Dear Author,
Here are the proofs of your article.

- You can submit your corrections online, via e-mail or by fax.
- For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- You can also insert your corrections in the proof PDF and email the annotated PDF.
- For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- Remember to note the journal title, article number, and your name when sending your response via e-mail or fax.
- Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.
- Check the questions that may have arisen during copy editing and insert your answers/ corrections.
- Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal's style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
- If we do not receive your corrections within $\mathbf{4 8}$ hours, we will send you a reminder.
- Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not possible.
- The printed version will follow in a forthcoming issue.

Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information go to: http://www.link.springer.com.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us if you would like to have these documents returned.

Metadata of the article that will be visualized in OnlineFirst

ArticleTitle	Singular quasilinear elliptic systems in \mathbb{R}^{N}
Article Sub-Title	
Article CopyRight	Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature (This will be the copyright line in the final PDF)
Journal Name	Annali di Matematica Pura ed Applicata (1923-)
Corresponding Author	Family Name Marano
	Particle
	Given Name Salvatore A.
	Suffix
	Division Dipartimento di Matematica e Informatica
	Organization Università degli Studi di Catania
	Address Viale A. Doria 6, 95125, Catania, Italy
	Phone
	Fax
	Email marano@dmi.unict.it
	URL
	ORCID http://orcid.org/0000-0001-5214-2586
Author	Family Name Marino
	Particle
	Given Name Greta
	Suffix
	Division Dipartimento di Matematica e Informatica
	Organization Università degli Studi di Catania
	Address Viale A. Doria 6, 95125, Catania, Italy
	Phone
	Fax
	Email greta.marino@dmi.unict.it
	URL
	ORCID
Author	Family Name Moussaoui
	Particle
	Given Name Abdelkrim
	Suffix
	Division Biology Department
	Organization A. Mira Bejaia University
	Address Targa Ouzemour, 06000, Bejaia, Algeria
	Phone
	Fax
	Email abdelkrim.moussaoui@univ-bejaia.dz

URL
ORCID

		Received Revised Schedule
	Accepted	27 August 2018
Abstract	The existence of positive weak solutions to a singular quasilinear elliptic system in the whole space is established via suitable a priori estimates and Schauder's fixed point theorem.	
Keywords (separated by '-')	Singular elliptic system - p-Laplacian - Schauder's fixed point theorem - A priori estimate	
Mathematics Subject Classification (separated by	35J75 - 35J48 - 35J92	
'-')		

Singular quasilinear elliptic systems in \mathbb{R}^{N}

Salvatore A. Marano ${ }^{1}$ (D) \cdot Greta Marino $^{1} \cdot$ Abdelkrim Moussaoui 2

Received: 27 August 2018 / Accepted: 2 February 2019
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

The existence of positive weak solutions to a singular quasilinear elliptic system in the whole space is established via suitable a priori estimates and Schauder's fixed point theorem.

Keywords Singular elliptic system • p-Laplacian • Schauder's fixed point theorem •
A priori estimate
Mathematics Subject Classification 35J75 • 35J48 • 35J92

1 Introduction

In this paper, we consider the following system of quasilinear elliptic equations:

$$
\begin{cases}-\Delta_{p_{1}} u=a_{1}(x) f(u, v) & \text { in } \mathbb{R}^{N}, \tag{P}\\ -\Delta_{p_{2}} v=a_{2}(x) g(u, v) & \text { in } \mathbb{R}^{N}, \\ u, v>0 & \text { in } \mathbb{R}^{N},\end{cases}
$$

where $N \geq 3,1<p_{i}<N$, while $\Delta_{p_{i}}$ denotes the p_{i}-Laplace differential operator. Nonlinearities $f, g: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$are continuous and fulfill the condition
$\left(\mathrm{H}_{f, g}\right)$ There exist $m_{i}, M_{i}>0, i=1,2$, such that

$$
\begin{aligned}
& m_{1} s^{\alpha_{1}} \leq f(s, t) \leq M_{1} s^{\alpha_{1}}\left(1+t^{\beta_{1}}\right), \\
& m_{2} t^{\beta_{2}} \leq g(s, t) \leq M_{2}\left(1+s^{\alpha_{2}}\right) t^{\beta_{2}}
\end{aligned}
$$

Salvatore A. Marano
marano@dmi.unict.it
Greta Marino
greta.marino@dmi.unict.it
Abdelkrim Moussaoui
abdelkrim.moussaoui@univ-bejaia.dz
1 Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
2 Biology Department, A. Mira Bejaia University, Targa Ouzemour, 06000 Bejaia, Algeria
for all $s, t \in \mathbb{R}^{+}$, with $-1<\alpha_{1}, \beta_{2}<0<\alpha_{2}, \beta_{1}$,

$$
\begin{equation*}
\alpha_{1}+\alpha_{2}<p_{1}-1, \quad \beta_{1}+\beta_{2}<p_{2}-1 \tag{1.1}
\end{equation*}
$$

as well as

$$
\beta_{1}<\frac{p_{2}^{*}}{p_{1}^{*}} \min \left\{p_{1}-1, p_{1}^{*}-p_{1}\right\}, \alpha_{2}<\frac{p_{1}^{*}}{p_{2}^{*}} \min \left\{p_{2}-1, p_{2}^{*}-p_{2}\right\}
$$

Here, p_{i}^{*} denotes the critical Sobolev exponent corresponding to p_{i}, namely $p_{i}^{*}:=\frac{N p_{i}}{N-p_{i}}$. Coefficients $a_{i}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfy the assumption
$\left(\mathrm{H}_{a}\right) a_{i}(x)>0$ a.e. in \mathbb{R}^{N} and $a_{i} \in L^{1}\left(\mathbb{R}^{N}\right) \cap L^{\zeta_{i}}\left(\mathbb{R}^{N}\right)$, where

$$
\frac{1}{\zeta_{1}} \leq 1-\frac{p_{1}}{p_{1}^{*}}-\frac{\beta_{1}}{p_{2}^{*}}, \quad \frac{1}{\zeta_{2}} \leq 1-\frac{p_{2}}{p_{2}^{*}}-\frac{\alpha_{2}}{p_{1}^{*}} .
$$

Let $\mathcal{D}^{1, p_{i}}\left(\mathbb{R}^{N}\right)$ be the closure of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with respect to the norm

$$
\|w\|_{\mathcal{D}^{1, p_{i}}\left(\mathbb{R}^{N}\right)}:=\|\nabla w\|_{L^{p_{i}\left(\mathbb{R}^{N}\right)}}
$$

Recall [12, Theorem 8.3] that

$$
\mathcal{D}^{1, p_{i}}\left(\mathbb{R}^{N}\right)=\left\{w \in L^{p_{i}^{*}}\left(\mathbb{R}^{N}\right):|\nabla w| \in L^{p_{i}}\left(\mathbb{R}^{N}\right)\right\} .
$$

Moreover, if $w \in \mathcal{D}^{1, p_{i}}\left(\mathbb{R}^{N}\right)$, then w vanishes at infinity, i.e., the set $\left\{x \in \mathbb{R}^{N}: w(x)>k\right\}$ has finite measure for all $k>0$; see [12, p. 201].

A pair $(u, v) \in \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right)$ is called a (weak) solution to (P) provided $u, v>0$ a.e. in \mathbb{R}^{N} and

$$
\left\{\begin{array}{l}
\int_{\mathbb{R}^{N}}|\nabla u|^{p_{1}-2} \nabla u \nabla \varphi \mathrm{~d} x=\int_{\mathbb{R}^{N}} a_{1} f(u, v) \varphi \mathrm{d} x, \\
\int_{\mathbb{R}^{N}}|\nabla v|^{p_{2}-2} \nabla v \nabla \psi \mathrm{~d} x=\int_{\mathbb{R}^{N}} a_{2} g(u, v) \psi \mathrm{d} x
\end{array}\right.
$$

for every $(\varphi, \psi) \in \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right)$.
The most interesting aspect of the work probably lies in the fact that both f and g can exhibit singularities through \mathbb{R}^{N}, which, without loss of generality, are located at zero. Indeed, $-1<\alpha_{1}, \beta_{2}<0$ by $\left(\mathrm{H}_{f, g}\right)$. It represents a serious difficulty to overcome and is rarely handled in the literature.

As far as we know, singular systems in the whole space have been investigated only for $p:=q:=2$, essentially exploiting the linearity of involved differential operators. In such a context, $[3,4,17]$ treat the so-called Gierer-Meinhardt system, which arises from the mathematical modeling of important biochemical processes. Nevertheless, even in the semilinear case, (P) cannot be reduced to Gierer-Meinhardt's case once $\left(\mathrm{H}_{f, g}\right)$ is assumed. The situation looks quite different when a bounded domain takes the place of \mathbb{R}^{N} : many singular systems fitting the framework of (P) have been studied, and meaningful contributions are already available [1,6-11,13-16].

