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ASYMMETRIC ROBIN BOUNDARY-VALUE PROBLEMS WITH
p-LAPLACIAN AND INDEFINITE POTENTIAL

SALVATORE A. MARANO, NIKOLAOS S. PAPAGEORGIOU

Communicated by Vicentiu D. Radulescu

Abstract. Four nontrivial smooth solutions to a Robin boundary-value prob-
lem with p-Laplacian, indefinite potential, and asymmetric nonlinearity super-

linear at +∞ are obtained, all with sign information. The semilinear case is

also investigated, producing a nonzero fifth solution. Our proofs use variational
methods, truncation techniques, and Morse theory.

1. Introduction

Let Ω be a bounded domain in Rn with a C2-boundary ∂Ω, let a ∈ L∞(Ω), and
let f : Ω× R→ R be a Carathéodory function such that f(·, 0) = 0. Consider the
Robin problem

−∆pu+ a(x)|u|p−2u = f(x, u) in Ω,
∂u

∂np
+ β(x)|u|p−2u = 0 on ∂Ω,

(1.1)

where 1 < p < +∞, ∆p indicates the p-Laplacian, ∂u
∂np

:= |∇u|p−2∇u · n, with n

being the outward unit normal vector to ∂Ω, and β ∈ C0,α(∂Ω,R+
0 ). We say that

u ∈W 1,p(Ω) is a (weak) solution of (1.1) provided∫
Ω

|∇u|p−2∇u · ∇v dx+
∫
∂Ω

β|u|p−2uv dσ +
∫

Ω

a|u|p−2uv dx =
∫

Ω

f(x, u)v dx

for all v ∈W 1,p(Ω).
This paper studies the existence of multiple solutions to (1.1) when
• the potential function x 7→ a(x) is indefinite, i.e., sign changing, and
• the reaction term (x, t) 7→ f(x, t) exhibits an asymmetric behaviour as t

goes from −∞ to +∞.
For (x, ξ) ∈ Ω× R, we define

F (x, ξ) :=
∫ ξ

0

f(x, τ)dτ, H(x, ξ) := f(x, ξ)ξ − pF (x, ξ) . (1.2)

Roughly speaking, our assumptions on the rate of f at infinity are the following.

2010 Mathematics Subject Classification. 35J20, 35J60, 58E05.
Key words and phrases. Robin boundary condition; p-Laplacian; indefinite potential;

asymmetric reaction; superlinear at +∞; resonance; multiple solutions.
c©2018 Texas State University.

Submitted June 2, 2018. Published June 18, 2018.

1



2 S. A. MARANO, N. S. PAPAGEORGIOU EJDE-2018/127

(1) limξ→+∞ F (x, ξ)ξ−p = +∞ uniformly in x ∈ Ω and there exists c1 > 0
such that

H(x, ξ1) ≤ H(x, ξ2) + c1 whenever 0 ≤ ξ1 ≤ ξ2.

(2) For appropriate c2 ∈ R one has

c2 ≤ lim inf
t→−∞

f(x, t)
|t|p−2t

≤ lim sup
t→−∞

f(x, t)
|t|p−2t

≤ λ̂1 , lim
ξ→−∞

H(x, ξ) = +∞

uniformly in x ∈ Ω.
Here λ̂n denotes the nth-eigenvalue of the problem

−∆pu+a(x)|u|p−2u = λ|u|p−2u in Ω,
∂u

∂np
+β(x)|u|p−2u = 0 on ∂Ω . (1.3)

It should be noted that a possible interaction (resonance) with λ̂1 is allowed and
that f(x, ·) grows (p − 1)-super-linearly near +∞. Nevertheless, contrary to most
previous works, we do not need here the stronger unilateral Ambrosetti-Rabinowitz
condition.

Under (1), (2), and some additional hypotheses, one of which forces a p-concave
behaviour of t 7→ f(x, t) at zero, there are four C1-solutions to (1.1), two positive,
one negative, and the remaining nodal; see Section 3. If p := 2 then (1.1) becomes

−∆u+ a(x)u = f(x, u) in Ω,
∂u

∂n
+ β(x)u = 0 on ∂Ω.

(1.4)

As in [6, 14], the assumptions on a and β can be significantly relaxed. However, we
obtain five nontrivial smooth solutions; cf. Theorem 4.4.

