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Abstract. – OBJECTIVE: The purpose of this 
study is to evaluate the haemodynamic and respira-
tory effects of dexmedetomidine vs. propofol in pa-
tients with OSAHS during the drug-induced sleep 
endoscopy (DISE), and analyze simultaneously the 
electromyography of genioglossus muscle.

PATIENTS AND METHODS: We conducted a 
study on 50 patients with OSAHS; patients were 
subjected to DISE with simultaneous polygraph-
ic cardiorespiratory measurement and electro-
myography of genioglossus muscle. Patients 
undergoing DISE were divided in two groups: in 
Group A (19 M; 8 W) was administered propofol 
TCI and in Group B (16 M; 7 W) was administered 
dexmedetomidine TCI.  

RESULTS: In Group A, a mean minimal SpO2 
decreasing of 3.7% (p=0.000) and a mean SpO2 
decreasing of 1.6% (p 0.001) was noticed, while 
there was an increase in BP20 of 14.8% (p=0.000) 
and HR20 of 11.1% (p=0.000). In Group B, it was 
showed a decreasing of mean minimal SpO2 and 
mean SpO2 values, about 1.8% (p=0.000) and 1.1% 
(p 0.009) respectively, while there was an increase 
of BP20 and HR20, about 8.7% (p=0.000) and 8% (p 
0.002), respectively. Despite EMG activity compar-
ing spontaneous sleep with propofol-DISE, there is 
a statistically significative change for the amplitude 
(p=0.040) and an increase of 7.01% for the area 
under the curve (AUC). Comparing spontaneous 
sleep with dexmedetomidine-DISE induced one, 
there is only an increase of 25.87% in the AUC.

CONCLUSIONS: A greater worsening of the car-
dio-respiratory basal values was noted after sleep 
induction with Propofol and same results were 
obtained confronting EMG of genioglossus mus-
cle data.
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Introduction 

Obstructive Sleep Apnea Hypopnea Syndrome 
(OSAHS) is a common Sleep-Disordered Breath-
ing (SDB) disease characterized by upper airway 
constriction and collapse during sleep. It presents 
intermittent hypoxia with resulting growth of reac-
tive oxygen species/reactive nitrogen species and 
oxidative stress, which adversely affect the asso-
ciated cardio/cerebrovascular disease in OSAHS1-5. 
The underlying causes of OSAHS vary among 
patients6,7. However, anatomically narrow and/
or collapsible upper airways are the predominant 
causes of OSAHS6,8. Its etiology is multifactorial, 
resulting from the interdependence of structurally 
vulnerable upper airway anatomy interacting with 
physiologic mechanism of ventilator instability 
during sleep. This inability to maintain the patency 
of the upper airway is attributable to the combina-
tion of sleep-related loss, also due to compensato-
ry dilator muscle activity, and aerodynamic forces 
that can lead to closure9. These forces, resulting 
from the circulation of inspiratory airflow10 in an-
atomically predisposed airways, generate negative 
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intraluminal pressure and play an important role 
in the pathogenesis of OSAHS. Best muscles to 
study the upper airways are genioglossus muscles; 
they are a pair of fanshaped muscles found on ei-
ther side of the tongue’s midline extending from 
the mandible backward and upwardand and their 
function is to dilate the airway pharingeal ex-
erting a forward propulsion to the tongue. They 
follow a pattern of ElectroMyoGraphy activity of 
GenioGlossus muscle (EMGGG), which is typi-
cally part of the inspiratory phase. In obstructive 
sleep apnea, is prominent the evaluation of upper 
airway obstruction to reach site-specific treat-
ment. Drug-Induced Sleep Endoscopy (DISE) 
is a diagnostic technique with which sleep is in-
duced pharmacologically and the upper airways 
is evaluated by nasal endoscopy11-14. It is the only 
exam that allows a three-dimensional and dynam-
ic visualization of the site responsible for vibra-
tion and/or obstruction during apnea, hypopnea, 
flow limitation or snoring15. One of the import-
ant questions to answer is understanding which 
sedative drug used during the DISE is better to 
minimize the negative effects on breathing and 
muscle activity. Over the years, various sedatives 
were used to induce pharmacologically sleepi-
ness such as: Propofol, Midazolam and Dexme-
detomidine16. Midazolam used alone has been a 
while abandoned due to some disadvantages such 
as more difficulty to handle consequences in case 
of overdosing and longer hospital stay17. Propofol 
and Dexmedetomidine are two drugs proposed as 
alternatives. Both of them have shorter half-lives 
and reduced respiratory depression18-21. Propofol, 
with the development of Target-Controlled Infu-
sion (TCI) technology, has increased the number 
of indications in clinical practice. Propofol-based 
TCI allows for the accurate control of sedation 
during DISE and results in an authentic repro-
duction of the sleep process22-24, but large use of 
Propofol can depress the hypoxic ventilatory re-
sponse during conscious sedation20,21,25.

