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Abstract

Indices of acceptability are well suited to frame the axiomatic features of many performance mea-

sures, associated to terminal random cash flows. We extend this notion to classes of càdlàg processes

modelling cash flows over a fixed investment horizon. We provide a representation result for bounded

paths. We suggest an acceptability index based both on the static Average Value-at-Risk functional

and the running minimum of the paths, which eventually represents a RAROC-type model. Some

numerical comparisons clarify the magnitude of performance evaluation for processes.
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1 Introduction

A financial performance aims to evaluate the return characteristics of a given investment portfolio, and to

fulfill the risk and asset allocation constraints provided by investors. The resulting measurement can be

used to judge the quality of managerial skillfulness, sincefund managers viewed as competitors should

be able to process those piece of information not reflected bymarket prices, then providing an actual

value-added service. The balance between reward and risk iscondensed into aperformance measureas

the popular Sharpe ratio (SR), which can be used to rank investment portfolios according to these two

characteristics. Other performance measures are alternative to SR, accounting for stylized facts about

financial returns such as asymmetrical and fat-tailed distributions. See [4] for a textbook treatment of

several performance measures.
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The unified mathematical framework of Cherny & Madan (2009) deals with some desirable features

many performance measures share. Given a set of (at least) four properties, they identifyindices of ac-

ceptabilityof nonnegative financial performance for a given terminal random cash flow. The basic idea

is intimately linked to the well known analysis in Atzner et al. (1999) of coherent risk measure and

their acceptance sets, and the subsequent analysis in Carr et al. (2001) of arbitrage pricing and accep-

tance hedging: There is a continuum of degrees of acceptability of a position, varying with different

levels of stressed scenarios supporting positive expectations of cumulative terminal cash flow. Thanks to

the duality between coherent risk measures and performancemeasures, a class of equivalent probabil-

ity measures, or the corresponding set of their Radon-Nykodim derivatives, give the acceptability of a

trade’s cash flow. In other words, an index of acceptability derived from a coherent risk measure must

be proportional to the amount of stress tolerated and must yield nonnegative values exceeding floors,

so that nonnegative expected cash flows are attained. This fits well the regulatory-capital requirements

and the pertaining economic-capital modelling used in practice, for example by banks undertaking ex

ante improvements in business-performance tracking through the use of risk adjusted return on capital

(RAROC), as the ratio of expected final return to the economiccapital measured by a coherent risk mea-

sure or by the Value-at-Risk (VaR). Not surprisingly, an acceptability index (AI) may be expressed just

in ratio form, as the forerunner static SR.

On the other hand, the industry of fund management claims theuse of performance measures such as

the Calmar ratio (CR) designed to account for the risk associated to cash flow resulting from the whole

investment’s path over a fixed horizon. If this is the case, SRis redefined by set the reward measure in the

numerator equal to the expected terminal cash flow, and usingthe expected maximum drawdown over the

horizon as a risk measure in the denominator. The risk-adjusted return then takes into account the future

evolution of the market value of the position, not just the terminal one. Albeit this kind of performance

measure is widespread among practitioners, it cannot be directly placed into the realm of static AIs

studied in [11]. Static risk measures does not embed the cashflow’s path experienced over time. On the

other hand, dynamic risk measures have been developed to account for this. First, static risk measures

are turned into conditional ones to account for the information available at the risk assessment. Then, on

some filtered probability space risk assessment is updated as time elapses and new information arrives, so

that a sequence of conditional risk measures depicts a dynamical framework based on different notions

of time consistency, see [1] and the references therein for a detailed review. Itis possible to turn things

around, and define a coherent monetary risk measure as in Cheridito et al. (2004), yielding a numerical

evaluation rather than a sequence of conditional risk measures (random variables). For the special case

of a finite sequence of adapted cash flows see [18, Section 3.2].

In the present paper we provide a framework for AIs of performance put in duality with coherent mone-

tary risk measures for bounded càdlàg processes. To recover the information lost in the static setting, one

records all possible stressed scenarios during the holdingperiod of a financed position, which is repre-

sented by a path rather than a random variable. However, we donot develop a dynamic setup to process

information, rather we give a representation based on a static index acting on processes which preserves

the main features of an AI: Quasi-concavity, positive homogeneity, monotonicity and Fatou continuity.
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Eventually, this includes the one-period AI as a particularcase. Furthermore, we propose an example of

AI for processes related to the one-time step RAROC. Our contribution is similar to that of Bielecki et al.

(2014), or the more recent Bielecki et al. (2017), which define coherent risk and AIs for paths in a newly

proposed dynamical setting. These authors studied the duality betweendynamic coherent risk measures

ρ : {0, . . . ,T}×D×Ω→R anddynamic coherent acceptability indicesρ : {0, . . . ,T}×D×Ω → [0,∞],

where{0, . . . ,T} is a set of dates andD is a set of (adapted) real-valued stochastic processes modelling

cash flows. These authors impose two additional properties to α andρ called independence of the past

and dynamic consistency. Nevertheless, this framework cannot deal with performance measures such

as the aforementioned CR. Our contribution enable us to overcome this limitation, and to deal with

path-transformations like taking the maximum drawdown or the running minimum of a cash flow’s path.

Eventually information about time resolution of an investment process (from the spatial viewpoint) is not

lost. On the generalization of the AIs to the continuous-time setting see Biagini and Bion-Nadal (2015).

The paper proceeds as follows. Section 2 introduces the essential toolkit for treating some classes of

càdlàg processes as models of total cumulative cash flows evolving within a finite horizon, and defines

the AIs of performance in this extended framework. The duality concerning such classes are briefly re-

viewed, together with additional results on their lattice structure used in proving the main representation

of this paper. Section 3 is devoted to the generalization of the static AI of [11] from the domainL∞

to the collection of bounded càdlàg processes. The new AI is obtained in a straightforward manner, by

properly combining the contributions [11, 10]. The multi-period analogue of the static system of sup-

porting kernels is depicted in terms of bi-variate processes reproducing the Radon-Nikodym derivatives

corresponding to a static system of kernels. Section 4 dealswith the analysis of second order stochastic

dominance compatible with the extended AI. Section 5 studies its arbitrage and expectation consistency.

