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ABSTRACT
Cesium radioactive isotopes (134Cs and 137Cs) are dangerous to human health due to their long half-
life and high solubility in water. Nuclear experiments, wars, and nuclear plant accidents have been
the main sources of Cs release into the environment. In recent years, several methods have been
introduced for the elimination of Cs radioactive isotopes from contaminated water. This study
provides an overview of the available published articles (2008–2016) regarding the remediation of
waters polluted by Cs isotopes. The maximum adsorption capacity (MAC) of Cs isotopes
corresponded to natural chabazite (273.24 mg Cs/g adsorbent), hollow Prussian blue (PB)
nanoparticles (262 mg Cs/g adsorbent), and Prussian blue implemented non-woven fabric (260 mg
Cs/g adsorbent). Using natural chabazite and PB adsorbents, along with another adsorbent (PB
graphene oxide hydrogel), Cs radioactive isotopes can be effectively removed from the aqueous
solutions.
Keywords: Cesium, Isotopes, Sorption, Biosorbents, Drinking Water, Radioactive Material

Introduction
In recent decades, radioactive material

toxicity has attracted significant attention
worldwide. In the recent earthquake in Japan, on
March 11, 2011, large amounts of Cesium-134
(134Cs) and Cesium-137 (137Cs) radioactive
materials (630,000–770,000 TBq) were
discharged into the water, air, and soil.1,2 137Cs
is the most abundant radionuclide and has
devastating effects on the environment due to
its high water solubility and long half-life.3
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Furthermore, 137Cs is a source of beta emission;
therefore, it is called “heat generator”.4 The
chemical behavior of 137Cs is similar to sodium
and potassium; hence, it can be deposited in the
soft tissues of aquatic and terrestrial
organisms.5 In the human body, 137Cs can cause
impairment of the reproductive system, liver,
kidneys, and central nervous system, as well as
cause behavioral disorders.6 Several techniques
have been used to remove 137Cs from aqueous
solutions including precipitation,7 extraction,8
ion exchange,9 bioaccumulatio,10 and
adsorption process.11,12,13,14

When we use the conventional water
treatment methods, such as coagulation–
sedimentation and sand filtration (10%–40%
efficiency), removal of 137Cs from the
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contaminated water is difficult.15 Significant
efforts have been made to remove 137Cs from the
aqueous solution.15 Adsorbents including
zeolites, crystalline silicotitanate, aluminum
molybdophosphate, metal-ferricyanide,
ferricyanide, and ammonium 12-
molybdophosphate (AMP) have been tested for
the removal of 137Cs from waters.16 Natural
absorbents have low efficiency in removing
137Cs from water, although, expensive synthetic
absorbents show high efficiency.17 Prussian
blue (PB)-based adsorbents are efficient 137Cs
scavengers because the Fe7(CN)18 matrix has a
crystal cage size similar to the hydration radius
of Cs ions.17,18 The efficiency of adsorbents in
removing Cs depends on the chemical structure
of the adsorbents, pH, temperature, and so on.19

The main objective of this study was to provide
information on the current innovations about the
removal of 137Cs from aqueous solutions using
adsorbent process.

Materials and Methods
Literature search

A The search of the available studies and
their analysis was carried out by three
investigators (Ya.F, Me.A, and Ya.Z). Almost
all the studies regarding the Cs removal from
water solutions werescreened ininternational
and national databases. The international
databases searched were Web of Science,
PubMed, Scopus, ScienceDirect, and Google
Scholar.

The keywords used were cesium, cesium,
aqueous solutions, water, wastewater and its
removal, treatment, radioactive, and radioactive
liquid waste. The data published from January
2008 to October 2016in the English language
databases was collected. We also searched the
bibliographies of retrieved articles for additional
references. The literature search was based on
PRISMA guideline (Fig. 1).20

Inclusion and exclusion criteria
Original articles were included if they

satisfied all the following criteria: (1) is an
original article; (2) is a laboratory study about
the removal of Cs from aqueous solutions by the
adsorption process; (3) is written in the English

language; (4) was published online between
January 2008 to October 2016; (5) full-text
article is available.

Data extraction and definitions
The following variables were extracted

from the included studies: adsorbent and
maximum adsorption capacity (Table 1).
Inconsistencies between the reviewers were
discussed to obtain consensus through a focus
group. The references of the selected articles
were checked to identify all articles not found in
the databases.