The adopted approach exploits variational methods, truncation techniques, and
results from Morse theory. Regularity is a standard matter, unless p := 2, in which
case [24, Lemmas 5.1, 5.2] are employed.

Problem (1.4) has been widely investigated under various points of view; see, for
instance, [6, 14] and the references given there. On the contrary, the equation

−∆pu+ a(x)|u|p−2u = f(x, u) in Ω ,

with Dirichlet, Neumann, or Robin boundary conditions, did not receive much
attention when p 6= 2, a sign-changing potential appears, and t 7→ f(x, t) is asym-
metric. Actually, we can only mention [16], where the Dirichlet problem is studied,
[18], dealing with symmetric reactions and Neumann boundary conditions, [4, 9],
devoted to (p− 1)-super-linear reactions. The situation looks somewhat different if
a ≡ 0; vide, e.g., [8, 15, 20, 21] and their bibliographies.

2. Preliminaries

Let (X, ‖ · ‖) be a real Banach space. Given a set V ⊆ X, write V for the closure
of V , ∂V for the boundary of V , and intX(V ) or simply int(V ), when no confusion
can arise, for the interior of V . If x ∈ X and δ > 0 then

Bδ(x) := {z ∈ X : ‖z − x‖ < δ} .

The symbol (X∗, ‖ · ‖X∗) denotes the dual space of X, 〈·, ·〉 indicates the duality
pairing between X and X∗, while xn → x (respectively, xn ⇀ x) in X means ‘the
sequence {xn} converges strongly (respectively, weakly) in X’.
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We say that Φ : X → R is coercive if

lim
‖x‖→+∞

Φ(x) = +∞.

A function Φ is called weakly sequentially lower semi-continuous when

xn ⇀ x in X =⇒ Φ(x) ≤ lim inf
n→∞

Φ(xn).

Let Φ ∈ C1(X). The classical Cerami compactness condition for Φ reads as follows.
(C) Every sequence {xn} ⊆ X such that {Φ(xn)} is bounded and

lim
n→+∞

(1 + ‖xn‖)‖Φ′(xn)‖X∗ = 0

has a convergent subsequence.
For c ∈ R, we define

Φc := {x ∈ X : Φ(x) ≤ c} , Kc(Φ) := K(Φ) ∩ Φ−1(c) ,

where, as usual, K(Φ) denotes the critical set of Φ, i.e.,

K(Φ) := {x ∈ X : Φ′(x) = 0}.
We say that A : X → X∗ is of type (S)+ if

xn ⇀ x in X, lim sup
n→+∞

〈A(xn), xn − x〉 ≤ 0 =⇒ xn → x.

Given a topological pair (A,B) fulfilling B ⊂ A ⊆ X, the symbol Hq(A,B), q ∈ N0,
indicates the qth-relative singular homology group of (A,B) with integer coeffi-
cients. If x0 ∈ Kc(Φ) is an isolated point of K(Φ) then

Cq(Φ, x0) := Hq(Φc ∩ V,Φc ∩ V \ {x0}) , q ∈ N0 ,

are the critical groups of Φ at x0. Here, V stands for any neighborhood of x0

such that K(Φ) ∩ Φc ∩ V = {x0}. By excision, this definition does not depend on
the choice of V . Suppose Φ satisfies condition (C), ΦbK(Φ) is bounded below, and
c < infx∈K(Φ) Φ(x). Put

Cq(Φ,∞) := Hq(X,Φc) , q ∈ N0 .

The second deformation lemma [10, Theorem 5.1.33] implies that this definition
does not depend on the choice of c. If K(Φ) is finite, then setting

M(t, x) :=
+∞∑
q=0

rankCq(Φ, x)tq , P (t,∞) :=
+∞∑
q=0

rankCq(Φ,∞)tq

for (t, x) ∈ R×K(Φ), the following Morse relation holds∑
x∈K(Φ)

M(t, x) = P (t,∞) + (1 + t)Q(t) , (2.1)

where Q(t) denotes a formal series with nonnegative integer coefficients; see for
instance [17, Theorem 6.62].