Section 6 contains the main example of an AI for processes based on the one-period RAROC, as the

ratio of the expected terminal cumulative cash flow to the Average Value-at-Risk of the cash flow’s run-

ning minimum. Section 6 provides numerical comparisons of simulated values in order to appreciate the

magnitude of AIs and other performance measures. Section 8 contains some concluding remarks.

2 Notations and Preliminary Results

In this paper we model the whole evolution of financial outcomes over a finite time-interval rather than

the terminal cumulative cash flow typically handled in performance analysis. HereX = (Xt)t∈[0,T ] is the

stochastic process modeling the random cash flow resulting from dynamic trading over the investment

horizon[0,T], whereT > 0. We are given a filtered probability space(Ω,F ,(Ft )t∈[0,T ],P) satisfying the

usual conditions, i.e., the basis space(Ω,F ,P) is complete, the filtration(Ft)t∈[0,T ] is right-continuous,

and the initial informationF0 contains all theP-null events ofF . Almost surely equal random variables

are identified as well as indistinguishable processes on thefiltered space,Xt(ω) =Yt(ω) for almost all

ω ∈ Ω and all t > 0. Comparisons among processes are understood in the latter sense. For example,

X >Y means thatXt is greater than or equal toYt , for all datest and for almost allω . As usual we set

Lp := Lp(Ω,F ,P) and following [10, 13] we denoteR0 the vector space of (theP-a.s. and for everyt ∈
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[0,T] equivalence classes of) càdlàg processes that are adapted to the filtration. For the characterization

we develop in Section 3, the modelX of a (discounted) cash flow evolving within the horizon is that

of a bounded càdlàg process belonging to the stricter class R∞, i.e. X∗ := supt∈[0,T ] |Xt | ∈ L∞. This is a

Banach space equipped with the norm‖X‖R∞ := ‖X∗‖∞ , where‖·‖∞ is the usual norm onL∞.

Definition 1. A performance measureα : R∞ → R is an AI for processes if it satisfies the following

properties:

(1) Acceptable cash flows at a levelx> 0 form a convex above-level set

Ax :=
{

X ∈ R
∞∣
∣α(X)> x

}

.

In the current context, this is a family describing acceptability for any level x. The convexity of

anyAx is equivalent to the quasi-concavity ofα , namelyα(λX+(1−λ )Y)> x for anyλ ∈ [0,1]

providedX,Y are such thatα(X)> x andα(Y)> x. Takingx=min{α(X),α(Y)} quasi-concavity

implies that a diversified position performs better than itscomponents.

(2) Acceptable cash flows are valued monotonically,

X 6Y ⇒ α(X)6 α(Y),

thusα is an increasing map andY is at least as acceptable asX.

(3) The acceptance setAx is required to be a convex cone, becauseα is not meant to be an investment

criterion but rather it measures to what extent moving away from marginal trades supporting the

random cash flowX results in a newinvestment directionbased on alternative pricing kernels.

Hence

α(λX) = α(X), for λ > 0,

i.e. scale invarianceis required and the performance of an investment should not depend upon the

initial endowment. In other words,λX is based on a trade in the same direction ofX, and then it

has the same level of acceptance.

(4) The acceptability functional is required to be upper Fatou-continuous forX ∈ R∞,

limsup
n→∞

α(Xn)6 α(X),

and for every bounded sequence(Xn)n∈N ⊂ R∞ of paths such that(Xn)∗ converges in probability

to X∗, i.e. (Xn−X)∗
P
→ 0. This implies thatα(X) > x provided thatα(Xn) > x for everyn∈ N

andx> 0. The bounded sequence can be taken as‖Xn‖
R∞ 6 1 uniformly.

To obtain the representation results of Section 3, we need the duality relations concerning spaces of

càdlàg processes, as well studied more recently in [10] and classically in [13]. We also need the lattice

structure of some of such spaces which enforces the involvedduality. Recall that a Riesz space is an
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ordered vector space which is also a lattice, where the norm and the absolute value are in general differ-

ent. If the norm is in addition monotone in the absolute valueof a vector, then it is a lattice norm and

completeness entails a Banach lattice. Two special classesof Banach lattices are the AM-spaces and the

AL-spaces, based on the following definitions of lattice norms:

• M-norm, wheneverX,Y > 0 implies‖sup{X,Y}‖ = max{‖X‖,‖Y‖};

• L-norm, wheneverX,Y > 0 implies‖X+Y‖= max{‖X‖,‖Y‖}.

Thus, a norm complete Riesz space equipped with anM-norm is an AM-space, while a norm complete

Riesz space equipped with anL-norm is an AL-space. A useful result states that a Banach lattice is an

AM-space (resp. an AL-space) if and only if its dual is an AL-space (resp. an AM-space), see [2, Chs

8, 9] for more details. The classRp, for p∈ [1,∞], generalizesR∞ to those càdlàg processes such that

X∗ ∈ Lp
+. This is also a Banach space with norm‖X‖Rp := ‖X∗‖p , see Appendix A for a brief review.

Proposition 1. Rp is a Banach lattice, for p∈ [1,∞]. Moreover,R∞ is an AM-space with order unit.

Proof. On Rp let us consider the partial orderingX > Y ⇔ Xt(ω) > Yt(ω) for any t ∈ [0,T], and for

P-almost allω ∈ Ω. Using this partial ordering, ifX,Y ∈Rp and|X|> |Y|, which implies that|Xt(ω)|>

|Yt(ω)| for anyt ∈ [0,T], and forP-almost allω ∈ Ω, this also implies that the random variablesX∗,Y∗ ∈

Lp
+ satisfy the inequality

‖X‖Rp = ‖X∗‖p > ‖Y∗‖p = ‖Y‖Rp.

Hence,Rp is a Banach lattice forp∈ [1,∞]. To show thatR∞ is an AM space with unit, it suffices to

prove that such an order unit is the stochastic process1= (1t)t∈[0,T ], where1t(ω) = 1,P-a.s. In order to

prove it, we have to show thatR∞ = ∪∞
n=1[−n1,n1], where[−n1,n1] denotes the following order interval

of R∞: [−n1,n1] = {X ∈R∞ : n1> X >−n1}, with respect to the partial ordering ofR∞ defined above.

The inclusion|Xt | > supt∈[0,T ] |Yt | in L∞, and consequently∪∞
n=1[−n1,n1] ⊆ R∞ is obvious. For the

opposite inclusion, for anyX ∈ R∞, we may define the stochastic processY ∈ R∞, such thatY > X and

moreoverYt = ([|Xt |+1])1t .