Dexmedetomidine, on the other hand, is a 
short-acting, highly potent, highly selective 
α2-adrenergic receptor agonist with unique prop-
erties of sedation and analgesia. The sedation 
induced by Dexmedetomidine parallels natural 
sleep and does not induce significant respiratory 
depression20,21,26. In this study, we aim to com-
pare the sedatives, haemodynamic and respira-
tory effects of Dexmedetomidine vs. Propofol 
in patients with OSAHS during the DISE, and 
analyze simultaneously the genioglossus muscle 
activity through the ElectroMyoGraphy (EMG).

Patients and Methods

Patient Selection
Our study was conducted on 50 patients (35 

men; 15 women) in American Society of Anesthe-
siologists (ASA) status I-II, aged between 40-65 
years old (mean age: 52.48 SD 6.78; 48 1.5 in men 
and 55.23 1.3 in women) and mean Body Mass 
Index (BMI) 27.87 0.57 kg/m2. We have consid-
ered OSAHS diagnosed by polygraphic cardiore-
spiratory system with an Apnea-Hypopnea Index 
(AHI) score between ≥ 5 > 30 events per hour 
(mean AHI 23.62, SD 4.27) and the obstruction 
sites screened by Drug-Induced Sleep Endoscopy 
(DISE) using the Nose Oropharynx Hypopharynx 
and Larynx (NOHL) classification27. We excluded 
patients < 40 years old and older than 65 years, 
drug or alcohol abusers or those having history 
of chronic analgesic use, patients who known to 
have allergy against the study drugs, patients that 
would represent a higher risk for sedation (severe 
chronic obstructive pulmonary disease, previous 
acute myocardial infarction, decompensated con-
gestive heart failure, and others), BMI > 30 kg/
m2 and patients with psychiatric disorders. All 
OSAHS patients underwent to polygraphic car-
diorespiratory recording in spontaneous sleep. 
Subsequently these patients were subjected to 
DISE. EMGGG with simultaneous polygraphic 
cardiorespiratory measurement was instead car-
ried out in 20 patients both in spontaneous sleep 
and during DISE. Patients undergoing the EMG-
GG were divided in two subgroups: subgroup A1 
(6 M; 4 F) was administered Propofol (B. Braun 
Milan SpA, Milan, Italy) TCI and in subgroup B1 
(7 M; 3 W) was administered dexmedetomidine 
(Orion Pharma S.r.l. Milan, Italy) TCI. 

Sleep Study
The Polygraph System Embletta MPR System 

(Sapio Life S.r.l. Monza, Italy) (including Em-
bletta MPR-PG and TX Proxy), according to the 
American Academy of Sleep Medicine standards 
(AASM 2012), allows monitoring of polygraph 
cardiorespiratory (level III). The Embletta MPR-
PG can records the following channels: induc-
tance plethysmography of the chest and abdomen, 
nasal cannula, pulse oximetry (oxygen saturation 
and heart rate), snoring through frequency envi-
ronmental microphone, snoring derived by nasal 
cannula, thermistor oro-nasal, 1 DC input to ac-
quire signals from external equipment, triaxial 
sensor integrated position, integrated actigraphy. 
The TX Proxy module allows the acquisition of 
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the signals coming from Embletta MPR-PG for 
their Real-time display. Embletta MPR-PG is con-
nected via wireless to the TX Proxy, which trans-
mits the information to the Personal Computer via 
LAN (Local Area Network). Both of these appli-
cations through the acquisition of a video signal 
(USB video card) can acquire and display Re-
al-time the video of the sleep endoscopy (Figure 

1). Apnea was defined as a significant decrease 
(>90%) in oronasal flow for at least 10 s. Hypo-
pnea was defined as an airflow decrease of 30% 
of pre-event baseline for at least 10 s with ≥ 3% 
oxygen desaturation from the baseline and/or an 
arousal. OSAHS severity was based on the Apnea 
and Hypopnea events/hour (AHI, Apnea/Hypo-
pnea Index) and was graded as mild (AHI: 5 to15 
events /h), moderate (AHI: 15 to 30 events/h), or 
severe (AHI >30 events/h)28.