Here, variational methods do not work, at least in a direct way, because the Euler function associated with problem (P) is not well defined. A similar comment holds for sub-supersolution techniques, which are usually employed in the case of bounded domains. Hence, we were naturally led to apply fixed point results. An a priori estimate in $L^{\infty}\left(\mathbb{R}^{N}\right) \times L^{\infty}\left(\mathbb{R}^{N}\right)$ for solutions of (P) is first established (cf. Theorem 3.4) by a Moser's type iteration procedure and an adequate truncation, which, due to singular terms, require a specific treatment. We

[^0]next perturb (P) by introducing a parameter $\varepsilon>0$. This produces the family of regularized systems
\[

$$
\begin{cases}-\Delta_{p_{1}} u=a_{1}(x) f(u+\varepsilon, v) & \text { in } \mathbb{R}^{N} \\ -\Delta_{p_{2}} v=a_{2}(x) g(u, v+\varepsilon) & \text { in } \mathbb{R}^{N} \\ u, v>0 & \text { in } \mathbb{R}^{N}\end{cases}
$$
\]

whose study yields useful information on the original problem. In fact, the previous L^{∞} boundedness still holds for solutions to $\left(\mathrm{P}_{\varepsilon}\right)$, regardless of ε. Thus, via Schauder's fixed point theorem, we get a solution $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ lying inside a rectangle given by positive lower bounds, where ε does not appear, and positive upper bounds, that may instead depend on ε. Finally, letting $\varepsilon \rightarrow 0^{+}$and using the $(\mathrm{S})_{+}$-property of the negative p-Laplacian in $\mathcal{D}^{1, p}\left(\mathbb{R}^{N}\right)$ (see Lemma 3.3) yield a weak solution to (P); cf. Theorem 5.1.

The rest of this paper is organized as follows: Section 2 deals with preliminary results. An a priori estimate of solutions to (P) is proven in Sect. 3, while the next one treats system $\left(\mathrm{P}_{\varepsilon}\right)$. Section 5 contains our existence result for problem (P).

2 Preliminaries

Let $\Omega \subseteq \mathbb{R}^{N}$ be a measurable set, let $t \in \mathbb{R}$, and let $w, z \in L^{p}\left(\mathbb{R}^{N}\right)$. We write $m(\Omega)$ for the Lebesgue measure of Ω, while $t^{ \pm}:=\max \{ \pm t, 0\}, \Omega(w \leq t):=\{x \in \Omega: w(x) \leq t\}$, $\|w\|_{p}:=\|w\|_{L^{p}\left(\mathbb{R}^{N}\right)}$. The meaning of $\Omega(w>t)$, etc. is analogous. By definition, $w \leq z$ iff $w(x) \leq z(x)$ a.e. in \mathbb{R}^{N}.

Given $1 \leq q<p$, neither $L^{p}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{q}\left(\mathbb{R}^{N}\right)$ nor the reverse embedding holds true. However, the situation looks better for functions belonging to $L^{1}\left(\mathbb{R}^{N}\right)$. Indeed (see also [2, p. 93]),

Proposition 2.1 Suppose $p>1$ and $w \in L^{1}\left(\mathbb{R}^{N}\right) \cap L^{p}\left(\mathbb{R}^{N}\right)$. Then $w \in L^{q}\left(\mathbb{R}^{N}\right)$ whatever $q \in] 1, p[$.

Proof Thanks to Hölder's inequality, with exponents p / q and $p /(p-q)$, and Chebyshev's inequality, one has

$$
\begin{aligned}
\|w\|_{q}^{q} & =\int_{\mathbb{R}^{N}(|w| \leq 1)}|w|^{q} \mathrm{~d} x+\int_{\mathbb{R}^{N}(|w|>1)}|w|^{q} \mathrm{~d} x \\
& \leq \int_{\mathbb{R}^{N}(|w| \leq 1)}|w| \mathrm{d} x+\left(\int_{\mathbb{R}^{N}(|w|>1)}|w|^{p} \mathrm{~d} x\right)^{q / p}\left[m\left(\mathbb{R}^{N}(|w|>1)\right)\right]^{1-q / p} \\
& \leq \int_{\mathbb{R}^{N}}|w| \mathrm{d} x+\left(\int_{\mathbb{R}^{N}}|w|^{p} \mathrm{~d} x\right)^{q / p}\left(\int_{\mathbb{R}^{N}}|w|^{p} \mathrm{~d} x\right)^{1-q / p} \\
& =\|w\|_{1}+\|w\|_{p}^{p}
\end{aligned}
$$

This completes the proof.

The summability properties of a_{i} collected below will be exploited throughout the paper.
Remark 2.1 Let assumption $\left(\mathrm{H}_{a}\right)$ be fulfilled. Then, for any $i=1,2$,
$\left(\mathrm{j}_{1}\right) a_{i} \in L^{\left(p_{i}^{*}\right)^{\prime}}\left(\mathbb{R}^{N}\right)$.
(j2) $a_{i} \in L^{\gamma_{i}}\left(\mathbb{R}^{N}\right)$, where $\gamma_{i}:=1 /\left(1-t_{i}\right)$, with

$$
t_{1}:=\frac{\alpha_{1}+1}{p_{1}^{*}}+\frac{\beta_{1}}{p_{2}^{*}}, \quad t_{2}:=\frac{\alpha_{2}}{p_{1}^{*}}+\frac{\beta_{2}+1}{p_{2}^{*}} .
$$

$\left(\mathrm{j}_{3}\right) a_{i} \in L^{\delta_{i}}\left(\mathbb{R}^{N}\right)$, for $\delta_{i}:=1 /\left(1-s_{i}\right)$ and

$$
s_{1}:=\frac{\alpha_{1}+1}{p_{1}^{*}}, \quad s_{2}:=\frac{\beta_{2}+1}{p_{2}^{*}} .
$$

(j4) $a_{i} \in L^{\xi_{i}}\left(\mathbb{R}^{N}\right)$, where $\left.\xi_{i} \in\right] p_{i}^{*} /\left(p_{i}^{*}-p_{i}\right), \zeta_{i}[$.
To verify $\left(\mathrm{j}_{1}\right)-\left(\mathrm{j}_{4}\right)$, we simply note that $\zeta_{i}>\max \left\{\left(p_{i}^{*}\right)^{\prime}, \gamma_{i}, \delta_{i}, \xi_{i}\right\}$ and apply Proposition 2.1.

Let us next show that the operator $-\Delta_{p}$ is of type $(\mathrm{S})_{+}$in $\mathcal{D}^{1, p}\left(\mathbb{R}^{N}\right)$.
Proposition 2.2 If $1<p<N$ and $\left\{u_{n}\right\} \subseteq \mathcal{D}^{1, p}\left(\mathbb{R}^{N}\right)$ satisfies

$$
\begin{align*}
& u_{n} \rightharpoonup u \text { in } \mathcal{D}^{1, p}\left(\mathbb{R}^{N}\right), \tag{2.1}\\
& \limsup _{n \rightarrow \infty}\left\langle-\Delta_{p} u_{n}, u_{n}-u\right\rangle \leq 0, \tag{2.2}
\end{align*}
$$

then $u_{n} \rightarrow u$ in $\mathcal{D}^{1, p}\left(\mathbb{R}^{N}\right)$.
Proof By monotonicity, one has

$$
\left\langle-\Delta_{p} u_{n}-\left(-\Delta_{p} u\right), u_{n}-u\right\rangle \geq 0 \quad \forall n \in \mathbb{N},
$$

which evidently entails

$$
\liminf _{n \rightarrow \infty}\left\langle-\Delta_{p} u_{n}-\left(-\Delta_{p} u\right), u_{n}-u\right\rangle \geq 0
$$

Via (2.1)-(2.2), we then get

$$
\limsup _{n \rightarrow \infty}\left\langle-\Delta_{p} u_{n}-\left(-\Delta_{p} u\right), u_{n}-u\right\rangle \leq 0
$$

Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla u\right)\left(\nabla u_{n}-\nabla u\right) \mathrm{d} x=0 . \tag{2.3}
\end{equation*}
$$

Since [18, Lemma A.0.5] yields

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} & \left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla u\right)\left(\nabla u_{n}-\nabla u\right) \mathrm{d} x \\
& \geq\left\{\begin{array}{ll}
C_{p} \int_{\mathbb{R}^{N}} \frac{\left|\nabla\left(u_{n}-u\right)\right|^{2}}{\left(\left|\nabla u_{n}\right|+|\nabla u|\right)^{2-p}} \mathrm{~d} x & \text { if } 1<p<2, \\
C_{p} \int_{\mathbb{R}^{N}}\left|\nabla\left(u_{n}-u\right)\right|^{p} \mathrm{~d} x & \text { otherwise }
\end{array} \quad \forall n \in \mathbb{N},\right.
\end{aligned}
$$

the desired conclusion, namely

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|\nabla\left(u_{n}-u\right)\right|^{p} \mathrm{~d} x=0
$$

directly follows from (2.3) once $p \geq 2$. If $1<p<2$, then Hölder's inequality and (2.1) lead to

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left|\nabla\left(u_{n}-u\right)\right|^{p} \mathrm{~d} x & =\int_{\mathbb{R}^{N}} \frac{\left|\nabla\left(u_{n}-u\right)\right|^{p}}{\left(\left|\nabla u_{n}\right|+|\nabla u|\right)^{\frac{p(2-p)}{2}}}\left(\left|\nabla u_{n}\right|+|\nabla u|\right)^{\frac{p(2-p)}{2}} \mathrm{~d} x \\
& \leq\left(\int_{\mathbb{R}^{N}} \frac{\left|\nabla\left(u_{n}-u\right)\right|^{2}}{\left(\left|\nabla u_{n}\right|+|\nabla u|\right)^{2-p}} \mathrm{~d} x\right)^{\frac{p}{2}}\left(\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|+|\nabla u|\right)^{p} \mathrm{~d} x\right)^{\frac{2-p}{2}} \\
& \leq C\left(\int_{\mathbb{R}^{N}} \frac{\left|\nabla\left(u_{n}-u\right)\right|^{2}}{\left(\left|\nabla u_{n}\right|+|\nabla u|\right)^{2-p}} \mathrm{~d} x\right)^{\frac{p}{2}}, \quad n \in \mathbb{N}
\end{aligned}
$$

with appropriate $C>0$. Now, the argument goes on as before.