Now, let X be a Hilbert space, let x ∈ K(Φ), and let Φ be C2 in a neighborhood
of x. If Φ′′(x) turns out to be invertible, then x is called non-degenerate. The
Morse index d of x is the supremum of the dimensions of the vector subspaces of X
on which Φ′′(x) turns out to be negative definite. When x is non-degenerate and
with Morse index d one has

Cq(Φ, x) = δq,dZ , q ∈ N0 . (2.2)
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The monograph [17] represents a general reference on the subject.
Throughout this article, Ω denotes a bounded domain of the real Euclidean N -

space (RN , | · |) whose boundary ∂Ω is C2 while n(x) indicates the outward unit
normal vector to ∂Ω at its point x. On ∂Ω we will employ the (N − 1)-dimensional
Hausdorff measure σ. The symbol m stands for the Lebesgue measure, p ∈ (1,+∞),
p′ := p/(p− 1), ‖ · ‖q with q ≥ 1 is the usual norm of Lq(Ω), X := W 1,p(Ω), and

‖u‖ :=
(
‖∇u‖pp + ‖u‖pp

)1/p
, u ∈ X.

Write p∗ for the critical exponent of the Sobolev embedding W 1,p(Ω) ⊆ Lq(Ω).
Recall that p∗ = Np/(N − p) if p < N , p∗ = +∞ otherwise, and the embedding
turns out to be compact whenever 1 ≤ q < p∗.

Given t ∈ R, u, v : Ω→ R, and f : Ω× R→ R, define

t± := max{±t, 0}, u±(x) := u(x)±, Nf (u)(x) := f(x, u(x)).

u ≤ v (respectively, u < v, etc.) means u(x) ≤ v(x) (respectively, u(x) < v(x),
etc.) for almost every x ∈ Ω. If u, v belong to a function space, say Y , then we set

[u, v] := {w ∈ Y : u ≤ w ≤ v}, Y+ := {w ∈ Y : w ≥ 0} .

Putting C+ := C1(Ω)+, int(C+) := intC1(Ω)(C+), D+ := intC0(Ω)(C+), and

Ĉ+ :=
{
u ∈ C+ : u(x) > 0 ∀x ∈ Ω,

∂u

∂n

∣∣
∂Ω∩u−1(0)

< 0 if ∂Ω ∩ u−1(0) 6= ∅
}
,

one evidently has D+ = {u ∈ C+ : u(x) > 0 ∀x ∈ Ω} as well as

D+ ⊆ Ĉ+ ⊆ int(C+) .

Let Ap : X → X∗ be the nonlinear operator stemming from the negative p-
Laplacian ∆p, i.e.,

〈Ap(u), v〉 :=
∫

Ω

|∇u(x)|p−2∇u(x) · ∇v(x) dx ∀u, v ∈ X.

A standard argument [17, Proposition 2.72] ensures that Ap is of type (S)+.

Remark 2.1. Given u ∈ X, w ∈ Lp′(Ω), and β ∈ C0,α(∂Ω,R+
0 ), the assertion

〈Ap(u), v〉+
∫
∂Ω

β(x)|u(x)|p−2u(x)v(x)dσ =
∫

Ω

w(x)v(x)dx, v ∈ X,

is equivalent to

−∆pu = w in Ω,
∂u

∂np
+ β(x)|u|p−2u = 0 on ∂Ω.

This easily stems from the nonlinear Green’s identity [10, Theorem 2.4.54]; see for
instance the proof of [19, Proposition 3].

We shall employ some facts about the spectrum of the operator

u 7→ −∆pu+ a(x)|u|p−2u

in X with homogeneous Robin boundary conditions. So, consider the eigenvalue
problem (1.3), where, henceforth,

a ∈ L∞(Ω) and β ∈ C0,α(∂Ω,R+
0 ) with α ∈ (0, 1) . (2.3)
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Define

E(u) := ‖∇u‖pp +
∫

Ω

a(x)|u(x)|pdx+
∫
∂Ω

β(x)|u(x)|pdσ ∀u ∈ X. (2.4)

The Liusternik-Schnirelman theory provides a strictly increasing sequence {λ̂n} of
eigenvalues for (1.3). Denote by E(λ̂n) the eigenspace corresponding to λ̂n. As in
[18, 19], one has

λ̂1 is isolated and simple. Further, λ̂1 = inf
u∈X\{0}

E(u)
‖u‖pp

. (2.5)

There exists an Lp-normalized eigenfunction û1 ∈ D+ associated with λ̂1. (2.6)

Let p := 2. It is known [6, 14] that H1(Ω) = ⊕∞n=1E(λ̂n) and that, for any n ≥ 2,

λ̂n = inf
{E(u)
‖u‖22

: u ∈ Ĥn, u 6= 0
}

= sup
{E(u)
‖u‖22

: u ∈ H̄n, u 6= 0
}
, (2.7)

where
H̄m := ⊕mn=1E(λ̂n), Ĥm := ⊕∞n=mE(λ̂n) .