DISE Protocol
Once a sufficient sedation was reached with 

Propofol or Dexmedetomidine, obtaining Bispec-
tral Index Score (BIS TM monitoring, Medtronic 
Parkway, MN, USA) level between 50 and 70, we 
proceed with the DISE. To perform the DISE, we 
used a nasofibroscope of 4 mm, an Olympus (To-
kyo, Japan) light source and camera. The flexible 
endoscope was introduced into the nasal cavity 
providing sequentially a detailed visualization 
of the nasopharynx, the retropalatal region, the 
oropharynx, the palatine veil, tongue base and 
epiglottis. Propofol was administered to group A 
with a brain concentration of 2.0 ng/mL, which 
was increased by 0.3 ng/mL every 2 minutes17,19. 

Dexmedetomidine was administered to group B 

at a dose of 1 ng/kg for 10 minutes, followed by 
a dexmedetomidine infusion at a rate of 1 ng/kg/
hour29,30. The blood concentration of propofol or 
dexmedetomidine was increased incrementally 
every 2 minutes until the desired depth of sleep 
was reached. Heart Rate (HR), Blood pressure 
(BP), Peripheral Oxygen Saturation (SpO2), Ram-
sey Sedation Scores (RSS) to evaluate precisely 
the level of consciousness during titration of sed-
ative medications, and BIS values were recorded 
when the patients arrived to the recovery room 
(Time 0: T0) at 5 minute intervals. Sufficient se-
dation was determined as the duration between 
the initiation of the drug infusion and the time the 
time when RSS:4 and BIS <75 (light sleep: 65 to 
75; deep sleep: 50 to 60)31,32 values were obtained. 
Patients were evaluated in the drug-induced 
sleep state for approximately 10 to 15 minutes. 
The DISE findings were characterized using the 
NOHL classification27, which evaluates grade and 
patterns of upper airways collapse.

Electromyography of Genioglossus 
Muscle

Electromyography of genioglossus muscle 
begins with a standardized local anaesthesia 
with lidocaine spray (Ogna and Figli S.r.l.-Mug-
giò-Monza Brianza, Italy); then, after 1 min, the 
needle is inserted into the right edge of the ante-
rior third of the tongue to a depth of about 20 mm 
and fixed manually by reining. Patients need to 
anteflect their head, not to swallow and leave their 
mouth open during the procedure (saliva running 
out is wiped away.) To asses spontaneous activi-
ty, subjects need to attempt retracting the tongue. 

Figure 1. Sleep endoscopy paired to the polygraphic track. 
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Furthermore, subjects were told to protrude the 
tongue until single recordings could be differenti-
ated, to record latency, amplitude and area under 
the curve (AUC), the needle was withdrawn for at 
least 2-3 mm between the two sites. Next, subjects 
were told to press the tongue to the left against the 
investigator’s index finger to increase force con-
tinuosly from zero to maximum within about 10 s. 
The EMGs were recorded via standard concentric 
needle electrodes (length 25 or 50 mm, recording 
surface: 0.07 mm2) by means of a commercially 
available EMG recorder (DantecTM Keypoint, Al-
pine Biomed ApS-Skovlunde, Denmark).

Statistical Analysis
Continuous variables are summarized as mean 

± SD. Categorical variables are summarized as 
frequencies and percentages. Variables were 
compared between patients with propofol-DISE 
and dexmedetomidine – DISE by independent 
t-test. A p-value < 0.05 was considered statistical-
ly significant.