3 Boundedness of solutions

The main result of this section, Theorem 3.4, provides an $L^{\infty}\left(\mathbb{R}^{N}\right)$-a priori estimate for weak solutions to (P). Its proof will be performed into three steps.
Lemma $3.1\left[L^{p_{i}^{*}}\left(\mathbb{R}^{N}\right)\right.$ —uniform boundedness $]$ There exists $\rho>0$ such that

$$
\begin{equation*}
\max \left\{\|u\|_{p_{1}^{*}},\|v\|_{p_{2}^{*}}\right\} \leq \rho \tag{3.1}
\end{equation*}
$$

for every $(u, v) \in \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right)$ solving problem (P).
Proof Multiply both equations in (P) by u and v, respectively, integrate over \mathbb{R}^{N}, and use $\left(\mathrm{H}_{f, g}\right)$ to arrive at

$$
\begin{aligned}
& \|\nabla u\|_{p_{1}}^{p_{1}}=\int_{\mathbb{R}^{N}} a_{1} f(u, v) u \mathrm{~d} x \leq M_{1} \int_{\mathbb{R}^{N}} a_{1} u^{\alpha_{1}+1}\left(1+v^{\beta_{1}}\right) \mathrm{d} x, \\
& \|\nabla v\|_{p_{2}}^{p_{2}}=\int_{\mathbb{R}^{N}} a_{2} g(u, v) v \mathrm{~d} x \leq M_{2} \int_{\mathbb{R}^{N}} a_{2}\left(1+u^{\alpha_{2}}\right) v^{\beta_{2}+1} \mathrm{~d} x .
\end{aligned}
$$

Through the embedding $\mathcal{D}^{1, p_{i}}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{p_{i}^{*}}\left(\mathbb{R}^{N}\right)$, besides Hölder's inequality, we obtain

$$
\begin{aligned}
\|\nabla u\|_{p_{1}}^{p_{1}} & \leq M_{1}\left(\left\|a_{1}\right\| \delta_{1}\|u\|_{p_{1}^{*}}^{\alpha_{1}+1}+\left\|a_{1}\right\|_{\gamma_{1}}\|u\|_{p_{1}^{*}}^{\alpha_{1}+1}\|v\|_{p_{2}^{*}}^{\beta_{1}}\right) \\
& \leq C_{1}\|\nabla u\|_{p_{1}}^{\alpha_{1}+1}\left(\left\|a_{1}\right\|_{\delta_{1}}+\left\|a_{1}\right\|_{\gamma_{1}}\|\nabla v\|_{p_{2}}^{\beta_{1}}\right) ;
\end{aligned}
$$

cf. also Remark 2.1. Likewise,

$$
\|\nabla v\|_{p_{2}}^{p_{2}} \leq C_{2}\|\nabla v\|_{p_{2}}^{\beta_{2}+1}\left(\left\|a_{2}\right\|_{\delta_{2}}+\left\|a_{2}\right\|_{\gamma_{2}}\|\nabla u\|_{p_{1}}^{\alpha_{2}}\right) .
$$

Thus, a fortiori,

$$
\begin{align*}
& \|\nabla u\|_{p_{1}}^{p_{1}-1-\alpha_{1}} \leq C_{1}\left(\left\|a_{1}\right\|_{\delta_{1}}+\left\|a_{1}\right\|_{\gamma_{1}}\|\nabla v\|_{p_{2}}^{\beta_{1}}\right), \\
& \|\nabla v\|_{p_{2}}^{p_{2}-1-\beta_{2}} \leq C_{2}\left(\left\|a_{2}\right\|_{\delta_{2}}+\left\|a_{2}\right\|_{\gamma_{2}}\|\nabla u\|_{p_{1}}^{\alpha_{2}}\right), \tag{3.2}
\end{align*}
$$

which imply

$$
\begin{aligned}
& \|\nabla u\|_{p_{1}}^{p_{1}-1-\alpha_{1}}+\|\nabla v\|_{p_{2}}^{p_{2}-1-\beta_{2}} \\
& \quad \leq C_{1}\left(\left\|a_{1}\right\|_{\delta_{1}}+\left\|a_{1}\right\|_{\gamma_{1}}\|\nabla v\|_{p_{2}}^{\beta_{1}}\right)+C_{2}\left(\left\|a_{2}\right\|_{\delta_{2}}+\left\|a_{2}\right\|_{\gamma_{2}}\|\nabla u\|_{p_{1}}^{\alpha_{2}}\right) .
\end{aligned}
$$

Rewriting this inequality as

$$
\begin{align*}
& \|\nabla u\|_{p_{1}}^{\alpha_{2}}\left(\|\nabla u\|_{p_{1}}^{p_{1}-1-\alpha_{1}-\alpha_{2}}-C_{2}\left\|a_{2}\right\|_{\gamma_{2}}\right)+\|\nabla v\|_{p_{2}}^{\beta_{1}}\left(\|\nabla v\|_{p_{2}}^{p_{2}-1-\beta_{1}-\beta_{2}}-C_{1}\left\|a_{1}\right\|_{\gamma_{1}}\right) \\
& \quad \leq C_{1}\left\|a_{1}\right\|_{\delta_{1}}+C_{2}\left\|a_{2}\right\|_{\delta_{2}}, \tag{3.3}
\end{align*}
$$

four situations may occur. If

$$
\|\nabla u\|_{p_{1}}^{p_{1}-1-\alpha_{1}-\alpha_{2}} \leq C_{2}\left\|a_{2}\right\|_{\gamma_{2}}, \quad\|\nabla v\|_{p_{2}}^{p_{2}-1-\beta_{1}-\beta_{2}} \leq C_{1}\left\|a_{1}\right\|_{\gamma_{1}}
$$

then (3.1) follows from (j_{2}) of Remark 2.1, conditions (1.1), and the embedding $\mathcal{D}^{1, p_{i}}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{p_{i}^{*}}\left(\mathbb{R}^{N}\right)$. Assume next that

$$
\begin{equation*}
\|\nabla u\|_{p_{1}}^{p_{1}-1-\alpha_{1}-\alpha_{2}}>C_{2}\left\|a_{2}\right\|_{\gamma_{2}}, \quad\|\nabla v\|_{p_{2}}^{p_{2}-1-\beta_{1}-\beta_{2}}>C_{1}\left\|a_{1}\right\|_{\gamma_{1}} . \tag{3.4}
\end{equation*}
$$

Thanks to (3.3), one has

$$
\|\nabla u\|_{p_{1}}^{\alpha_{2}}\left(\|\nabla u\|_{p_{1}}^{p_{1}-1-\alpha_{1}-\alpha_{2}}-C_{2}\left\|a_{2}\right\|_{\gamma_{2}}\right) \leq C_{1}\left\|a_{1}\right\| \delta_{1}+C_{2}\left\|a_{2}\right\|_{\delta_{2}},
$$

whence, on account of (3.4),

$$
\begin{aligned}
\|\nabla u\|_{p_{1}}^{p_{1}-1-\alpha_{1}-\alpha_{2}} & \leq \frac{C_{1}\left\|a_{1}\right\|_{\delta_{1}}+C_{2}\left\|a_{2}\right\|_{\delta_{2}}}{\|\nabla u\|_{p_{1}}^{\alpha_{2}}}+C_{2}\left\|a_{2}\right\|_{\gamma_{2}} \\
& \leq \frac{C_{1}\left\|a_{1}\right\|_{\delta_{1}}+C_{2}\left\|a_{2}\right\|_{\delta_{2}}}{\left\|a_{2}\right\|_{\gamma_{2}-1-\alpha_{2}}^{p_{2}-\alpha_{2}}}+C_{2}\left\|a_{2}\right\|_{\gamma_{2}}
\end{aligned}
$$