3. Existence results

To avoid unnecessary technicalities, for every x ∈ Ω’ will take the place of ‘for
almost every x ∈ Ω’ while c1, c2, . . . indicate positive constants arising from the
context.

Henceforth, f : Ω×R→ R denotes a Carathéodory function such that f(·, 0) = 0.
Let F and H be given by (1.2). We shall make the following assumptions.

(A1) There exist a1 ∈ L∞(Ω) and r ∈ (p, p∗) such that

|f(x, t)| ≤ a1(x)(1 + |t|r−1) ∀(x, t) ∈ Ω× R.
(A2) limξ→+∞ F (x, ξ)ξ−p = +∞ uniformly in x ∈ Ω. Moreover, for appropriate

a2 ∈ L1(Ω)+,

0 ≤ ξ1 ≤ ξ2 =⇒ H(x, ξ1) ≤ H(x, ξ2) + a2(x) ∀x ∈ Ω. (3.1)

(A3) There exists ū ∈ D+ fulfilling
∂ū

∂n

∣∣∣
∂Ω

< 0, ∆pū ∈ Lp
′
(Ω), 〈Ap(ū), v〉 ≥ 0 ∀v ∈W 1,p(Ω)+ ,

and ess supx∈Ω[f(x, ū(x))− a(x)ū(x)p−1] < 0.
(A4) For some a3 ∈ L∞(Ω) one has

a3(x) ≤ lim inf
t→−∞

f(x, t)
|t|p−2t

≤ lim sup
t→−∞

f(x, t)
|t|p−2t

≤ λ̂1, lim
ξ→−∞

H(x, ξ) = +∞

uniformly with respect to x ∈ Ω.
(A5) There exist q ∈ (1, p) and δ1 > 0 satisfying

0 < f(x, ξ)ξ ≤ qF (x, ξ) in Ω× ([−δ1, δ1] \ {0})
as well as ess infx∈Ω F (x, δ1) > 0.

(A6) To every ρ > 0 there corresponds µρ > 0 such that t 7→ f(x, t) + µρt
p−1 is

nondecreasing on [0, ρ] for all x ∈ Ω.

Remark 3.1. The assumption limξ→+∞ F (x, ξ)ξ−p = +∞ is weaker than the
unilateral Ambrosetti-Rabinowitz condition below.
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(AR) For appropriate θ > p and M > 0 one has ess infx∈Ω F (x,M) > 0 and

0 < θF (x, ξ) ≤ f(x, ξ)ξ in Ω× [M,+∞).

A standard example is f(x, t) := tp−1 log t, t ≥M > 1.

Remark 3.2. Property (3.1) has been thoroughly investigated in [11, Lemma 2.4].
Among other things, this result ensures that (A2) forces limt→+∞ f(x, t)t−p+1 =
+∞, i.e., f(x, ·) turns out to be (p− 1)-super-linear at +∞.

Remark 3.3. Assumption (A3) implies ∆pū ≤ 0. Indeed, via the nonlinear Green’s
identity [10, Theorem 2.4.54] we get∫

Ω

v(x) ∆pū(x) dx = −〈Ap(ū), v〉+ 〈 ∂ū
∂np

, v〉∂Ω ≤ 0 ∀v ∈W 1,p(Ω)+ .

Here, 〈·, ·〉∂Ω denotes the duality pairing between W
− 1
p′ ,p

′
(∂Ω) and W

1
p′ ,p(∂Ω).

Moreover,

〈Ap(u), v〉+
∫

Ω

a(x)u(x)p−1v(x) dx ≥
∫

Ω

f(x, u(x))v(x) dx, v ∈W 1,p(Ω)+,

whence u is a super-solution of (1.1).