Results

There is no statistical difference between the 
two groups data (Table I) within the basal ac-
tivity (spontaneous sleep) and in the obstruction 
sites (Table II). The group A had nose, orophar-
ynx, hypopharynx and larynx obstruction in 
48.1%, 62.9%, 88.8% and 25.9%, respectively; 
the group B had the same sites of obstruction 
in 34.7%, 82.6%, 86.9% and 21.7%, respective-
ly (Figure 2). Despite EMG activity, comparing 
spontaneous sleep with propofol-inducted sleep 
in subgroup A1, there is a statistically significa-

tive change only for the amplitude (p=0.040), but 
not for latency (Table III); an increase of 7.01% 
was observed for the (AUC). In subgroup B1 there 
aren’t statistically significative alterations com-
paring spontaneous sleep with Dexmedetomidine 
induced one, but only an increase of 25.87% in 
the AUC (Table IV). After Propofol administra-
tion, it was noticed an evident worsening of re-
spiratory values (minimal SpO2 and mean SpO2), 
blood pressure and heart rate statistical significa-
tive (Figure 3). In Group A, after sleep induction 
with Propofol, a mean minimal SpO2 decreasing 
of 3.7% (p=0.000) and a mean SpO2 decreasing 
of 1.6% (p 0.001) was noticed, while there was 
an increase in BP20 14.8% (p=0.000) and HR20 
11.1% (p=0.000) values. Group B, on the other 
hand, after administration of Dexmedetomidine 
for sleep induction, showed a decreasing of mean 
minimal SpO2 and mean SpO2 values, about 1.8% 
(p=0.000) and about 1.1% (p=0.009) respective-
ly, while there was an increase of BP20 e HR20, 
about 8.7% (p=0.000) and 8% (p=0.002), respec-
tively.

Discussion

Over the past years there were many debates 
about which was the best sedative to perform the 
sleep endoscopy. Some studies20,29,30,33 have com-
pared the two drugs (Propofol and Dexmedetomi-
dine) relying on the sedative, hemodynamic and 
respiratory effects, but none of these one compared 
the drugs according to the muscle responsiveness. 
Most of the reseraches21,34 identified dexmedeto-
midine as a pharmacological agent more stable 
and secure based upon cardiopulmonary status. 

Table I. Baseline characteristics of obstructive sleep apnea patients who underwent drug-induced sleep endoscopy by drug (N = 50). 

Characteristic	 Group A (n = 27)	 Group B (n = 23)	 p-value	

Male n (%)	 19 (70.3%)	 16 (69%)	
Female n (%)	 8 (29.7%)	 7 (31%)	
Age	 52.14 ± 7.2	 52.34 ± 6.09	 0.9170
Body mass index, kg/m2	 27.31 ± 1.35 [23.9-29.6]	 26.99 ± 1.27 [24.7-29.2]	 0.3926
ODI, events/h	 22.02 ± 4 [15-28]	 23.21 ± 4.55 [15-30]	 0.3329
AHI, events/h	 23.28 ± 4.2 [16.7–29] 	 24.01 ± 4.42 [16.2- 29.6]	 0.5498
Nadir SaO2, %	 86.84 ± 1.55 [84–90.1]	 87.01 ± 1.28 [84.6–89]	 0.6880
T < 90%	 5.39 ± 2.15 [2.4–10.9]	 6.17 ± 2.18 [2.6–10.9]	 0.2123
Mean oxygen saturation	 95.84 ±1.33	 95.95 ± 1.39	 0.7743

AHI: apnea-hypopnea index; ODI: oxygen desaturation index; Nadir SaO2: minimal oxygen saturation; T < 90% = percentage of the 
total time with oxygen saturation level < 90%; mean oxygen saturation. *Values are given as mean ± SD [range] or number (%) of 
subjects.
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Due to greater obstruction leading to worsen-
ing apneas, hypopneas and oxygen desaturation, 
some studies present a compelling argument for 
its use during DISE and this observation may be 
more precise about the airway obstruction that 
occurs during sleep. In our study we have noticed 
heart rate and respiratory rate worsening both 
with propofol and dexmedetomidine compared to 
basal data; nevertheless, this worsening was more 
evident after Propofol sedation. The same results 
were obtained confronting EMG data before and 

after administration with both pharmacologic 
agents. Comparing EMG data and cardio-respi-
ratory data with DISE gives these results: during 
DISE with sleep pharmacological induction by 
propofol and dexmedetodine we have noticed 
respiratory depression (oxygen average satura-
tion decrease, minimum oxygen level decrease) 
and both frequency and heart pressure alteration; 
moreover appeared a simultaneous EMG activi-
ty reduction in genioglossus muscle, although it 
was more evident after propofol administration. 

aDegree of obstruction: 1: 0–25% / 2: 25–50% / 3: 50–75% / 4: 75-100%
bConfiguration: anteroposterior (AP); Transversal (Tr); Concentric (C) 
cLarynx Obstruction: Absent (-) or Present (+)
dPalatine tonsillar hypertrophy grade III e IV: Absent (-) or Present (+)

Table II. Classification NOHL. NOHL Classification findings of upper airway obstruction in propofol and dexmedetomidine-Based 
drug-induced sleep endoscopies. 