A similar inequality holds true for v. So, (3.1) is achieved reasoning as before. Finally, if

$$
\begin{equation*}
\|\nabla u\|_{p_{1}}^{p_{1}-1-\alpha_{1}-\alpha_{2}} \leq C_{2}\left\|a_{2}\right\|_{\gamma_{2}}, \quad\|\nabla v\|_{p_{2}}^{p_{2}-1-\beta_{1}-\beta_{2}}>C_{1}\left\|a_{1}\right\|_{\gamma_{1}} \tag{3.5}
\end{equation*}
$$

then (3.2) and (3.5) entail

$$
\|\nabla v\|_{p_{2}}^{p_{2}-1-\beta_{2}} \leq C_{2}\left[\left\|a_{2}\right\|_{\delta_{2}}+\left\|a_{2}\right\|_{\gamma_{2}}\left(C_{2}\left\|a_{2}\right\|_{\gamma_{2}}\right)^{\frac{\alpha_{2}}{p_{1}-1-\alpha_{1}-\alpha_{2}}}\right] .
$$

By (1.1) again, we thus get

$$
\max \left\{\|\nabla u\|_{p_{1}},\|\nabla v\|_{p_{2}}\right\} \leq C_{3},
$$

where $C_{3}>0$. This yields (3.1), because $\mathcal{D}^{1, p_{i}}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{p_{i}^{*}}\left(\mathbb{R}^{N}\right)$. The last case, i.e.,

$$
\|\nabla u\|_{p_{1}}^{p_{1}-1-\alpha_{1}-\alpha_{2}}>C_{2}\left\|a_{2}\right\|_{\gamma_{2}}, \quad\|\nabla v\|_{p_{2}}^{p_{2}-1-\beta_{1}-\beta_{2}} \leq C_{1}\left\|a_{1}\right\|_{\gamma_{1}}
$$

is analogous.
To shorten notation, write

$$
\mathcal{D}^{1, p_{i}}\left(\mathbb{R}^{N}\right)_{+}:=\left\{w \in \mathcal{D}^{1, p_{i}}\left(\mathbb{R}^{N}\right): w \geq 0 \text { a.e. in } \mathbb{R}^{N}\right\}
$$

Lemma 3.2 (Truncation) Let $(u, v) \in \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right)$ be a weak solution of (P). Then

$$
\begin{align*}
& \int_{\mathbb{R}^{N}(u>1)}|\nabla u|^{p_{1}-2} \nabla u \nabla \varphi \mathrm{~d} x \leq M_{1} \int_{\mathbb{R}^{N}(u>1)} a_{1}\left(1+v^{\beta_{1}}\right) \varphi \mathrm{d} x, \tag{3.6}\\
& \int_{\mathbb{R}^{N}(v>1)}|\nabla v|^{p_{2}-2} \nabla v \nabla \psi \mathrm{~d} x \leq M_{2} \int_{\mathbb{R}^{N}(v>1)} a_{2}\left(1+u^{\alpha_{2}}\right) \psi \mathrm{d} x \tag{3.7}
\end{align*}
$$

for all $(\varphi, \psi) \in \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right)_{+} \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right)_{+}$.

Proof Pick a C^{1} cutoff function $\eta: \mathbb{R} \rightarrow[0,1]$ such that

$$
\eta(t)=\left\{\begin{array}{ll}
0 & \text { if } t \leq 0, \\
1 & \text { if } t \geq 1,
\end{array} \quad \eta^{\prime}(t) \geq 0 \quad \forall t \in[0,1]\right.
$$

and, given $\delta>0$, define $\eta_{\delta}(t):=\eta\left(\frac{t-1}{\delta}\right)$. If $w \in \mathcal{D}^{1, p_{i}}\left(\mathbb{R}^{N}\right)$, then

$$
\begin{equation*}
\eta_{\delta} \circ w \in \mathcal{D}^{1, p_{i}}\left(\mathbb{R}^{N}\right), \quad \nabla\left(\eta_{\delta} \circ w\right)=\left(\eta_{\delta}^{\prime} \circ w\right) \nabla w, \tag{3.8}
\end{equation*}
$$

as a standard verification shows.
Now, fix $(\varphi, \psi) \in \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right)_{+} \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right)_{+}$. Multiply the first equation in (P) by $\left(\eta_{\delta} \circ u\right) \varphi$, integrate over \mathbb{R}^{N} and use $\left(\mathrm{H}_{f, g}\right)$ to achieve

$$
\int_{\mathbb{R}^{N}}|\nabla u|^{p_{1}-2} \nabla u \nabla\left(\left(\eta_{\delta} \circ u\right) \varphi\right) \mathrm{d} x \leq M_{1} \int_{\mathbb{R}^{N}} a_{1} u^{\alpha_{1}}\left(1+v^{\beta_{1}}\right)\left(\eta_{\delta} \circ u\right) \varphi \mathrm{d} x .
$$

By (3.8), we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}|\nabla u|^{p_{1}-2} \nabla u \nabla\left(\left(\eta_{\delta} \circ u\right) \varphi\right) \mathrm{d} x \\
&=\int_{\mathbb{R}^{N}}|\nabla u|^{p_{1}}\left(\eta_{\delta}^{\prime} \circ u\right) \varphi \mathrm{d} x+\int_{\mathbb{R}^{N}}\left(\eta_{\delta} \circ u\right)|\nabla u|^{p_{1}-2} \nabla u \nabla \varphi \mathrm{~d} x,
\end{aligned}
$$

while $\eta_{\delta}^{\prime} \circ u \geq 0$ in \mathbb{R}^{N}. Therefore,

$$
\int_{\mathbb{R}^{N}}\left(\eta_{\delta} \circ u\right)|\nabla u|^{p_{1}-2} \nabla u \nabla \varphi \mathrm{~d} x \leq M_{1} \int_{\mathbb{R}^{N}} a_{1} u^{\alpha_{1}}\left(1+v^{\beta_{1}}\right)\left(\eta_{\delta} \circ u\right) \varphi \mathrm{d} x
$$

Letting $\delta \rightarrow 0^{+}$produces (3.6). The proof of (3.7) is similar.
Lemma 3.3 (Moser's iteration) There exists $R>0$ such that

$$
\begin{equation*}
\max \left\{\|u\|_{L^{\infty}\left(\Omega_{1}\right)},\|v\|_{L^{\infty}\left(\Omega_{2}\right)}\right\} \leq R, \tag{3.9}
\end{equation*}
$$

where

$$
\Omega_{1}:=\mathbb{R}^{N}(u>1) \text { and } \Omega_{2}:=\mathbb{R}^{N}(v>1),
$$

for every $(u, v) \in \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right)$ solving problem (P).
Proof Given $w \in L^{p}\left(\Omega_{1}\right)$, we shall write $\|w\|_{p}$ in place of $\|w\|_{L^{p}\left(\Omega_{1}\right)}$ when no confusion can arise. Observe that $m\left(\Omega_{1}\right)<+\infty$ and define, provided $M>1$,

$$
u_{M}(x):=\min \{u(x), M\}, \quad x \in \mathbb{R}^{N} .
$$

Choosing $\varphi:=u_{M}^{\kappa p_{1}+1}$, with $\kappa \geq 0$, in (3.6) gives

$$
\begin{align*}
& \left(\kappa p_{1}+1\right) \int_{\Omega_{1}(u \leq M)} u_{M}^{\kappa p_{1}}|\nabla u|^{p_{1}-2} \nabla u \nabla u_{M} \mathrm{~d} x \\
& \quad \leq M_{1} \int_{\Omega_{1}} a_{1}\left(1+v^{\beta_{1}}\right) u_{M}^{\kappa p_{1}+1} \mathrm{~d} x . \tag{3.10}
\end{align*}
$$

Through the Sobolev embedding theorem, one has

$$
\begin{aligned}
& \left(\kappa p_{1}+1\right) \int_{\Omega_{1}(u \leq M)} u_{M}^{\kappa p_{1}}|\nabla u|^{p_{1}-2} \nabla u \nabla u_{M} \mathrm{~d} x \\
& \quad=\left(\kappa p_{1}+1\right) \int_{\Omega_{1}(u \leq M)}\left(|\nabla u| u^{\kappa}\right)^{p_{1}} \mathrm{~d} x=\frac{\kappa p_{1}+1}{(\kappa+1)^{p_{1}}} \int_{\Omega_{1}(u \leq M)}\left|\nabla u^{\kappa+1}\right|^{p_{1}} \mathrm{~d} x \\
& \quad=\frac{\kappa p_{1}+1}{(\kappa+1)^{p_{1}}} \int_{\Omega_{1}}\left|\nabla u_{M}^{\kappa+1}\right|^{p_{1}} \mathrm{~d} x \geq C_{1} \frac{\kappa p_{1}+1}{(\kappa+1)^{p_{1}}}\left\|u_{M}^{\kappa+1}\right\|_{p_{1}^{*}}^{p_{1}}
\end{aligned}
$$

for appropriate $C_{1}>0$. By Remark 2.1, Hölder's inequality entails

$$
\begin{aligned}
\int_{\Omega_{1}} a_{1}\left(1+v^{\beta_{1}}\right) u_{M}^{\kappa p_{1}+1} \mathrm{~d} x & \leq \int_{\Omega_{1}} a_{1}\left(1+v^{\beta_{1}}\right) u^{\kappa p_{1}+1} \mathrm{~d} x \\
& \leq\left(\left\|a_{1}\right\|_{\xi_{1}}+\left\|a_{1}\right\|_{\zeta_{1}}\|v\|_{p_{2}^{*}}^{\beta_{1}}\right)\|u\|_{\left(\kappa p_{1}+1\right) \xi_{1}^{\prime}}^{\kappa p_{1}+1}
\end{aligned}
$$