Another class of Banach lattices related to the geometry of càdlàg processes isA q, for q∈ [1,∞], con-

taining the bi-variate processesA : [0,T]×Ω → R
2 such thatA= (Apr

t ,A
op
t )t∈[0,T ] has right-continuous

coordinates with finite variation,Apr being predictable withApr
0 = 0, while Aop being optional and purely

discontinuous, see Appendix A. We have Var(Apr)+Var(Aop) ∈ Lq, where Var(·) is he usual variation of

a process. The related positive coneA
q
+ contains those bi-variate processesA∈A q such thatApr,Aop> 0

and increasing. The base of this cone is defined asB
q
+ :=

{

A∈ A
q
+

∣

∣ 〈1,A〉> 0
}

, where1 is the element

X ∈ Rp such thatX∗(ω) = 1(ω) = 1, P-a.s. The partial ordering implied byA q
+ onA q is defined as

C > D ⇐⇒C−D ∈ A
q
+,

and makesA q
+ a Banach lattices. More generally we have:
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Proposition 2. A q is a Banach lattice. Moreover,A 1 it is an AL-space.

Proof. The partial ordering defined onA q, is the following:A> B⇔ Â> B̂, where

Â := Var(Apr)+Var(Aop) ∈ Lq,

B̂ := Var(Bpr)+Var(Bop) ∈ Lq.

Thus, if |A|> |B| this is equivalent toˆ|A|> ˆ|B|. Thus,A q is a Banach lattice. This also implies‖ ˆ|A|‖1 =

‖Â‖1 > ‖ ˆ|B|‖1 = ‖B̂‖1, which means thatA 1 is an AL-space, sinceL1 is an AL-space, as well.

For conjugate exponentsp= ∞ andq= 1, the duality between the spacesR∞ andA 1 plays an important

role in our representation of AIs for processes, namely Theorems 1 and 2 in Section 3, as well as other

results in Sections 3, 5 and 6. The dual pair〈R∞,A 1〉 is based on the dual pairing〈X,A〉 defined onR∞×

A 1, see Appendix A. In our main result (Theorem 1) we replace the infimum over classical non-negative

expectations with respect to equivalent probability measures (viz. their Radon-Nikodym derivatives),

with positive increasing dual processes with unit expectedvariation. Thus, for everyx ∈ R
+, the x-

increasing family(Dx)x∈R+
of [11, Theorem 1] is now replaced by anx-increasing family(Qx

σ )x∈R+
,

where eachQx
σ is a subset of the classDσ defined in [10], containing the bi-variate processesA∈ A 1

that are in addition nonnegative, increasing and such thatE[Var(Apr)+Var(Aop)] = 1, see also Appendix

A.

3 Basic Representation Result

We give the analogue of [11, Theorem 1], to characterize an AIhaving a numerical valuex∈ R+ such

that the bounded càdlàg pathX attains a positive bilinear form〈X,A〉 (which is the analogue of the

expectation in the one-period case), under each bi-variateprocessA from the subsetQσ ⊂ Dσ (which

is the analogue of the Radon-Nykodim derivative of the absolute continuous probability measure giving

the acceptability in the one-period case) corresponding tothe levelx. There is a one-parameter class of

such sets.

Theorem 1. A mapα : R∞ → [0,∞] is an AI for processes if and only if there exists a family of x-

increasing family(Qx
σ )x∈R+

such that the representation

(1) α(X) = sup

{

x∈ R+

∣

∣

∣

∣

inf
A∈Qx

σ
〈X,A〉> 0

}

holds, withinf∅= ∞ andsup∅= 0.

Proof. (⇐) We claim thatα defined by (1) satisfies the four properties of an AI. First, wecheck property

(1) of Definition 1 thatα values only acceptable cash flowsX ∈ R∞ evolving during the horizon[0,T]

which belong to a convex level setAx for anyx∈ R+. Indeed, assuming thatX and in additionY ∈ R∞
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entail a value ofα which is > x, then choosingy < x for any bi-variate processA ∈ Q
y
σ we have a

value of the linear functional〈· ,A〉, corresponding to each cash flow, which must be> 0. Taking a

convex combination forλ ∈ [0,1] we then have〈λX+(1−λ )Y,A〉 > 0, and for everyA in the biggest

classQx
σ we thus have infA〈λX +(1− λ )Y,A〉 > 0 too. This corresponds to the greatestx ∈ R+ such

that α(λX +(1− λ )Y) > x which proves the convexity of the level setAx (or equivalently the quasi-

concavity of the indexα). For the monotonicity, given two elements ofR∞ such thatX 6Y, the stochastic

integral together with the expectation operator defining the bilinear form used in (1) are monotone, then

〈Y,A〉> 〈X,A〉> 0 from which property (2) of Definition 1 easily follows. Scale invariance is trivial. To

show the upper Fatou-continuity, we first assume supt∈[0,T ] |X
n
t |

P
→ supt∈[0,T ] |Xt | for a bounded sequence

(Xn)n∈N of elementsXn ∈ R∞ and someX ∈ R∞. This implies
(

∫

(0,T]
Xn

t−dApr
t +

∫

[0,T]
Xn

t dAop
t

)

P
→

(

∫

(0,T]
Xt−dApr

t +
∫

[0,T]
XtdAop

t

)

,

thus by the Lebesgue’s Dominated Convergence theorem we have

lim
n→∞

〈Xn,A〉= 〈X,A〉> limsup
n→∞

inf
A∈Q

y
σ
〈X,A〉> 0

for someA∈Q
y
σ . Now, for any suchy< x, anyA∈Q

y
σ and anyn∈N we haveα(Xn)> xby construction

so that the previous impliesα(X)> x too, which is the equivalent formulation of the Fatou property for

the AI.

Before completing the proof, we observe that representation (1) of Theorem 1 is equivalently given by

(2) α(X) = sup
{

x∈ R+

∣

∣ρx(X)6 0
}

,

as pointed out in [11]. Indeed, each functional onR∞ defined by

ρx(X) :=− inf
A∈Qx

σ
〈X,A〉, x∈ R+

is by [10, Corollary 3.5] a coherent risk measure for processes. Forx6 y, passing fromQx
σ to the bigger

setQy
σ the value ofρx(X) will increase toρy(X), for anyX ∈R∞. Then, the supremum in (1) of Theorem

1 will increase too and obviously the equivalent representation given in (2) holds true. Conversely, for a

family (ρx(X))x∈R+
of coherent risk measures for processesX ∈ R∞, which is increasing inx as a map

x 7→ ρx(X) for a fixedX, any setQx
σ corresponding to a risk measureρx(X) in the family must be bigger

anytimex increases, due to the representation (2).