Propofol - DISE (n = 27)	 Dexmedetomidine - DISE (n = 23)

Obstruction 	 Degreea	 Patternb	 Degreea	 Patternb	 p-value
  sites	
	 1	 2	 3	 4	 AP	 Tr	 C	 1	 2	 3	 4	 AP	 Tr	 C	

Nose	 2	 9	 2					     5	 3	
	 (7.4)	 (33.3)	 (7.4)					     (21.7)	 (13)						      0.609

Oropharynx		  4	 8	 5	 10	 3	 4		  7	 9	 3	 8	 5	 6	 0.854
		  (14.8)	 (29.6)	(18.5)	 (37)	 (11.1)	 (14.8)		  (30.4)	 (39.1)	 (13)	 (34.7)	 (21.7)	 (26)	

Hypopharynx	 2	 6	 10	 6	 12	 5	 7		  5	 12	 3	 10	 4	 6
	 (7.4)	 (22.2)	 (37)	 (22.2)	 (44.4)	 (18.5)	  (26)		   (21.7)	 (52.1)	  (13)	  (43.4)	  (17.3)	  (26)	 0.752

Larynxc	 –		  20 (74)					     – 		  18 (78.3)	
	 +		  7 (26)					     +		  5 (21.7)	

Palatine	 –		  10 (37)					     –		  13 (56.5)	
  tonsillar	 +		  17 (63)					     +		  10 (43.5)
  hypertrophy 
  graded

Figure 2. Percentages of ob-
struction sites during propofol 
- DISE and dexmedetomidine 
– DISE.
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After Dexmedetodine administration we expect-
ed bradycardia due to a decrease in noradrenaline 
release, a decrease in centrally mediated sympa-
thetic tone, and an increase in vagal activity35. 
However, as observed by Arain et al36, Al-Musta-
fa et al37 and Mahmoud et al38, dexmedetomidine 
could have rebound effect with the postsynaptic 
vascular smooth muscle to cause vasoconstriction 
and it is possible that the sympathoinhibitory ef-
fects of dexmedetomidine were slightly opposed 
by direct α-2 mediated vasoconstriction.

Conclusions

Both dexmedetomidine and propofol have 
their advantages during DISE. While generally 
dexmedetomidine is preferred because it provides 
a more stable profile based upon cardiopulmonary 
status, propofol for its part has a quicker onset 
and a shorter half-life. Based on the premise that 
this is a pilot study, there are significant limits. 
One of the limits about this study is not adminis-
trating both groups with both sedative, but execut-

Table III. EMGGG activity of subgroup A1 in spontaneous sleep vs. propofol during DISE.

Parameters		  Spontaneous sleep	 Propofol	 t	 p-value

Latency (ms)	 Lat 1	 124	 122	
	 Lat 1-2	 1404	 1442	 0.037	 0.9721		
	 Lat 2	 1528	 1564		

Amplitude (μV)	 Amp 1	 44.2	 2.81	
	 Amp 1-2	 31.3	 0.37	 2.997	 0.040		
	 Amp 2	 12.9	 3.17		

AUC (μVms)	 Area 1-2	 2.1535	 1511	

Table IV. EMGGG activity of subgroup B1 in spontaneous sleep vs. dexmedetomidine during DISE.

Parameters		  Spontaneous 	 Dexmede-	 t	 p-value
		  sleep	 tomidine	

Latency (ms)	 Lat 1	 4200	 11800
	 Lat 1-2	 149800	 139600	 0.0261	 0.980
	 Lat 2	 154000	 151400

Amplitude (μV)	 Amp 1	 104	 14.0
	 Amp 1-2	 5.00	 7.08	 1.7184	 0.160
	 Amp 2	 10.9	 21.1

AUC (μVms)	 Area 1-2	 42046	 10880

Figure 3. Cardio respiratory 
values in group A and group B 
before and after sedation.
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ing EMGGG to all patients in spontaneous sleep 
before DISE results in objective data to compare 
about real action of these sedatives. Another limit 
is the modest number of subjects administrated 
with EMGGG, so is auspicable to increase this 
number in future studies.
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