Hence, (3.10) becomes

$$
\frac{\kappa p_{1}+1}{(\kappa+1)^{p_{1}}}\left\|u_{M}^{\kappa+1}\right\|_{p_{1}^{*}}^{p_{1}} \leq C_{2}\left(\left\|a_{1}\right\|_{\xi_{1}}+\left\|a_{1}\right\|_{\zeta_{1}}\|v\|_{p_{2}^{*}}^{\beta_{1}}\right)\|u\|_{\left(\kappa p_{1}+1\right) \xi_{1}^{\prime}}^{\kappa p_{1}+1} .
$$

Since $u(x)=\lim _{M \rightarrow \infty} u_{M}(x)$ a.e. in \mathbb{R}^{N}, using the Fatou lemma we get

$$
\frac{\kappa p_{1}+1}{(\kappa+1)^{p_{1}}}\|u\|_{(\kappa+1) p_{1}^{*}}^{(\kappa+1) p_{1}} \leq C_{2}\left(\left\|a_{1}\right\|_{\xi_{1}}+\left\|a_{1}\right\|_{\zeta_{1}}\|v\|_{p_{2}^{*}}^{\beta_{1}}\right)\|u\|_{\left(\kappa p_{1}+1\right) \xi_{1}^{\prime}}^{\kappa p_{1}+1},
$$

namely

$$
\begin{equation*}
\|u\|_{(\kappa+1) p_{1}^{*}} \leq C_{3}^{\eta(\kappa)} \sigma(\kappa)\left(1+\|v\|_{p_{2}^{*}}^{\beta_{1}}\right)^{\eta(\kappa)}\|u\|_{\left(\kappa p_{1}+1\right) \xi_{1}^{\prime}}^{\frac{\kappa p_{1}+1}{(\kappa+1) p_{1}}}, \tag{3.11}
\end{equation*}
$$

where $C_{3}>0$, while

$$
\eta(\kappa):=\frac{1}{(\kappa+1) p_{1}}, \quad \sigma(\kappa):=\left[\frac{\kappa+1}{\left(\kappa p_{1}+1\right)^{1 / p_{1}}}\right]^{\frac{1}{\kappa+1}} .
$$

Let us next verify that

$$
(\kappa+1) p_{1}^{*}>\left(\kappa p_{1}+1\right) \xi_{1}^{\prime} \quad \forall \kappa \in \mathbb{R}_{0}^{+},
$$

which clearly means

$$
\begin{equation*}
\frac{1}{\xi_{1}}<1-\frac{\kappa p_{1}+1}{(\kappa+1) p_{1}^{*}}, \quad \kappa \in \mathbb{R}_{0}^{+} . \tag{3.12}
\end{equation*}
$$

Indeed, the function $\kappa \mapsto \frac{\kappa p_{1}+1}{(\kappa+1) p_{1}^{*}}$ is increasing on \mathbb{R}_{0}^{+}and tends to $\frac{p_{1}}{p_{1}^{*}}$ as $k \rightarrow \infty$. So, (3.12) holds true, because $\frac{1}{\xi_{1}}<1-\frac{p_{1}}{p_{1}^{1}}$; see Remark 2.1. Now, Moser's iteration can start. If there exists a sequence $\left\{\kappa_{n}\right\} \subseteq \mathbb{R}_{0}^{+}$fulfilling

$$
\lim _{n \rightarrow \infty} \kappa_{n}=+\infty, \quad\|u\|_{\left(\kappa_{n}+1\right) p_{1}^{*}} \leq 1 \quad \forall n \in \mathbb{N}
$$

then $\|u\|_{L^{\infty}\left(\Omega_{1}\right)} \leq 1$. Otherwise, with appropriate $\kappa_{0}>0$, one has

$$
\begin{equation*}
\|u\|_{(\kappa+1) p_{1}^{*}}>1 \text { for any } \kappa>\kappa_{0}, \text { besides }\|u\|_{\left(\kappa_{0}+1\right) p_{1}^{*}} \leq 1 \tag{3.13}
\end{equation*}
$$

Inequality (3.12) evidently forces $\frac{\kappa_{0} p_{1}+1}{\left(\kappa_{0}+1\right) p_{1}^{*}}<\frac{1}{\xi_{1}^{\prime}}$. Pick $\kappa_{1}>\kappa_{0}$ such that $\left(\kappa_{1} p_{1}+1\right) \xi_{1}^{\prime}=$ $\left(\kappa_{0}+1\right) p_{1}^{*}$, set $\kappa:=\kappa_{1}$ in (3.11), and use (3.13) to arrive at

$$
\begin{align*}
\|u\|_{\left(\kappa_{1}+1\right) p_{1}^{*}} & \leq C_{3}^{\eta\left(\kappa_{1}\right)} \sigma\left(\kappa_{1}\right)\left(1+\|v\|_{p_{2}^{*}}^{\beta_{1}}\right)^{\eta\left(\kappa_{1}\right)}\|u\|_{\left(\kappa_{0}+1\right) p_{1}^{*}}^{\frac{\kappa_{1} p_{1}+1}{\left(\kappa_{1}+1\right) p p_{1}}} \\
& \leq C_{3}^{\eta\left(\kappa_{1}\right)} \sigma\left(\kappa_{1}\right)\left(1+\|v\|_{p_{2}^{*}}^{\beta_{1}}\right)^{\eta\left(\kappa_{1}\right)} . \tag{3.14}
\end{align*}
$$

Choose next $\kappa_{2}>\kappa_{0}$ satisfying $\left(\kappa_{2} p_{1}+1\right) \xi_{1}^{\prime}=\left(\kappa_{1}+1\right) p_{1}^{*}$. From (3.11), written for $\kappa:=\kappa_{2}$, as well as (3.13)-(3.14), it follows

$$
\begin{aligned}
\|u\|_{\left(\kappa_{2}+1\right) p_{1}^{*}} & \left.\leq C_{3}^{\eta\left(\kappa_{2}\right)} \sigma\left(\kappa_{2}\right)\left(1+\|v\|_{p_{2}^{*}}^{\beta_{1}}\right)\right)^{\eta\left(\kappa_{2}\right)}\|u\|_{\left(\kappa_{1}+1\right) p_{1}^{*}}^{\frac{\kappa_{2} p_{1}+1}{\left(\kappa_{2}+1\right) p_{1}}} \\
& \leq C_{3}^{\eta\left(\kappa_{2}\right)} \sigma\left(\kappa_{2}\right)\left(1+\|v\|_{p_{2}^{*}}^{\beta_{1}}\right)^{\eta\left(\kappa_{2}\right)}\|u\|_{\left(\kappa_{1}+1\right) p_{1}^{*}} \\
& \leq C_{3}^{\eta\left(\kappa_{2}\right)+\eta\left(\kappa_{1}\right)} \sigma\left(\kappa_{2}\right) \sigma\left(\kappa_{1}\right)\left(1+\|v\|_{p_{2}^{*}}^{\beta_{1}}\right)^{\eta\left(\kappa_{2}\right)+\eta\left(\kappa_{1}\right)}
\end{aligned}
$$

By induction, we construct a sequence $\left\{\kappa_{n}\right\} \subseteq\left(\kappa_{0},+\infty\right)$ enjoying the properties below:

$$
\begin{align*}
& \left(\kappa_{n} p_{1}+1\right) \xi_{1}^{\prime}=\left(\kappa_{n-1}+1\right) p_{1}^{*}, \quad n \in \mathbb{N} \tag{3.15}\\
& \|u\|_{\left(k_{n}+1\right) p_{1}^{*}} \leq C_{3}^{\sum_{i=1}^{n} \eta\left(\kappa_{i}\right)} \prod_{i=1}^{n} \sigma\left(\kappa_{i}\right)\left(1+\|v\|_{p_{2}^{*}}^{\beta_{1}}\right)^{\sum_{i=1}^{n} \eta\left(\kappa_{i}\right)} \tag{3.16}
\end{align*}
$$

for all $n \in \mathbb{N}$. A simple computation based on (3.15) yields

$$
\kappa_{n}+1=\left(\kappa_{0}+1\right)\left(\frac{p_{1}^{*}}{p_{1} \xi_{1}^{\prime}}\right)^{n}+\frac{1}{p_{1}^{\prime}} \sum_{i=0}^{n-1}\left(\frac{p_{1}^{*}}{p_{1} \xi_{1}^{\prime}}\right)^{i}
$$

where $\frac{p_{1}^{*}}{p_{1} \xi_{1}^{\prime}}>1$ due to $\left(\mathrm{j}_{4}\right)$ of Remark 2.1. Hence,

$$
\begin{equation*}
\kappa_{n}+1 \simeq C^{*}\left(\frac{p_{1}^{*}}{p_{1} \xi_{1}^{\prime}}\right)^{n} \text { as } n \rightarrow \infty \tag{3.17}
\end{equation*}
$$

with appropriate $C^{*}>0$. Further, if $C_{4}>0$ satisfies

$$
1<\left[\frac{t+1}{\left(t p_{1}+1\right)^{1 / p_{1}}}\right]^{\frac{1}{\sqrt{t+1}}} \leq C_{4}, \quad t \in \mathbb{R}_{0}^{+},
$$