Remark 1. The acceptability setAx introduced in Definition 1 of Section 2 is equivalently givenby

Ax :=
{

X ∈ R
∞∣
∣ρx(X)6 0

}

.

Thus, for every x∈ R+ we have a whole family which is clearly decreasing in x. As a consequence the

numerical value of an AI for processes can be recast as

α(X) = sup
{

x∈ R+

∣

∣X ∈ Ax
}

.

There are several levels x at which the performance of a tradecan be measured by valuing its riskiness

in an acceptable way.
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In order to prove the ‘if part’ we need the following characterizations. Based on the AM-AL duality

betweenR∞ andA 1, we in addition see that for anyx∈ R+ the coherent risk measure for processes

ρx(X) = inf{m∈ R |m·1+X ∈ Ax}, for everyX ∈ R
∞,

has the followingdual representation:

−ρx(X) = inf
π∈A 0

x

π(X),

whereA 0
x = { f ∈A 1 : f (X)> 0, eachX ∈Ax}, is thepolar set ofAx in A 1. Finally, recall that a subset

of a vector space is called a wedge if it is convex and it has theproperty that for anyx lying in the set

we also have thatλ ·x belong to the same set, for everyλ ∈ R+. Putting all things together, we have that

proving(⇒) of Theorem 1 amounts to prove the following:

Theorem 2. For any AIα : R∞ → [0,∞], with the property that every level setAx of α is a wedge, there

exists an increasing family(Qx
σ )x∈R+

of functional sets lying inA 1 such that x6 y impliesQx
σ ⊂ Q

y
σ

and

α(X) = sup

{

x∈ R+

∣

∣

∣

∣

inf
π∈Qx

σ
π(X)> 0

}

holds.

Proof. The level sets ofα areAx = {X ∈ R∞ |α(X)> x}. For these sets,Ay ⊂ Ax holds, if y6 x. For

the equivalent polar setsQx
σ = A 0

x lying in A 1, if x6 z this impliesQx
σ ⊂ Qz

σ . Thus, anyX ∈ R∞ lies

in someAx0. This implies thatρx0(X)6 0, hence−ρx0(X)> 0. From the equivalent dual representation

of the coherent risk measureρx0, then

α(X) = sup{x0 ∈ R+| −ρx0(X)6 0}

and we are done.

The family(Qx
σ )x∈R+

(viz. system of supporting kernels in [11]) can be characterized as

(3) Q
x
σ = {A∈ Qσ |〈X,A〉> 0, ∀X ∈ R

∞, α(X)> x> 0} .

Then, we have the following maximality property:

Lemma 1. For any AIα , there exists a family(Qx
σ )x∈R+

supporting the representation (1) and defined

by (3), such that if(E x
σ )x∈R+

is a different x-increasing family satisfying (1), then it holdsE x
σ ⊂ Qx

σ for

any x∈ R+.

Proof. As in the proof of [11, Proposition 1] we use a squeezing argument and show that equation (1)

can be split in two opposite inequalities. Let us suppose that α(X), defined by (1) and supported by some

x-increasing family(E x
σ )x∈R+

, is strictly greater than sup{x ∈ R+| infA∈Qx
σ 〈X,A〉 > 0}, for any process

X ∈ R∞. Then

α(X)> y> sup

{

x∈ R+

∣

∣

∣

∣

inf
A∈Qx

σ
〈X,A〉> 0

}

,
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for somey∈R+. But this implies the existence ofA∈Q
y
σ which makes negative the bilinear form inside

the supremum, contradicting the definition ofQ
y
σ in (3). To show the reverse inequality, let us suppose

thatE x
σ ⊃ Qx

σ . Then, we can findA∈ E x
σ which again makes negative the bilinear form and at the same

time makesα(X)> x∈ R+, contradicting the definition (1) ofα . Then,

α(X)> sup

{

x∈ R+

∣

∣

∣

∣

inf
A∈Qx

σ
〈X,A〉> 0

}

and(Qx
σ )x∈R+

is a maximal family.

We state a Lemma which will be useful in the identification of typical AIs for processes, provided that a

family (Qx
σ )x∈R+

is meant to supportsα as given by Lemma 1. Recall that the spaceQσ ⊂ A 1 inherits

the norm‖·‖A 1 and then it is a Banach space.

Lemma 2. Define an AIα by (1). Let(Qx
σ )x∈R+

be a family of convex‖·‖A 1-closed subsets ofQσ that

are minimal with respect to intersection, i.e.

Q
x
σ := ∩y>xQ

y
σ for any x∈ R+.

Then(Qx
σ )x∈R+

supportsα in the representation (1).

Proof. Let (E x
σ )x∈R+

be thex-increasing family supportingα . For somex∈R+, take a nonempty‖·‖
A 1-

closed and convex setQx
σ ⊂ E x

σ . This enable us to find somey> x andB∈ E x
σ such thatB /∈ Q

y
σ . Thus,

by the Hahn-Banach Separation Theorem we further findX ∈ R∞ such that

〈X,B〉< 0< inf
A∈Qx

σ
〈X,A〉,

but this impliesα(X) > y> x> 0 which contradicts the representation (3). As a consequence B∈ Q
y
σ

and by the maximality stated in Lemma 1 we are done.

It is worth noting that by choosingT = 0, R∞ = L∞(Ω,F0,P) and one gets the static AI as in [11].

4 Consistency with Second Order Stochastic Dominance

The consistence of a performance measure for processesα with the Second order Stochastic Dominance

(SSD), hardly depends upon the definition of SSD itself on thespacesR∞. To get the equivalent notion

in this space of stochastic processes we require (as in the static setting) that if a trade with random cash

flow X ∈ R∞ has given a greater ‘utility’ than anotherY ∈ R∞, then it should have a higher performance

too, α(X)> α(Y). Whence, we need to adapt the notion of expected utility in order to characterize this

preference relation via SSD.