Results and Discution
Four hundred ninety-one articles were

reviewed separately by three investigators.
Forty-two articles (73 studies) were selected for
the final review. The release of radionuclides
such as Cs, radium isotopes (226Ra and 228Ra),
radon 222 (222Rn), and thoron (Tn) into the
environment, particularly into drinking water
sources, can threaten human health.21,22,23,24 The
maximum acceptable level of uranium (U) in
drinking water is 30 μg/L, 228Ra and 226Ra
combined is 5 PCi/L, the activity of alpha
particles is 15 PCi/L, and that of beta particles
and photons is 4 mrem/year.25 With the release
of beta particles, radio Cs is converted to 134Cs
(half-life of 2 years) and 137Cs (half-life of 2.5
years).25

Fig. 1. Selection process of articles on the remove Cs
from aqueous solutions by adsorption process

After 10 days of the Fukushima nuclear
accident, Tokyo's drinking water was
contaminated with Iodine-131(131I), and two
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years later, traces of Cs radionuclides were still
detectable in many of the Japanese cities.26 Even
at low levels, Cs radionuclides in drinking water
could be harmful because they can accumulate
in the human body.27,28 In the conventional
water treatment plants, raw water that entered
into a grain pond after its passage through coarse
and fine dirt was stuck in the first place. Then,
coagulants such as alum, ferric chloride, and
ferric sulfate were added to the water. The
formed flocs then settled in the sedimentation
basin. The floc deposits were then collected
from the bottom of the pond. Finally, the water
was passed through slow or fast sand filters, so
the tiny particles could be removed. Passing of
water through sand filters made it clear. The
water was then disinfected using chlorination
units before it entered the water distribution
system.29 In the study by Morton et al. the
average removal of Cs by the Jar test was 5%.30

Gäfvert et al. reported that the removal of Cs
was low in large wastewater treatment plants, in
which alum and ferric sulfate were used as
coagulants (110000 m3/d). They reported that
the low turbidity in the Lake Bolmen water
source was the main cause of decreased
efficiency in Cs removal because the adsorption
of Cs on the particles was reduced.31 Goossens
et al. suggested that adding alum sulfate as a
coagulant, together with activated carbon and
activated silica, to the sand filters removed 31%
and 25% of the coagulation, respectively, in the
filtration units.32 Baeza et al. used ferric sulfate
and ferric chloride as natural water coagulants
and studied the radionuclide removal efficiency
in the coagulation and flocculation process. The
results showed that the efficiency of Cs removal
was low (5.2%). The reason for the low
efficiency of Cs removal was that the Cs was in
a water-soluble form; therefore, coagulation was
ineffective in the removal of Cs.33 Kosaka et al.
investigated the concentrations of 131I, 134I,
134Cs, and 137Cs in five water treatment plants in
Japan, and concluded that 131I treatment was not
successful by the coagulation–sedimentation
process, but 30%–40% of it was removed
by adsorption on activated carbon.
Radioactive Cs attached to the particles was

effectively removed by the coagulation and
flocculation process, but the Cs ions (solution
form) were not eliminated.34 Brown et al.
suggested that if the Cs was in a particle-bonded
form, it was removed by the coagulation and
flocculation process, in the range of 10%–40%,
but if it was in a solution form, minimum
removal efficiency was achieved.35

Cs adsorption processes
Different biosorbent shave been used for

the Cs removal including hollow PB
nanoparticles, bentonite, mesoporous hybrid
adsorbent, vermiculite modification by
ethylamine, montmorillonite-iron oxide
composite, and NaOH-treated moss (Table 1).14

Since the adsorption process is more efficient
and less expensive for Cs removal, extensive
studies on Cs removal by a variety of surface
absorbents have been carried out worldwide.
These studies examined the adsorption at low
cost.14 Many extracellular polymeric substances
are often present in a cell mass, which increase
the affinity of Cs to absorb.36 In the study by
Borai et al., it was shown that natural mordenite
had more adsorption capacity for 134Cs from
liquid waste than natural clinoptilolite (NaNCl),
natural chabazite (NaNCh), and synthetic
mordenite (NaSM) (Table 1).37

The radius of a bare Cs ion is 3.40 Å and is,
therefore, easily accommodated by the large
(smallest diameter 6.5 Å) 12-ring cavities in
their mordenitestructure.37,83 Brown et al.
showed that the use of activated carbon and
zeolite removes 0%–10% and 40%–70% of Cs
from water, respectively. The turbidity removal
capacity increases with an increase in
turbidity.35 Liang et al. suggest that the
adsorption of Cs and strontium (Sr) from water
by mordenite is mostly done by the
mechanism of ion exchange.84 Ion exchange
also increases radionuclide adsorption.84 Dyer et
al. showed that use of pillared inter-layer
clays (with high-level and high-ion exchange
capacity) increased the affinity of Cs to
absorption in comparison with calcium,
potassium, ammonium, sodium, and
magnesium.85
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Table 1. Recent studies for Cs adsorbents considering
maximum adsorption