(cf. [5, p. 116]), then

$$
\begin{aligned}
\prod_{i=1}^{n} \sigma\left(\kappa_{i}\right) & =\prod_{i=1}^{n}\left[\frac{\kappa_{i}+1}{\left(\kappa_{i} p_{1}+1\right)^{1 / p_{1}}}\right]^{\frac{1}{\kappa_{i}+1}} \\
& =\prod_{i=1}^{n}\left\{\left[\frac{\kappa_{i}+1}{\left(\kappa_{i} p_{1}+1\right)^{1 / p_{1}}}\right]^{\frac{1}{\sqrt{\kappa_{i}+1}}}\right\}^{\frac{1}{\sqrt{\kappa_{i}+1}}} \leq C_{4}^{\sum_{i=1}^{n} \frac{1}{\sqrt{\kappa_{i}+1}}}
\end{aligned}
$$

Consequently, (3.16) becomes

$$
\|u\|_{\left(k_{n}+1\right) p_{1}^{*}} \leq C_{3}^{\sum_{i=1}^{n} \eta\left(\kappa_{i}\right)} C_{4}^{\sum_{i=1}^{n} \frac{1}{\sqrt{k_{i}+1}}}\left(1+\|v\|_{p_{2}^{*}}^{\beta_{1}}\right)^{\sum_{i=1}^{n} \eta\left(\kappa_{i}\right)}
$$

Since, by (3.17), both $\kappa_{n}+1 \rightarrow+\infty$ and $\frac{1}{\kappa_{n}+1} \simeq \frac{1}{C^{*}}\left(\frac{p_{1} \xi_{1}^{\prime}}{p_{1}^{*}}\right)^{n}$, while (3.1) entails $\|v\|_{p_{2}^{*}} \leq \rho$, there exists a constant $C_{5}>0$ such that

$$
\|u\|_{\left(\kappa_{n}+1\right) p_{1}^{*}} \leq C_{5} \quad \forall n \in \mathbb{N}
$$

whence $\|u\|_{L^{\infty}\left(\Omega_{1}\right)} \leq C_{5}$. Thus, in either case, $\|u\|_{L^{\infty}\left(\Omega_{1}\right)} \leq R$, with $R:=\max \left\{1, C_{5}\right\}$. A similar argument applies to v.

Using (3.9), besides the definition of sets Ω_{i}, we immediately infer the following
Theorem 3.4 Under assumptions $\left(\mathrm{H}_{f, g}\right)$ and $\left(\mathrm{H}_{a}\right)$, one has

$$
\begin{equation*}
\max \left\{\|u\|_{\infty},\|v\|_{\infty}\right\} \leq R \tag{3.18}
\end{equation*}
$$

for every weak solution $(u, v) \in \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right)$ to problem (P). Here, R is given by Lemma 3.3.

4 The regularized system

Assertion $\left(\mathrm{j}_{1}\right)$ of Remark 2.1 ensures that $a_{i} \in L^{\left(p_{i}^{*}\right)^{\prime}}\left(\mathbb{R}^{N}\right)$. Therefore, thanks to MintyBrowder's theorem [2, Theorem V.16], the equation

$$
\begin{equation*}
-\Delta_{p_{i}} w_{i}=a_{i}(x) \quad \text { in } \mathbb{R}^{N} \tag{4.1}
\end{equation*}
$$

possesses a unique solution $w_{i} \in \mathcal{D}^{1, p_{i}}\left(\mathbb{R}^{N}\right), i=1,2$. Moreover,

- $w_{i}>0$, and
- $w_{i} \in L^{\infty}\left(\mathbb{R}^{N}\right)$.

Indeed, testing (4.1) with $\varphi:=w_{i}^{-}$yields $w_{i} \geq 0$, because $a_{i}>0$ by $\left(\mathrm{H}_{a}\right)$. Through the strong maximum principle, we obtain

$$
\operatorname{ess} \inf _{B_{r}(x)} w_{i}>0 \text { for any } r>0, x \in \mathbb{R}^{N}
$$

Hence, $w_{i}>0$. Moser's iteration technique then produces $w_{i} \in L^{\infty}\left(\mathbb{R}^{N}\right)$.
Next, fix $\varepsilon \in] 0,1[$ and define

$$
\begin{align*}
(\underline{u}, \underline{v}) & =\left(\left[m_{1}(R+1)^{\alpha_{1}}\right]^{\frac{1}{p_{1}-1}} w_{1},\left[m_{2}(R+1)^{\beta_{2}}\right]^{\frac{1}{p_{2}-1}} w_{2}\right) \\
\left(\bar{u}_{\varepsilon}, \bar{v}_{\varepsilon}\right) & =\left(\left[M_{1} \varepsilon^{\alpha_{1}}\left(1+R^{\beta_{1}}\right)\right]^{\frac{1}{p_{1}-1}} w_{1},\left[M_{2} \varepsilon^{\beta_{2}}\left(1+R^{\alpha_{2}}\right)\right]^{\frac{1}{p_{2}-1}} w_{2}\right) \tag{4.2}
\end{align*}
$$

where $R>0$ comes from Lemma 3.3, as well as

$$
\mathcal{K}_{\varepsilon}:=\left\{\left(z_{1}, z_{2}\right) \in L^{p_{1}^{*}}\left(\mathbb{R}^{N}\right) \times L^{p_{2}^{*}}\left(\mathbb{R}^{N}\right): \underline{u} \leq z_{1} \leq \bar{u}_{\varepsilon}, \underline{v} \leq z_{2} \leq \bar{v}_{\varepsilon}\right\}
$$

Obviously, $\mathcal{K}_{\varepsilon}$ is bounded, convex, closed in $L^{p_{1}^{*}}\left(\mathbb{R}^{N}\right) \times L^{p_{2}^{*}}\left(\mathbb{R}^{N}\right)$. Given $\left(z_{1}, z_{2}\right) \in \mathcal{K}_{\varepsilon}$, write

$$
\begin{equation*}
\tilde{z}_{i}:=\min \left\{z_{i}, R\right\}, \quad i=1,2 \tag{4.3}
\end{equation*}
$$

Since, on account of (4.3), hypothesis $\left(\mathrm{H}_{f, g}\right)$ entails

$$
\begin{align*}
& a_{1} m_{1}(R+1)^{\alpha_{1}} \leq a_{1} f\left(\tilde{z}_{1}+\varepsilon, \tilde{z}_{2}\right) \leq a_{1} M_{1} \varepsilon^{\alpha_{1}}\left(1+R^{\beta_{1}}\right) \\
& a_{2} m_{2}(R+1)^{\beta_{2}} \leq a_{2} g\left(\tilde{z}_{1}, \tilde{z}_{2}+\varepsilon\right) \leq a_{2} M_{2}\left(1+R^{\alpha_{2}}\right) \varepsilon^{\beta_{2}} \tag{4.4}
\end{align*}
$$

while, recalling Remark 2.1, $a_{i} \in L^{\left(p_{i}^{*}\right)^{\prime}}\left(\mathbb{R}^{N}\right)$, the functions

$$
x \mapsto a_{1}(x) f\left(\tilde{z}_{1}(x)+\varepsilon, \tilde{z}_{2}(x)\right), \quad x \mapsto a_{2}(x) g\left(\tilde{z}_{1}(x), \tilde{z}_{2}(x)+\varepsilon\right)
$$

belong to $\mathcal{D}^{-1, p_{1}^{\prime}}\left(\mathbb{R}^{N}\right)$ and $\mathcal{D}^{-1, p_{2}^{\prime}}\left(\mathbb{R}^{N}\right)$, respectively. Consequently, by Minty-Browder's theorem again, there exists a unique weak solution $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ of the problem

$$
\begin{cases}-\Delta_{p_{1}} u=a_{1}(x) f\left(\tilde{z}_{1}(x)+\varepsilon, \tilde{z}_{2}(x)\right) & \text { in } \mathbb{R}^{N}, \tag{4.5}\\ -\Delta_{p_{2}} v=a_{2}(x) g\left(\tilde{z}_{1}(x), \tilde{z}_{2}(x)+\varepsilon\right) & \text { in } \mathbb{R}^{N}, \\ u_{\varepsilon}, v_{\varepsilon}>0 & \text { in } \mathbb{R}^{N}\end{cases}
$$

Let $\mathcal{T}: \mathcal{K}_{\varepsilon} \rightarrow L^{p_{1}^{*}}\left(\mathbb{R}^{N}\right) \times L^{p_{2}^{*}}\left(\mathbb{R}^{N}\right)$ be defined by $\mathcal{T}\left(z_{1}, z_{2}\right)=\left(u_{\varepsilon}, v_{\varepsilon}\right)$ for every $\left(z_{1}, z_{2}\right) \in$ $\mathcal{K}_{\varepsilon}$.