Given a couple of stochastic cash flowsX,Y ∈ R∞, we recall thatX∗ = supt∈[0,T ] |Xt | = X∗
+ +X∗

− is

the corresponding random variable inL∞
+ and similarly forY. Therefore, the binary relation defined on

R∞ ×R∞ by

X <SSDY ⇐⇒ X∗
<SSDY∗,
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is the analogue of the SSD in the one-time step setting, wherewhat matter are the terminal cash flows.

Here instead, we consider the path-dependency using the running maximum of the reflected (at the origin)

processesX∗ andY∗. As a consequence, we rewrite the above SSD relation as

X <SSDY ⇐⇒

∫ z

0
FX∗(s)ds6

∫ z

0
FY∗(s)ds, for everyz∈ (0,∞).

For the quote on terminal wealth, see [20, p. 671]. In the samepaper, we find the characterization of SSD

in terms of expected utility. Hence, we define the expected utility on R∞ in the following sense:

Definition 2. For a random cash flow evolving in timeX ∈ R∞, the version of expected utility for

processes over the horizon[0,T] is given by

E(U(X)) := E(U(X∗)),

whereX∗ ∈ L∞
+, andU : R→ R∪{∞} is some concave, non-decreasing function.

5 Arbitrage and Expectation Consistency

In Section 3 we introduced the family of coherent risk measures for processes

ρx(X) = inf{m∈ R |m·1+X ∈ Ax}, for anyX ∈ R
∞,

with the dual representation

ρx(X) = sup
π∈A 0

x

π(−X),

whereA 0
x = { f ∈ A 1| f (X)> 0, for anyX ∈ Ax} is the polar set ofAx in A 1. If we supposeA ,B are

acceptability subsets ofR∞, such thatA ⊂ B, thenB0 ⊂ A 0 holds for the equivalent polar sets inA 1.

The above dual representation equals−ρx(X) = infπ∈A 0
x

π(X). Moreover,X ∈ Ax implies−ρx(X)> 0.

Therefore, given a family(ρx)x∈R+
of coherent risk measures for processes which is monotone with

respect toR∞
+, whereR∞

+ contains those bounded càdlàg pathsX > 0, this entailsR∞
+ = A0 and conse-

quently if x> 0 thenA 0
x ⊂ A 0

0 . For such AIs arbitrage consistency holds, because

α(X) = sup

{

x∈ R+

∣

∣

∣

∣

inf
π∈A 0

x

π(X)> 0

}

= sup{x∈ R+|−ρx(X)> 0}= ∞.

Hence, we proved the following:

Theorem 3. The AIα : R∞ → [0,∞] defined through a family of monotone coherent risk measures for

processes inR∞
+ and the order unit1 of R∞ is Arbitrage Consistent with respect toR∞

+.

Now we come to the extension of the expectation consistency stated in [11] for the static case. We again

transfer the properties of AIs to the dual system
〈

R∞,A 1
〉

from the dual system
〈

L∞,L1
〉

.
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Definition 3. An AI α : R∞ → [0,∞] is called expectation consistent, if and only ifw(X) > 0, then

α(X)> 0. The functionalw is the one which corresponds to1∈ L1.

Proposition 3. An AI for processesα , defined onR∞ is expectation consistent if the level set of zero is

R∞
+.

Proof. If the above condition holds, sinceAx ⊂ A0, for every x ∈ R+, where as usualAx = {X ∈

R∞|α(X)> x}, we notice that ifw(X)> 0, this impliesα(X)> 0.

6 An AI for Processes

Assume thatX ∈ R∞ describes the continuous-time cumulative random return over a finite horizon, and

without loss of generality that the interest rates are zero (avoiding to treat excess returns). We propose to

characterize the following AI:

(4) α(X) :=
E(XT)

ρ(X)
,

where the denominator represents a coherent risk measure for adapted bounded càdlàg processes, with

the conventionα(X) = ∞ wheneverρ(X) 6 0. The above measure is reminiscent of the SR given by
E(XT)
sd(XT)

, where the denominator is the usual standard deviation of theterminal total cumulative return; the

numerator measures the expected reward of the underlying investment just at the horizon. Thus, equation

(4) is a RAROC-type of performance measure provided that theexpectation in the numerator is positive.

To see whyα(X) is an AI for processes, we need to find the bi-variate process picked fromQx
σ which is

consistent with the representation (1). The right choice isthe convex combination:

Ã :=
1

1+x
B+

x
1+x

A, x∈ R+, A,B∈ Dσ

where

B= (Bpr
t ,B

op
t )t∈[0,T ] := (0, I{u6t})t∈[0,T ].

In fact, we have the chain of equivalences forx> 0 :

α(X)> x ⇐⇒
E(XT)

ρ(X)
> x

⇐⇒ E(XT)>−x· inf
A∈Dσ

〈X,A〉

⇐⇒
1

1+x
E(XT)+

x
1+x

inf
A∈Dσ

〈X,A〉> 0

⇐⇒ inf
A∈Dσ

[

1
1+x

E(XT)+
x

1+x
〈X,A〉

]

> 0

⇐⇒ inf
A∈Dσ

〈

X,
1

1+x
·B+

x
1+x

·A

〉

> 0

⇐⇒ inf
Ã∈Qx

σ

〈X, Ã〉> 0.

11



We use Lemma 2 for the closeness feature of the setsQx
σ supporting this RAROC-type measure. In the

convex combination defining̃A, the first termB projects the whole random returnX onto the terminal

dateT through the expectation; the second termA pertains to the representation of the coherent measure

for processesρ(X). Note thatE(XT)< ∞ by the assumptionX ∈ R∞.

Remark 2. The functionalρ(X) := − infA∈Dσ 〈X − E(XT),A〉 is obviously a monetary coherent risk

measure for X∈ R∞. By Remark 1 in Section 3 it induces a reward-risk separation for acceptability at

level x∈ R+, because X∈ Ax implies the non-negativity of the correspondingρx(X) and thus

α(X) =
E(XT)

ρ(X)
> x ⇐⇒ E(XT)+ inf

A∈Dσ
〈X−E(XT),A〉> 0.