Li et al. used vermiculite for adsorption of
sodium from the water. Cs removal efficiency of
98% was achieved in 5 hours (1.5 µg/g).86 The
results of our study also showed that the
presence of sodium, calcium, and ammonium
ions reduced the uptake of Cs radionuclides. The
first study of Kim et al. suggested that Yesan
clay and zeolite removed 1.865 and 9.055 μg/g
of Cs from the water, respectively.87 In the
second study of Kim et al., sericite was used to
remove Cs from water, and the maximum value
of adsorption was 6.68 µg/g.73 Ding et al. used
walnut shell integrated with nickel
hexacyanoferrate to absorb Cs from the
aqueous solution. The amount of Cs and
Nickel hexacyanoferrate integrated Cs
(NiHCF-WS) adsorption was 0.1 mg/g and
0.5 mg/g, respectively. HCF-WS could
absorb Cs effectively through a spontaneous

Adsorbent
Maximum
adsorption capacity
(mg Cs/g adsorbent)

Ref

Natural chabazite 273.24 37
Hollow prussian blue nanoparticles 262 38

Pb implemented non-woven fabric 260 39

Natural mordenite 254.76 37

Prussian blue (pb) granules 241 39

Novel magnetic zeolite nanocomposite 229.3 40

Synthetic mordenite 220.44 37
Phosphoric acid activated
montmorillonite 208 41

Bentonite 176.09 42

Natural clinoptilolite 167.64 37

Prussian blue caged in spongiform 167 167 43

Prussian blue graphene oxide 164.5 13

Kznhcf-pan 161 44
Mucilaginous seeds of
ocimumbasilicum 160 45

Prussian blue alone 158 158 43

Pan-knicf 157.7 46

Cs-g-bentonite 153.65 47
Prussian blue caged in
alginate/calcium beads 142.85 48

Reinforced with carbon nanotubes 131.57 48

Prussian blue caged in
alginate/calcium beads

120.9 49

Clinoptilolite 118.00 50

Titanium phosphates 114.9 51

Ferrite 97.63 52

Mesoporous hybrid adsorbent (mha) 96 17

Pb-coated mnpnano-sorbents 91.8 53

Ammonium molybdophosphate–
calcium alginate composite adsorbent

87.72 54

Copper ferrocyanide is fixed organic
silica

86.28 52

Hybrid adsorbent 81.3 55

Ammonium molybdophosphate–
Polyacrylonitrile

78.17 42

Vermiculite modification by 77.70 56

Ethylamine 72.6 44

Conjugate adsorbent 68.49 51

Potassium metal hexacyanoferrate -
pan

56.92 42

Magnetite 56.00 57

Ethylamine 55.32 58

Prussian blue (pb) impregnated in
alginate gel (Ag)

53.2 8

Coconut shell activated carbon 53.00 57

Prussian blue analogues
CO3[FE(CN)6]2 H2O (COFC)

52.6 59

Prussian blue (pb) 50.16 8

Montmorillonite-iron oxide composite
(Mioc)

43.96 47

CO3[FE(CN)6]2.H2O (COFC) 39.6 60

Cnts 37.8 61

Taiwan laterite 37.63 62

Synthetic a-x zeolite blend 29.33 63

Sm-amp20 29.3 38

Taiwan laterite 37.63 62

Synthetic a-x zeolite blend 29.33 63

Taiwan laterite 37.63 62

Synthetic a-x zeolite blend 29.33 63

Sm-amp20 29.3 38

Copper ferrocyanide (cufc) 17.16 8

Commercial pb particles 17.1 64

Cofc-silica-py 17 65
Copper ferrocyanide functionalized
mesoporous silica ) (seawater, ph 7.7) 16.58 66

Naoh treated moss 16.2 67

Nickel hexacyanoferrate 15.15 68
Prussian-blue-modified magnetite (pb–
fe3o4) 12.75 69

Clinoptilolite 12.5 64

Oxidized multiwall carbon nanotubes 10.56 70
Iron(iii) hexacyanoferrate (ii) (insoluble

prussian blue) 10.56 71

Crushed granite 10.1 70

Carbonized rice hull 7.3 72

Brewery’s waste biomass 6.68 73
Copper hexacyanoferrate–polyacrylonitrile
composite (chcf–pan) 6 74

Sericite 5.5 75

Moos 5.43 75

Copper ferrocyanide 5.34 75
Iron pillared layered montmorillonite (fe-
pilm) 5.28 59