Lemma 4.1 One has $\underline{u} \leq u_{\varepsilon} \leq \bar{u}_{\varepsilon}$ and $\underline{v} \leq v_{\varepsilon} \leq \bar{v}_{\varepsilon}$. So, in particular, $\mathcal{T}\left(\mathcal{K}_{\varepsilon}\right) \subseteq \mathcal{K}_{\varepsilon}$.
Proof Via (4.2), (4.1), (4.5), and (4.4), we get

$$
\begin{aligned}
&\langle-\left.\Delta_{p_{1}} \underline{u}-\left(-\Delta_{p_{1}} u_{\varepsilon}\right),\left(\underline{u}-u_{\varepsilon}\right)^{+}\right\rangle \\
&=\left\langle-\Delta_{p_{1}}\left[m_{1}(R+1)^{\alpha_{1}}\right]^{\frac{1}{p_{1}-1}} w_{1}-\left(-\Delta_{p_{1}} u_{\varepsilon}\right),\left(\underline{u}-u_{\varepsilon}\right)^{+}\right\rangle \\
& \quad=\int_{\mathbb{R}^{N}} a_{1}\left(\left(m_{1}(R+1)^{\alpha_{1}}-f\left(\tilde{z}_{1}+\varepsilon, \tilde{z}_{2}\right)\right)\left(\underline{u}-u_{\varepsilon}\right)^{+} \mathrm{d} x \leq 0,\right.
\end{aligned}
$$

while Lemma A.0.5 of [18] furnishes

$$
\begin{aligned}
& \left\langle-\Delta_{p_{1}} \underline{u}-\left(-\Delta_{p_{1}} u_{\varepsilon}\right),\left(\underline{u}-u_{\varepsilon}\right)^{+}\right\rangle \\
& \quad=\int_{\mathbb{R}^{N}}\left(|\nabla \underline{u}|^{p_{1}-2} \nabla \underline{u}-\left|\nabla u_{\varepsilon}\right|^{p_{1}-2} \nabla u_{\varepsilon}\right) \nabla\left(\underline{u}-u_{\varepsilon}\right)^{+} \mathrm{d} x \geq 0 .
\end{aligned}
$$

Now, arguing as in the proof of Proposition 2.2, one has $\left(\underline{u}-u_{\varepsilon}\right)^{+}=0$, i.e., $\underline{u} \leq u_{\varepsilon}$. The remaining inequalities can be verified similarly.

Lemma 4.2 The operator \mathcal{T} is continuous and compact.
Proof Pick a sequence $\left\{\left(z_{1, n}, z_{2, n}\right)\right\} \subseteq \mathcal{K}_{\varepsilon}$ such that

$$
\left(z_{1, n}, z_{2, n}\right) \rightarrow\left(z_{1}, z_{2}\right) \text { in } L^{p_{1}^{*}}\left(\mathbb{R}^{N}\right) \times L^{p_{2}^{*}}\left(\mathbb{R}^{N}\right)
$$

If $\left(u_{n}, v_{n}\right):=\mathcal{T}\left(z_{1, n}, z_{2, n}\right)$ and $(u, v):=\mathcal{T}\left(z_{1}, z_{2}\right)$, then

$$
\begin{align*}
\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{p_{1}-2} \nabla u_{n} \nabla \varphi \mathrm{~d} x & =\int_{\mathbb{R}^{N}} a_{1} f\left(\tilde{z}_{1, n}+\varepsilon, \tilde{z}_{2, n}\right) \varphi \mathrm{d} x, \tag{4.6}\\
\int_{\mathbb{R}^{N}}\left|\nabla v_{n}\right|^{p_{2}-2} \nabla v_{n} \nabla \psi \mathrm{~d} x & =\int_{\mathbb{R}^{N}} a_{2} g\left(\tilde{z}_{1, n}, \tilde{z}_{2, n}+\varepsilon\right) \psi \mathrm{d} x, \tag{4.7}\\
\int_{\mathbb{R}^{N}}|\nabla u|^{p_{1}-2} \nabla u \nabla \varphi \mathrm{~d} x & =\int_{\mathbb{R}^{N}} a_{1} f\left(\tilde{z}_{1}+\varepsilon, \tilde{z}_{2}\right) \varphi \mathrm{d} x, \\
\int_{\mathbb{R}^{N}}|\nabla v|^{p_{2}-2} \nabla v \nabla \psi \mathrm{~d} x & =\int_{\mathbb{R}^{N}} a_{2} g\left(\tilde{z}_{1}, \tilde{z}_{2}+\varepsilon\right) \psi \mathrm{d} x
\end{align*}
$$

for every $(\varphi, \psi) \in \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right)$. Set $\varphi:=u_{n}$ in (4.6). From (4.4), it follows after using Hölder's inequality,

$$
\begin{aligned}
\left\|\nabla u_{n}\right\|_{p_{1}}^{p_{1}} & =\int_{\mathbb{R}^{N}} a_{1} f\left(\tilde{z}_{1, n}+\varepsilon, \tilde{z}_{2, n}\right) u_{n} \mathrm{~d} x \\
& \leq M_{1} \int_{\mathbb{R}^{N}} a_{1} \varepsilon^{\alpha_{1}}\left(1+R^{\beta_{1}}\right) u_{n} \mathrm{~d} x \leq C_{\varepsilon} \int_{\mathbb{R}^{N}} a_{1} u_{n} \mathrm{~d} x \\
& \leq C_{\varepsilon}\left\|a_{1}\right\|_{\left(p_{1}^{*}\right)^{\prime}}\left\|u_{n}\right\|_{p_{1}^{*}} \leq C_{\varepsilon}\left\|a_{1}\right\|_{\left(p_{1}^{*}\right)^{\prime}}\left\|\nabla u_{n}\right\|_{p_{1}} \quad \forall n \in \mathbb{N},
\end{aligned}
$$

where $C_{\varepsilon}:=M_{1} \varepsilon^{\alpha_{1}}\left(1+R^{\beta_{1}}\right)$. This actually means that $\left\{u_{n}\right\}$ is bounded in $\mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right)$, because $p_{1}>1$. By (4.7), an analogous conclusion holds for $\left\{v_{n}\right\}$. Along subsequences if necessary, we may thus assume

$$
\begin{equation*}
\left(u_{n}, v_{n}\right) \rightharpoonup(u, v) \text { in } \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right) \tag{4.8}
\end{equation*}
$$

So, $\left\{\left(u_{n}, v_{n}\right)\right\}$ converges strongly in $L^{q_{1}}\left(B_{r_{1}}\right) \times L^{q_{2}}\left(B_{r_{2}}\right)$ for any $r_{i}>0$ and any $1 \leq q_{i} \leq p_{i}^{*}$, whence, up to subsequences again,

$$
\begin{equation*}
\left(u_{n}, v_{n}\right) \rightarrow(u, v) \text { a.e. in } \mathbb{R}^{N} \tag{4.9}
\end{equation*}
$$

Now, combining Lemma 4.1 with Lebesgue's dominated convergence theorem, we obtain

$$
\begin{equation*}
\left(u_{n}, v_{n}\right) \rightarrow(u, v) \text { in } L^{p_{1}^{*}}\left(\mathbb{R}^{N}\right) \times L^{p_{2}^{*}}\left(\mathbb{R}^{N}\right) \tag{4.10}
\end{equation*}
$$

as desired. Let us finally verify that $\mathcal{T}\left(\mathcal{K}_{\varepsilon}\right)$ is relatively compact. If $\left(u_{n}, v_{n}\right):=\mathcal{T}\left(z_{1, n}, z_{2, n}\right)$, $n \in \mathbb{N}$, then (4.6)-(4.7) can be written. Hence, the previous argument yields a pair $(u, v) \in$ $L^{p_{1}^{*}}\left(\mathbb{R}^{N}\right) \times L^{p_{2}^{*}}\left(\mathbb{R}^{N}\right)$ fulfilling (4.10), possibly along a subsequence. This completes the proof.

Thanks to Lemmas 4.1-4.2, Schauder's fixed point theorem applies, and there exists $\left(u_{\varepsilon}, v_{\varepsilon}\right) \in \mathcal{K}_{\varepsilon}$ such that $\left(u_{\varepsilon}, v_{\varepsilon}\right)=\mathcal{T}\left(u_{\varepsilon}, v_{\varepsilon}\right)$. Through Theorem 3.4, we next arrive at

Theorem 4.3 Under hypotheses $\left(\mathrm{H}_{f, g}\right)$ and $\left(\mathrm{H}_{a}\right)$, for every $\varepsilon>0$ small, problem $\left(\mathrm{P}_{\varepsilon}\right)$ admits a solution $\left(u_{\varepsilon}, v_{\varepsilon}\right) \in \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right)$ complying with (3.18).