If one chooses the coherent risk measure for bounded paths

(5) ρ(X) = AV@Rγ( inf
t∈[0,T ]

Xt),

then the above AI can be made operational. Here AV@Rγ is the Average Value-at-Risk at the level

γ ∈ (0,1]. In fact, a risk measureρ(X) for bounded processes can be viewed as

R
∞ θ
−−→ L∞ ρ̃

−−→ R+,

the composition of a path-transformation with a one-periodrisk measurẽρ applied to the resulting ran-

dom variableθ(X). Obviously,ρ(X) would be a coherent monetary risk measure for bounded processes

if and only if ρ̃ is a coherent monetary risk measure for single-period cumulative returns, andθ trans-

forms the paths ofX in such a way the properties studied in [10] are preserved. Equivalently, the com-

bined effect of a path-transformation and a static risk measurement is

(6) ρ(X) := ρ̃(θ(X)) =− inf
Z∈L1

+, E(Z)=1
E [θ(X) ·Z] .

In the current setting,θ is the running minimum ofX. It is important to note that other types of path-

transformations can be taken into account, see [10, Examples 5.2, 5.5] whereθ(X) = 1
T

∫ T
0 Xtdt and it

might be viewed as the continuous-time arithmetic average price of the underlying of an Asian option.

Anyway, the acceptability of the proposedρ(X) stems from the coherence of the staticρ̃ = AV@R

together with the monotonicity of the running minimum (properties (1) and (2) are not destroyed). More-

over, the law invariance of AV@R implies that ofα . Clearly, it is also expectation consistent but never

arbitrage consistent. Recall that

AV@Rγ( inf
t∈[0,T ]

Xt) =
1
γ

∫ γ

0
VaRs( inf

t∈[0,T ]
Xt)ds,

where as usual the VaR is defined as the negative of thes-quantile of the running minimum’s distribution,

− inf
{

x∈ R |P(inft∈[0,T ]Xt 6 x)> s
}

, andγ ∈ (0,1].

The widespread CR

(7) CR(X) :=
E(XT)

E(supt∈[0,T ]Dt)
, for X ∈ R

p, and p∈ [1,∞],

12



is a classical performance measure depending on the whole investment’s path, but fails to be acceptable

as we see below. HereD= (Dt)t∈[0,T ] is the drawdown process over[0,T] of the random returnX, defined

asDt := supu∈[0,t] Xu−Xt, i.e., it is the drop ofX from its running maximum, while the denominator in

equation (7) is the maximum drawdown, i.e. thegreatestdrop ofX from its running maximum over the

whole horizon (the supremum ofX reflected at its running supremum). From now on we assume positive

performance indices for processes, wheneverE(XT) > 0 otherwise the ratio (7) is zero. CR is meant to

quantify the expected terminal return of the investment, adjusted by the risk not only at the final date

but also including all possible drops from the peaks during the horizon. The easy verification that CR

is not an AI for processes is due to the bad behavior of the path-transformationθ(X) = supt∈[0,T ]Dt

which is not monotone. One can try to replace the expectationE = ρ̃ (as the one-period risk functional)

with the tail-conditional expectation (i.e. the AV@R defined on the right tail of the distribution of the

maximum drawdown) which is a one-period coherent risk measure, but the lack of monotonicity of the

aforementionedθ(X) destroys acceptability (only convexity is preserved).

Remark 3. For two bounded c̀adlàg cash flows X,Y ∈R∞ such that X
law
= Y, the concept of law invariant

AI developed in [11] in the static case can be translated int the current setting by limiting ourselves to the

case of RAROC-type AIs (4). After the corresponding path-transformation is made, the sameness in law

of any couple of bounded càdlàg cash flows then translates toθ(X)
law
= θ(Y), thus their transformed paths

entail random variables sharing the same probability distribution. We can appeal to [11, Theorem 5].

Firstly, the coherent risk measure for processesρ(X) in the representation ofα(X) can be based on the

weighted VaR, i.e. the spectral representation
∫

(0,1]AV@Rγ(θ(X))µ(dγ) with a Borel probability mea-

sureµ on the unit interval. In fact, this in turn is equivalent to the representation of the path-dependent

risk measure (6) through a concave distortion,ρ̃(θ(X)) =−
∫

R
yd(Ψx(Fθ (X)(y))). Then, for every x∈R+

one defines AI as in the static case by specifying the concave distortion Ψx(u) := min{γ−1 u,1} with

γ = 1+x andµ = δ1+x; the choice of Z additionally needsE((Z−u)+)6 Φx(u) for every u∈ R+ such

that Φ is the convex conjugate of the concave distortion. As a by product,α(X) is also consistent with

SSD as developed in Section 4.

7 Numerical Comparison

To give more insight on the behavior of the performance indices discussed in the previous Section, we

present here a simulation exercise based on the following ingredients:

• Generation of two Lévy processesX,Y to describe possible patterns of continuously compounded

returns over the horizon[0,T], with T =1 year;

• Determination of six empirical distribution functionsFXT
n ,FX

n ,FDX
n ,FYT

n ,FY
n ,FDY

n for the final re-

turnsX,Y atT and the corresponding running minimums and maximum drawdowns within[0,T];

• Estimation of the sample counterparts CRn,αn,γ of the CR and the ratio (5) presented in Section 6,

under the two alternative distributional assumptions;

13



• Comparison of the numerical values deduced from the estimated statistics.

We admittedly carry on the numerical simulation in the unbounded case, albeit as usual the discretization

scheme gives bounded sample paths. Thus, modulo any asymptotic consideration we use the results from

the simulated paths as an approximation for the bounded case. Due to our main interest in the final step

of the above simulation recipe, we choose two parsimonious models of Lévy processes:

1. A Brownian motionX with constant driftµ > 0 modelling the annual expected continuously com-

pounded return, and constant annual volatilityσ > 0 of continuous returns;

2. A Non-normal jump-diffusionY with the same diffusion part, as suggested by Kou [16].

Other models are available for simulating different Lévy processes such as stable, variance gamma, hy-

perbolic, stable etc. We rest on the simpler which do not require either the use of special functions nor

any series representation. Moreover, we keep to the minimumthe difficulty of have no explicit Lévy

measure associated to the processes. Recall that the Kou’s model forY contains four additional param-

eters: the annual intensityλ of a homogeneous Poisson process counting the number of jumps for the

non-diffusion part;η1,η2 > 0 such that their reciprocal represent the means of upward and downward de-

viation from the drift, taken from a double exponential distribution with asymmetric Laplace density; the

probability 0< p< 1 of upward jumps. The diffusion part and the jump part are independent, for more

details see [16]. We set up a routine for the generation of thesample paths ofX andY over a equally-

spaced discretization of the horizon by a grid of 1000 time points, through the usual Euler scheme for the

corresponding stochastic differential equations with annual µ = .15, annualσ = .20, annualλ = 10 and
1