Their mixture (fe-pilm;α-feooh) 4.94 76

Cofc/glass-py 4.31 77
Nickel (ii) hexacyanoferrate (iii)  residue-
walnut shell (niiihcfiii-ws) 4.04 78

Ainoussera 4 79

Zirconium tungstate 3.96 71

Kaolin 3.93 80

Sawdust (beech) 3.05 81
Pre-treated arca shell biomass 1.32 82
Goethite (α-feooh) 0.1 76
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endothermic process.76

Ararem et al. showed that montmorillonite-
iron oxide composite had a maximum Cs
adsorption of 52.6 mg/g in aqueous solution.59

Long et al. compared Cs adsorption by
ethylamine-modified montmorillonite (Ethyl-
MT) and calcium-saturated montmorillonite
(Ca-Mt). The results showed that Ethyl-MT had
a greater Cs removal efficiency because of a
higher absorption capacity and also greater
surface.88 Bayulken et al. investigated Cs
adsorption by Turkish clay (bentonite, zeolite,
sepiolite, and kaolinite). The results showed
that bentonite and zeolite had greater adsorption
capacity than sepiolite and kaolinite.89 Du et al.
used the spherical PAN-based potassium nickel
hexacyanoferrate for Cs adsorption. The results
showed that Cs had a greater binding affinity
than sodium, magnesium, calcium, potassium,
and ammonium ions.46 Chitrakar et al. showed
that manganese oxide layered in pH = 2–4 and
pH = 10 removed 172 mg/g and 132 mg/g of Cs
from the water, respectively.90 Dahiya et al.
studied the adsorption of lead, copper, cobalt,
and Cs from water and concluded that the
maximum level of absorption for Cs was 3.93 ±
0.11 mg/g.80 During the first study by Krishna et
al., Funariahygrometrica biosorbentswere used
to remove 137Cs and 90Sr. The study showed that
Cs was removed from the aqueous solution in
the capacity of 38 mg/g. The –COO group is
also responsible for the radionuclide absorption.
In the second study by Krishna et al.,
Funariahygrometrica was mixed with
polysilicates and used to remove 137Cs and
90Sr.65 At pH 5–10 and 30-minute contact time,
the absorption level was 15 mg/g. A number of
studies showed undesirable adsorption. For
example, during a study on Cs removal by
coconut shell–activated carbon, Caccin et al.
showed that activated carbon has a low
absorption capacity.58 Suzuki et al. used
vermiculite for Cs absorption, which did not
have adequate absorption in artificial
seawater.91 Long et al. increased the
vermiculite’s specific surface area and porosity
for Cs removal by ethylamine. The specific
surface area increased from 4.35 to 15.59 m2/g.
Also, the average hole diameter decreased from

5.34 to 6.8 nm. The rate of increase of Cs
aqueous solution absorption rose from 56.92 to
78.17 mg/g after the vermiculite was modified.
The structure of the holes and the specific
surface had an important role in Cs adsorption.
The presence of cations (Ca2+ > K+ > Na+) and
organic molecules with low molecular weight
prevented the adsorption of Cs.42 Based on the
above studies, use of absorbents, except
vermiculite, did not have a good efficiency in Cs
removal. Alkaline compounds could also
compete with Cs in water adsorption. Among
the Cs special absorbents, competition between
Cs and alkaline compounds was less, and Cs
was absorbed on a priority. Therefore, Cs
special absorbents such as old dye and PB were
used.

Removal of Cesium by Prussian blue
PB was demonstrated as an efficient Cs

scavenger because Fe7(CN)18 had a crystal cage
size similar to the hydration radius of a Cs ion.
Therefore, a separate section is devoted to PB.
PB is a lattice structure with eight molecules of
water. It was used for adsorption of Cs from the
victims’ bodies after the Chernobyl incident in
1987. On account of the high affinity of Cs to
PB, it was used for water decontamination. The
affinity of the cations to the PB absorbent was
dependent on the hydration radius. The smaller
the cation’s hydration radius was, the more
affinity to PB it had. Cesium’s hydration radius
(3.25 Å) was less than that of potassium (3.3 Å),
sodium (3.6 Å), calcium (4.1 Å), and
magnesium (4.25 Å). During multiple studies,
the PB nanoparticles were altered using
different methods. For example, Hara et al.
made a thin layer of film by alkyl ligand-
covered PB nanoparticles in organic solutions.92

Glass and silica-based matrix nanocomposites
along with PB nanoparticles have a 10 times
greater rate of adsorption and three times higher
capacity for adsorption than large PB particles.
Torad et al. suggested that PB nanoparticles
with a level of 330 m2/g had more Cs ion-
removal efficiency than commercial PB.38