Remark 3.4. Reasoning as in [6, Lemma 3.1] shows that (A4) entails

lim
ξ→−∞

[λ̂1|ξ|p − pF (x, ξ)] = +∞ uniformly with respect to x ∈ Ω .

Problem (1.1) is thus coercive in the negative direction, and direct methods can be
used to find a negative solution.

Remark 3.5. After integration, (A5) easily leads to

θ|ξ|q ≤ F (x, ξ) ∀(x, ξ) ∈ Ω× [−δ1, δ1], (3.2)

with suitable θ > 0. Consequently, f(x, ·) exhibits a concave behaviour at zero.

We start by pointing out some auxiliary results.

Proposition 3.6. Suppose 0 ≤ a. If hi ∈ L∞(Ω), ui ∈ C1(Ω), i = 1, 2, fulfill
• −∆pui + a(x)|ui|p−2ui = hi in Ω,
• ess infx∈K [h2(x)− h1(x)] > 0 for any compact set K ⊆ Ω,
• u1 ≤ u2 and ∂u2

∂n < 0 on ∂Ω,

then u2 − u1 ∈ Ĉ+.

Proof. Recall that a ∈ L∞(Ω). The first conclusion, namely u2(x)− u1(x) > 0 for
all x ∈ Ω, is achieved arguing exactly as in the proof of [3, Proposition 2.6], while
the other directly follows from [22, Theorem 5.5.1]. �

Proposition 3.7. Let (A3) and (A6) be satisfied. Then each nontrivial solution
ũ ∈ [0, ū] to (1.1) lies in int(C+) ∩ (ū− Ĉ+).

Proof. Standard regularity arguments ensure that ũ ∈ C+ \ {0}. Fix

ρ := ‖ū‖∞ ≥ ‖ũ‖∞ > 0.

Assumption (A6) provides µρ > ‖a‖∞ fulfilling

−∆pũ(x) + (a(x) + µρ)ũ(x)p−1 = f(x, ũ(x)) + µρũ(x)p−1 ≥ 0 a.e. in Ω .
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Therefore, by [23, Theorem 5], ũ ∈ Ĉ+ ⊆ int(C+). Next, define uδ := ũ + δ,
where δ > 0. Since

−∆pũ+ (a+ µρ)ũp−1 ≤ −∆pũ+ (a+ µρ)u
p−1
δ

= −∆pũ+ (a+ µρ)ũp−1 + o(δ)

= f(x, ũ) + µρũ
p−1 + o(δ),

using (A6) and (A3), with appropriate c1 > 0, we obtain

−∆pũ+ (a+ µρ)ũp−1 ≤ f(x, ū) + µρū
p−1 + o(δ)

≤ (a+ µρ)ūp−1 − c1 + o(δ)

≤ (a+ µρ)ūp−1 − c1
2

≤ −∆pū+ (a+ µρ)ūp−1 − c1
2
,

for any δ > 0 small enough, because ∆pū ≤ 0; cf. Remark 3.3. Proposition 3.6 now
gives ū− ũ ∈ Ĉ+, as desired. �

To simplify notation, write X := W 1,p(Ω). The energy functional ϕ : X → R
stemming from problem (1.1) is

ϕ(u) :=
1
p
E(u)−

∫
Ω

F (x, u(x)) dx, u ∈ X, (3.3)

with E and F given by (2.4) and (1.2), respectively. One clearly has ϕ ∈ C1(X).

Proposition 3.8. Under (2.3), (A1), (A2), and (A4), the functional ϕ satisfies
condition (C).

The proof is rather technical but standard (see, e.g., [14, Proposition 3.2]). So,
we omit it.

Henceforth ā will denote a real constant strictly greater than ‖a‖∞.

3.1. Positive solutions. Truncation-perturbation techniques and minimization
methods produce a first positive solution whenever (A3) is assumed.

Theorem 3.9. Let (2.3), (A1), (A3), (A5), and (A6) be fulfilled. Then (1.1)
has a positive solution u0 ∈ intC1(Ω)([0, ū]). Moreover, u0 turns out to be a local
minimizer of ϕ.