η1
= .02, 1

η1
= .04. This setting entails a mean number of 10 jumps per year with average size 2.2% and

jump volatility 4.47% as suggested by [16]. The simulation is straightforwardbecause of the indepen-

dence between the diffusion and the jump part. We compute thefinal values, the running minimums and

the maximum drawdowns of the simulated paths, then we repeatthis last step 1000 times as well to get the

estimated empirical distribution functionsF̂XT
n , F̂X

n , F̂DX
n , F̂YT

n , F̂Y
n , F̂DY

n , with n= 1000. Analyzing Table

Table 1: Summary Statistics of Simulated Values

F̂
mX
n F̂

DX
n F̂

mY
n F̂

DY
n F̂

XT
n F̂

YT
n

Skewness −1.6448 1.6036 −2.2125 1.5868 −0.1415 0.4063

Kurtosis−3 4.0113 4.3742 7.1043 3.7368−0.0784 0.5070

Median −0.0351 0.0807 −0.0283 0.0925 0.1212 0.3756

Mean −0.0452 0.0879 −0.0413 0.1040 0.1206 0.3946

St. Dev. 0.0369 0.0328 0.0401 0.0454 0.1006 0.2192

1 together with Figures 1-6, it is quite evident (as one expects) how the onlyquasisymmetric distribution

is that of the simulated final return under the Brownian’s law. Indeed, even when this is the assumption

one has non-symmetric distributions concerning the running minimum, the maximum drawdown and the
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Figure 1:Empirical density of the Brownian-return’s running minimum.

−0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0

Figure 2:Empirical density of the jump-diffusion-return’s runningminimum.

−0.25 −0.2 −0.15 −0.1 −0.05 0

Figure 3:Empirical density of the Brownian-return’s maximum drawdown.
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Figure 4:Empirical density of the jump-diffusion-return’s maximumdrawdown.

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Figure 5:Empirical density of the final Brownian return.
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Figure 6:Empirical density of the final jump-diffusion return.
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one related to the final return under the jump-diffusion’s law. The latter put more probability weight to

negative (in the case of running minimum) and positive (in the case of maximum drawdown) scenarios

of extreme return changes over the horizon. Clearly, these asymmetries affects the ex ante performance

measurement. In fact, the Brownian modelX is assumed to be a benchmark of normal market values,

while the jump-diffusion modelY allows for leptokurtic and asymmetric returns. In presenceof shocks,

price changes due to good or bad news result in return movements as either overreaction or underreaction

of market, according to fat tails and high peak of the jumps distribution.

Considering the sample(Xi
T)i=1,...,n from the simulation of terminal paths, the sample(DX

i
)i=1,...,n from

the simulation of the maximum drawdown and the sample(Xi)i=1,...,n from the simulation of the running

minimum, we compute the following estimators in the Brownian case:

• CRn =
1/n∑n

i=1 Xi
T

1/n∑n
i=1 DX

i ;

• αn,γ =
1/n∑n

i=1 Xi
T

1/k∑n
i=k X(k) , with k := [nγ ] the greatest integer less than or equal tonγ and(X(i))i=1,...,n being

the corresponding ordered sample; we setγ = .01 andγ = .05;

• SRB
n =

1/n∑n
i=1 Xi

T
(

1
n ∑n

i=1 X2
i −( 1

n ∑n
i=1 Xi)

2
)1/2 ;

• SRJ
n =

1/n∑n
i=1Xi

T
(

1
n ∑n

i=1 DX
2
i −( 1

n ∑n
i=1 DXi)

2
)1/2 .

The last two estimators refer to SR where the standard deviation is based on the running minimum and

the maximum drawdown, respectively. The estimators in the case of the jump-diffusionY are obtained

in the same way. All the proposed performance indices provide a reward measurement in terms of fi-

nal expected return. CR and its relatives (viz. the last tow rows of Table 2) entail overestimation of

Table 2: Simulated Values of Performance Indices

Brownian motion Jump-diffusion

Calmar ratio ĈRn 1.3718 2.8133

γ = .05 α̂n,γ 0.7950 1.3130

γ = .01 α̂n,γ 0.5998 0.9182

Estimate for SRB E(final return)
sd(running minimum) 3.2652 5.2582

Estimate for SRJ E(final return)
sd(maximum drawdown) 3.6670 5.2421

financial performance, mainly due to the use of either the expectation or the standard deviation to build

path-dependent risk measures which suffer from the aforementioned asymmetries (skewness, kurtosis

and fat-tails). Our performance indicesαγ have smaller values. This maybe suggests a more prudent

performance evaluation by taking into account adverse downside scenarios under the proper distribu-

tional assumption towards a forecast of phenomenon like margin calls, rebalancing of trading positions,

counter-party risks, fund redemption. In this perspective, the index based on (4) with coherent monetary
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risk measure for processes being the one proposed in Section6, gives a sensible trade-off between ac-

ceptability as a theoretical feature and the ability to capture extremes changes in the return profile during

the whole holding period. Furthermore, the resulting measurement is compatible with the heightened

need for performance-tracking tools that embed economic cost of risk, and the consequential use of the

RAROC by financial institutions.

Remark 4. When random cash flows are asymmetric and fat-tailed, performance evaluation using SR-

type indices is questionable. Investors’ preference for certain portfolio compositions heavily relies on

more than the first two moments of the cash flow’s distribution, and clear enough they could be wealth-

seeking and risk-adverse but prefer portfolios with highervolatility. In these situations, theAV@R be-

haves better as a static risk measure and assuming a tangential portfolio (in the sense of minimum

AV@R for a fixed tail probabilityγ) it constitute a sensible substitute for the volatility given by the stan-

dard deviation or the alike, when portfolio optimization comes into play and asset allocation or ranking

of investment funds concerns can be tackled more efficiently. Observe in addition how all the estimators

above are biased for finite samples but have asymptotic efficiency as n grows more and more.