Omura et al. covered the nanoparticles of PB
with ferricyanide anions. The small size of the
PB nanoparticles caused an increase in the
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surface-to-volume ratio followed by an increase
in Cs uptake.93 Sasaki et al. used PB altered by
magnetite (PB-Fe3O4) to remove Cs from the
water. The maximum level of Cs adsorption was
16.2 mg/g.94 Ishizaki et al. created PB
nanoparticles (Fe4(Fe(CN)6)3 with several
hydrophilic sites. Cs was adsorbed in great
amounts by the proton removal reaction from
this site.18 The stoichiometric ratio of Fe:Cs in
the PB particles and PB nanoparticles was,
respectively, 8:1 and 1:1; therefore, the use of
PB nanoparticles increased the Cs removal
efficiency by a great number.11 Thammawong et
al. used magnetic nanoparticles (MNP)
connected to PB to remove Cs.17

Magnetic particles are used to absorb Cs
from a body. This compound has a high
absorption capacity (96 mg Cs/g sorbent) and
high distribution coefficient (3.2 × 104 ml/g) at
0.5 ppm Cs.17 Despite the high efficiency of
MNP in the removal of Cs, retrieving it from tap
water, unlike magnetic particles, is not easy.
Namiki et al. have used Prussian blueberry (PB-
coated magnetic nanoparticles) to remove Cs
from seawater.1 The results show that Prussian
blueberry (5 mg) decreases the Cs concentration
from 150 ppm to 5 ppm. Also, on a large-scale,
use of Prussian blueberry for 5 minutes reduces
Cs concentration to 35%–35.6%.1 Jang et al.
have investigated the removal of Cs from
aqueous solutions by PB graphene oxide
hydrogel encapsulated within a PVA-alginate,
in a fixed-bed column. PB nanoparticles were
attached to the graphene oxide layers. The effect
of pH on Cs removal (1 mmol concentration,
flow of 0.83 ml/min, and 5 cm height) increased
from 1 to 7, and the absorber reached a
saturation point in less time. As PB dissolves in
hydrogel in acidic environments, Cs absorption
increases.13 However, in an alkaline
environment, Cs adsorption is reduced due to
the formation of strong links between ferric ions
and hydroxyl ions, which make band Fe-CN-Fe
in PB (pH 7–9).95 The initial increase of Cs
concentration from 1 to 5 mmol and an increase
in bed height from 5 to 20 cm increased the
adsorption from 141.6 to 163.1 mg/g. Also, with
the increase of the sorbent’s particle size from 2
to 5 mm, the absorption capacity decreased from

161.6 to 130.96 mg/g. In a neutral pH flow rate,
the bed height increased by reducing the initial
concentration of Cs as well as the absorption
efficiency.13 The presence of PB components in
tap water, such as binding polyvinyl alcohol and
alginate, can endanger human health.96 Chen et
al. investigated the removal of the remaining Cs
components and PB from the aqueous solution
by PB and ion exchange. Two scenarios were
performed. In the first one, the effect of ion
exchange granules on PB was studied, and in the
second, the ion exchange column, along with
PB, in a large-scale water treatment plant were
studied. The results showed that both methods
could completely remove Cs (98% efficiency in
a contact time of 50 seconds, and in 150-second
contact time, there was lower than 0.01 μg/l
limit of detection) and the remaining
components of PB, such as ferricyanide ions and
total cyanide.97 The high solubility of Cs and its
low surface charge had decreased its removal by
the adsorbents via hydrophobic interaction or
electrostatic interaction mechanisms.98

Conclusion
This study aimed to review the adsorption

process for removal of Cs from water and
aqueous solutions. The results showed that
conventional water treatment methods could not
efficiently remove Cs. The highest MAC of Cs
was related to natural chabazite (273.24 mg Cs/g
adsorbent), hollow PB nanoparticles (262 mg
Cs/g adsorbent), PB-implemented non-woven
fabric (260 mg Cs/g adsorbent), natural
mordenite (254.7 mg Cs/g adsorbent), and PB
granules (241mg Cs/g adsorbent). The
minimum MAC of Cs was related to crushed
granite (1.32 mg Cs/g adsorbent) and walnut
shell (0.1mg Cs/g adsorbent). Several studies
showed a high affinity of PB for Cs adsorption
from aqueous solutions. On account of its high
absorption capacity, natural chabazite should be
paid more attention in the future research. It
must be noted that the presence of absorbent
residues in water is the most important health
problem and must be taken into consideration in
future studies.
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