend on any parameter and are defined as

FðsÞ ¼ 5

8s
þ 1

3 · 4!
f0ðsÞ

FξðsÞ ¼
1

4s
þ 1

3 · 4!
f0ξðsÞ: ðA40Þ

Their explicit expressions follow by the simple derivative
of Eq. (A34). The function FðxÞ was first derived in
Refs. [39,40] and it reads

FðxÞ ¼ 5

8x
þ 1

72
½La þ Lb þ Lc þ Ra þ Rb þ Rc� ðA41Þ

where the logarithmic functions Lx are

LaðxÞ ¼
3x3 − 34x2 − 28x − 24

x

×

ffiffiffiffiffiffiffiffiffiffiffi
4þ x
x

r
log

� ffiffiffiffiffiffiffiffiffiffiffi
4þ x

p
−

ffiffiffi
x

pffiffiffiffiffiffiffiffiffiffiffi
4þ x

p þ ffiffiffi
x

p
�

LbðxÞ ¼
2ð1þ xÞ2

x3
ð3x3 − 20x2 þ 11x − 2Þ logð1þ xÞ

LcðxÞ ¼ ð2 − 3x2Þ logðxÞ ðA42Þ

and the rational parts Rx are

RaðxÞ ¼ −
4þ x
x

ðx2 − 20xþ 12Þ

RbðxÞ ¼
2ð1þ xÞ2

x2
ðx2 − 10xþ 1Þ

RcðxÞ ¼
2

x2
þ 2 − x2: ðA43Þ

The explicit expression of FξðxÞ is

FξðxÞ ¼
1

4x
−

1

12

�
2x log x −

2ð1 − xÞð1 − x3Þ
x3

logð1þ xÞ

þ 3x2 − 3xþ 2

x2

�
ðA44Þ

and has the leading behavior in the limit x → 0

FξðxÞ ¼
1

4x
−
1

9
−
x
6
log xþOðxÞ: ðA45Þ

In the same IR limit, the transverse propagator is finite

Δð0Þ ¼ Z
M2

ξ

ðA46Þ

and the mass parameter M2
ξ is defined as

M2
ξ ¼

5m2

8

�
1þ 2

5
ξ

�
: ðA47Þ

In the limit x → ∞, the asymptotic UV behavior is

FξðxÞ ∼ −
1

6
log x

FðxÞ ∼ 13

18
log x ðA48Þ

and by Eqs. (A38), (A39), the standard one-loop behavior
is recovered in the UV for the total polarization and the
dressed propagator

Πf
totðpÞ ∼ −

Ng2

ð4πÞ2 p
2

�
13

6
−
ξ

2

�
log

p2

μ2

Z
ΔðpÞ ∼ p2

�
13

6
−
ξ

2

�
log

p2

μ2
: ðA49Þ

The discussion on gauge invariance requires the deriv-
atives of the functions FðxÞ and FξðxÞ. The derivative of
FðxÞ reads

F0ðxÞ ¼ −
5

8x2
þ 1

72
½L0

a þ L0
b þ L0

c þ RðxÞ� ðA50Þ

where the logarithmic functions L0
x, for x ¼ a, b, c, are

L0
aðxÞ¼

6x4−16x3−68x2þ80xþ144

x2ðxþ4Þ

×

ffiffiffiffiffiffiffiffiffiffi
4þx
x

r
log

� ffiffiffiffiffiffiffiffiffiffi
4þx

p
−

ffiffiffi
x

pffiffiffiffiffiffiffiffiffiffi
4þx

p þ ffiffiffi
x

p
�

L0
bðxÞ¼

4ð1þxÞ
x4

ð3x4−10x3þ10x2−10xþ3Þ logð1þxÞ
L0
cðxÞ¼−6x logx ðA51Þ

and RðxÞ is the sum of all the rational terms coming out
from the derivatives

RðxÞ ¼ 12

x
þ 106

x2
−
12

x3
: ðA52Þ

The derivative of FξðxÞ reads

F0
ξðxÞ ¼

x4 þ 2x − 3

6x4
logð1þ xÞ − 1

6
log x

þ ð1 − xÞð1 − x3Þ
6x3ð1þ xÞ þ 1

3x3
−

1

2x2
−
1

6
: ðA53Þ
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