5 Existence of solutions

We are now ready to establish the main result of this paper.
Theorem 5.1 Let $\left(\mathrm{H}_{f, g}\right)$ and $\left(\mathrm{H}_{a}\right)$ be satisfied. Then, (P) has a weak solution $(u, v) \in$ $\mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right)$, which is essentially bounded.

Proof Pick $\varepsilon:=\frac{1}{n}$, with $n \in \mathbb{N}$ big enough. Theorem 4.3 gives a pair $\left(u_{n}, v_{n}\right)$, where $u_{n}:=u_{\frac{1}{n}}$ and $v_{n}:=v_{\frac{1}{n}}$, such that

$$
\begin{align*}
& \int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{p_{1}-2} \nabla u_{n} \nabla \varphi \mathrm{~d} x=\int_{\mathbb{R}^{N}} a_{1} f\left(u_{n}+\frac{1}{n}, v_{n}\right) \varphi \mathrm{d} x, \\
& \int_{\mathbb{R}^{N}}\left|\nabla v_{n}\right|^{p_{2}-2} \nabla v_{n} \nabla \psi \mathrm{~d} x=\int_{\mathbb{R}^{N}} a_{2} g\left(u_{n}, v_{n}+\frac{1}{n}\right) \psi \mathrm{d} x \tag{5.1}
\end{align*}
$$

for every $(\varphi, \psi) \in \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right)$, as well as (cf. Lemma 4.1)

$$
\begin{equation*}
0<\underline{u} \leq u_{n} \leq R, \quad 0<\underline{v} \leq v_{n} \leq R . \tag{5.2}
\end{equation*}
$$

Thanks to $\left(\mathrm{H}_{f, g}\right)$, (5.2), and $\left(\mathrm{H}_{a}\right)$, choosing $\varphi:=u_{n}, \psi:=v_{n}$ in (5.1) easily entails

$$
\begin{aligned}
& \left\|\nabla u_{n}\right\|_{p_{1}}^{p_{1}} \leq M_{1} \int_{\mathbb{R}^{N}} a_{1} u_{n}^{\alpha_{1}+1}\left(1+v_{n}^{\beta_{1}}\right) \mathrm{d} x \leq M_{1} R^{\alpha_{1}+1}\left(1+R^{\beta_{1}}\right)\left\|a_{1}\right\|_{1}, \\
& \left\|\nabla v_{n}\right\|_{p_{2}}^{p_{2}} \leq M_{2} \int_{\mathbb{R}^{N}} a_{2}\left(1+u_{n}^{\alpha_{2}}\right) v_{n}^{\beta_{2}+1} \mathrm{~d} x \leq M_{2}\left(1+R^{\alpha_{2}}\right) R^{\beta_{2}+1}\left\|a_{2}\right\|_{1},
\end{aligned}
$$

whence both $\left\{u_{n}\right\} \subseteq \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right)$ and $\left\{v_{n}\right\} \subseteq \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right)$ are bounded. Along subsequences if necessary, we thus have (4.8)-(4.9). Let us next show that

$$
\begin{equation*}
\left(u_{n}, v_{n}\right) \rightarrow(u, v) \text { strongly in } \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right) \tag{5.3}
\end{equation*}
$$

Testing the first equation in (5.1) with $\varphi:=u_{n}-u$ yields

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{p_{1}-2} \nabla u_{n} \nabla\left(u_{n}-u\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} a_{1} f\left(u_{n}+\frac{1}{n}, v_{n}\right)\left(u_{n}-u\right) \mathrm{d} x . \tag{5.4}
\end{equation*}
$$

The right-hand side of (5.4) goes to zero as $n \rightarrow \infty$. Indeed, by $\left(\mathrm{H}_{f, g}\right)$, (5.2), and $\left(\mathrm{H}_{a}\right)$ again,

$$
\left|a_{1} f\left(u_{n}+\frac{1}{n}, v_{n}\right)\left(u_{n}-u\right)\right| \leq 2 M_{1} R^{\alpha_{1}+1}\left(1+R^{\beta_{1}}\right) a_{1} \quad \forall n \in \mathbb{N} \text {, }
$$

so that, recalling (4.9), Lebesgue's dominated convergence theorem applies. Through (5.4), we obtain $\lim _{n \rightarrow \infty}\left\langle-\Delta_{p_{1}} u_{n}, u_{n}-u\right\rangle=0$. Likewise, $\left\langle-\Delta_{p_{2}} v_{n}, v_{n}-v\right\rangle \rightarrow 0$ as $n \rightarrow \infty$, and (5.3) directly follows from Proposition 2.2. On account of (5.1), besides (5.3), the final step is to verify that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} a_{1} f\left(u_{n}+\frac{1}{n}, v_{n}\right) \varphi \mathrm{d} x=\int_{\mathbb{R}^{N}} a_{1} f(u, v) \varphi \mathrm{d} x, \tag{5.5}\\
& \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} a_{2} g\left(u_{n}, v_{n}+\frac{1}{n}\right) \psi \mathrm{d} x=\int_{\mathbb{R}^{N}} a_{2} g(u, v) \psi \mathrm{d} x \tag{5.6}
\end{align*}
$$

for all $(\varphi, \psi) \in \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, p_{2}}\left(\mathbb{R}^{N}\right)$. If $\varphi \in \mathcal{D}^{1, p_{1}}\left(\mathbb{R}^{N}\right)$, then $\left(\mathrm{j}_{1}\right)$ in Remark 2.1 gives $a_{1} \varphi \in L^{1}\left(\mathbb{R}^{N}\right)$. Since, as before,

$$
\left|a_{1} f\left(u_{n}+\frac{1}{n}, v_{n}\right) \varphi\right| \leq M_{1} R^{\alpha_{1}+1}\left(1+R^{\beta_{1}}\right) a_{1}|\varphi|, \quad n \in \mathbb{N},
$$

assertion (5.5) stems from Lebesgue's dominated convergence theorem. The proof of (5.6) is similar at all.

Acknowledgements This work is performed within the 2016-2018 Research Plan-Intervention Line 2: 'Variational Methods and Differential Equations' and partially supported by GNAMPA of INDAM.

References

1. Alves, C.O., Corrêa, F.J.S.A.: On the existence of positive solution for a class of singular systems involving quasilinear operators. Appl. Math. Comput. 185, 727-736 (2007)
2. Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011)
3. del Pino, M., Kowalczyk, M., Chen, X.: The Gierer-Meinhardt system: the breaking of homoclinics and multi-bump ground states. Commun. Contemp. Math. 3, 419-439 (2001)
4. del Pino, M., Kowalczyk, M., Wei, J.: Multi-bump ground states of the Gierer-Meinhardt system in \mathbb{R}^{2}. Ann. Inst. H. Poincaré Anal. Non Linéaire 20, 53-85 (2003)
5. Drabek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities. Nonlinear Analysis and Applications Series. de Gruyter, Berlin (1997)
6. El Manouni, S., Perera, K., Shivaji, R.: On singular quasimonotone (p, q)-Laplacian systems. Proc. R. Soc. Edinb. Sect. A 142, 585-594 (2012)
7. Ghergu, M.: Lane-Emden systems with negative exponents. J. Funct. Anal. 258, 3295-3318 (2010)
8. Ghergu, M.: Lane-Emden systems with singular data. Proc. R. Soc. Edinb. Sect. A 141, 1279-1294 (2011)
9. Giacomoni, J., Schindler, I., Takac, P.: Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6, 117-158 (2007)
10. Giacomoni, J., Hernandez, J., Sauvy, P.: Quasilinear and singular elliptic systems. Adv. Nonlinear Anal. 2, 1-41 (2013)
11. Hernández, J., Mancebo, F.J., Vega, J.M.: Positive solutions for singular semilinear elliptic systems. Adv. Differ. Equ. 13, 857-880 (2008)
12. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)
13. Montenegro, M., Suarez, A.: Existence of a positive solution for a singular system. Proc. R. Soc. Edinb. Sect. A 140, 435-447 (2010)
14. Motreanu, D., Moussaoui, A.: Existence and boundedness of solutions for a singular cooperative quasilinear elliptic system. Complex Var. Elliptic Equ. 59, 285-296 (2014)
15. Motreanu, D., Moussaoui, A.: A quasilinear singular elliptic system without cooperative structure. Acta Math. Sci. Ser. B 34, 905-916 (2014)
16. Motreanu, D., Moussaoui, A.: An existence result for a class of quasilinear singular competitive elliptic systems. Appl. Math. Lett. 38, 33-37 (2014)
17. Moussaoui, A., Khodja, B., Tas, S.: A singular Gierer-Meinhardt system of elliptic equations in \mathbb{R}^{N}. Nonlinear Anal. 71, 708-716 (2009)
18. Peral, I.: Multiplicity of Solutions for the p-Laplacian, ICTP Lecture Notes of the Second School of Nonlinear Functional Analysis and Applications to Differential Equations. Trieste (1997)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author Query Form

Please ensure you fill out your response to the queries raised below and return this form along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the 'Author's response' area provided below

Query	Details required	Author's response
1.	Please check and confirm that the cor- responding author and their respective affiliations have been correctly identi- fied.	

[^0]: (i) Springer