8 Conclusions

Intra-horizon risk measurement has recently gained increasing consideration among academics and prac-

titioners. For example, VaR may be improved in the time dimension by focusing on the return’s distri-

bution within the whole investment horizon. On the fund management side, performance analysis with

drawdown is well developed and the evaluation and even the ranking of investment portfolios by mea-

sures such as CR is popular among fund managers. These indices are based on the risk-adjustment of

returns by recording all the information about the evolution of processes modelling profit and losses

within a fixed horizon. Motivated by these well documented facts and in addition by the growing use

of the RAROC as a tool of banks’ backward-looking manner at business performance-tracking and risk

management, we propose a performance measurement for processes. Therefore, we look on one hand

at the approach of Cherny & Madan (2009) to static performance evaluation driven by the concept of

AIs, and on the other hand to the work of Cheridito et al. (2004) which generalizes static coherent risk

measures to monetary risk measures for processes. Our main contribution is to extend the representation

of an AI as applied not to random variables giving terminal cash flow, but instead to stochastic processes

modelling the evolution of cash flows over a finite horizon. The domain of an AI is now the class of

bounded càdlàg processes, with new representation results. Our contribution does not overlap that of

Bielecki et al. (2014), since they treat dynamic coherent AIs with a focus on time-consistency, while

we develop static AIs for processes. Notwithstanding, our framework can embody information about the

whole investment process even if sequential conditioning is ruled out. We propose an AI expressed as

the ratio of expected terminal cash flow to a coherent monetary risk measure for processes. Eventually,

we compare different numerical values of this acceptability ratio and other performance measures, to

appreciate the embedding of information about stressed scenarios concerning the whole horizon. Our

ratio could be a sensible compromise between acceptability(as a desirable aggregate property) and de-
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pendency on the whole cash flow’s path (as the quest of practitioners). This is also compatible with the

widespread use of RAROC and fixes the lack of acceptability ofCR. The research agenda on this topic

will include the generalization of our AI to the unbounded case (e.g. the spaceR1), as well as a more

comprehensive definition of law invariance of AIs for processes. Also a study of the asymptotic behavior

of AIs when the horizon becomes infinite is desirable.

A Appendix: Duality Relations for Processes

The main results of Section 3 are based on the generalizationof acceptability from spaces of random

variables to spaces of stochastic processes, partly introduced in Section 2. To keep the present paper as

much self-contained as possible, we list in this Appendix some facts about these spaces of processes and

the corresponding duality relations following closely [10]. For p∈ [1,∞] the collection

R
p :=











X : [0,T]×Ω → R

X càdlàg

(Ft)-adapted

‖X‖
Rp < ∞











is a Banach space. Recall that increasing processesA : [0,T]×Ω → R (i.e. adapted, with positive right-

continuous and increasing paths) induces a measure dAt(ω). In caseA has right-continuous paths with

finite variation, its unique decompositionA = A+−A− into two right-continuous increasing processes

inducesP-a.s. positive measures on[0,T] with disjoint support. The total variation of such process is

the random variable Var(A) := A+
T +A−

T . Moreover, if A is optional (i.e. a measurable on[0,T]× Ω
equipped with theσ -algebra generated by the adapted càdlàg processes) thenA+,A− are optional. When

A is predictable (i.e. measurable on[0,T]×Ω equipped with theσ -algebra generated by the adapted

continuous processes) thenA+,A− are predictable. Thus, forq∈ [1,∞] we have the collection

A
q :=























A : [0,T]×Ω → R
2

A= (Apr,Aop) right-continuous, finite variation

Apr predictable,Apr
0 = 0

Aop optional, purely discontinuous

Var(Apr)+Var(Aop) ∈ Lq























This collection equipped with the norm‖A‖A q := ‖Var(Apr)+Var(Aop)‖q is a Banach space. The subset

A
q
+ containing thoseA∈ A q with the predictable and optional parts being non-negativeand increasing.

The bilinear form

〈X,A〉 := E

[

∫

(0,T]
Xt−dApr

t +
∫

[0,T]
XtdAop

t

]

defined onRp×A q for p,q∈ [1,∞] such thatp−1+q−1 = 1, is also continuous and put in duality the

spacesRp andA q. Indeed, it is well known that|〈X,A〉|6 ‖X‖Rp ‖A‖A q .
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B Appendix: Coherent Monetary Risk Measures for Processes

The apparatus introduced in Appendix A, is employed for extending the structure theorem for coherent

risk measuresρ : L∞ → R : Given theσ(L∞,L1)-closed acceptance setC = {X ∈ L∞|ρ(X) 6 0} for a

discounted terminal cash flowX, then

ρ(X) =− inf
Q∈D

E
Q(X) =− inf

Z∈L1
+, E(Z)=1

E(X ·Z),

for a certain setD of probability measures absolutely continuous with respect to P, with corresponding

Radon-Nikodym derivativesZ= dQ
dP . The typical proof of this result usesC to support the representation

itself, see [12] for a thorough treatment of static (also dynamic) risk measures based of the corresponding

coherent monetary utility functionalφ =−ρ . Now, static coherent risk measures are in duality with static

AIs since

α(X) = sup{x∈ R+|ρx(X)6 0},

whereρx is an indexed family of coherent risk measures whose representation is supported by anx-

increasing family(Dx)x∈R+
of absolutely continuous probability measures, together with the correspond-

ing Radon-Nikodym derivatives and acceptance sets. In the present paper we do a similar construction

by indexing the set

Dσ :=
{

A∈ A
1
+

∣

∣ ‖A‖A 1 = 1
}

,

and then working with the bilinear form〈X,A〉 rather than the classical expectationE(X ·Z). Obviously,

in this extended framework we have that

ρ(X) =− inf
A∈Dσ

〈X,A〉, X ∈ R
∞,

with correspondingσ(R∞,A 1)-closed acceptance setC = {X ∈R∞|ρ(X)6 0}, see [10, Corollay 3.5].

In our paper we clearly attach a numerical acceptability level x∈ R+ to the supporting setDσ to entail

the duality with AIs for bounded càdlàg processes. Finally, a few facts to note. First, the spaceR∞ is

invariant with respect to the probability measureP or its equivalents. Second, forp,q∈ [0,∞] such that

p−1+q−1 = 1 the spaceA q can be identified with the topological dual(Rp)∗ of the spaceRp, while

A 1 ⊂ (R∞)∗. Thus [10, Theorem 3.3, Corollary 3.5] provide those coherent monetary utility functionals

onR∞ that can be represented with vectors ofA 1.
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