Proof. For x ∈ Ω and t, ξ ∈ R, we define

f̄(x, t) :=

{
f(x, t+) + ā(t+)p−1 if t+ ≤ ū(x),
f(x, ū(x)) + āū(x)p−1 otherwise,

F̄ (x, ξ) :=
∫ ξ

0

f̄(x, t) dt.

(3.4)

It is evident that the corresponding functional

ϕ̄(u) :=
1
p

(
E(u) + ā‖u‖pp

)
−
∫

Ω

F̄ (x, u(x)) dx, u ∈ X,

belongs to C1(X). A standard argument, which exploits Sobolev’s embedding
theorem besides the compactness of the trace operator, ensures that ϕ̄ is weakly
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sequentially lower semi-continuous. Since, by (2.3), the choice of ā, and (3.4), it is
coercive, we have

inf
u∈X

ϕ̄(u) = ϕ̄(u0) (3.5)

for some u0 ∈ X. Set δ := min{δ1,minx∈Ω ū(x)}, where δ1 is as in (A5). If τ ∈ (0, 1)
complies with τ û1 ≤ δ, then

ϕ̄(τ û1) ≤ τp

p
E(û1)− θτ q‖û1‖qq = τ q

(τp−q
p

λ̂1 − θ‖û1‖qq
)

thanks to (3.4), (3.2), and (2.6). Thus, for τ small enough, ϕ̄(τ û1) < 0, which
entails

ϕ̄(u0) < 0 = ϕ̄(0).

Consequently, u0 6= 0. Through (3.5) we get ϕ̄′(u0) = 0, namely

〈Ap(u0), v〉+
∫

Ω

(a+ ā)|u0|p−2u0v dx+
∫
∂Ω

β|u0|p−2u0v dσ =
∫

Ω

f̄(x, u0)v dx, (3.6)

for v ∈ X. Using (3.4) and (3.6) written for v := −u−0 produces

min{1, ā− ‖a‖∞} ‖u−0 ‖p ≤ E(u−0 ) + ā‖u−0 ‖pp = 0,

whence u0 ≥ 0. Now, choose v := (u0 − ū)+ in (3.6) and observe that∫
Ω

f̄(x, u0)(u0 − ū)+dx

=
∫

Ω

[f(x, ū) + āūp−1](u0 − ū)+dx

≤
∫

Ω

(a+ ā)ūp−1(u0 − ū)+dx+
∫
∂Ω

βup−1
0 (u0 − ū)+dσ

because of (3.4), (A3), and (2.3). This yields

〈Ap(u0)−Ap(ū), (u0 − ū)+〉+ (ā− ‖a‖∞)
∫

Ω

(up−1
0 − ūp−1)(u0 − ū)+dx ≤ 0,

i.e., u0 ≤ ū. Therefore, both u0 ∈ [0, ū] \ {0} and u0 solves problem (1.1), so that,
due to Proposition 3.7, u0 ∈ int(C+)∩ (ū− Ĉ+), which implies u0 ∈ intC1(Ω)([0, ū]).
Finally, since

ϕb[0,ū]= ϕ̄b[0,ū],

Equation (3.5), combined with [19, Proposition 3], ensures that u0 is a local mini-
mizer for ϕ. �

Critical point arguments produce a second positive solution.

Theorem 3.10. If (2.3), (A1)–(A3), (A5)–(A6) hold, then (1.1) possesses a solu-
tion u1 ∈ int(C+) \ {u0} such that u0 ≤ u1.

Proof. For x ∈ Ω and t, ξ ∈ R, we define

f0(x, t) :=

{
f(x, u0(x)) + āu0(x)p−1 if t ≤ u0(x),
f(x, t) + ātp−1 otherwise,

F0(x, ξ) :=
∫ ξ

0

f0(x, t) dt.

(3.7)
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It is evident that the corresponding truncated functional

ϕ0(u) :=
1
p

(
E(u) + ā‖u‖pp

)
−
∫

Ω

F0(x, u(x)) dx, u ∈ X, (3.8)

belongs to C1(X) also. A standard argument, which exploits Sobolev’s embedding
theorem and the compactness of the trace operator, ensures that ϕ0 is weakly
sequentially lower semi-continuous.

Claim 1: ϕ0 satisfies condition (C). Let {un} be a sequence in X be such that

|ϕ0(un)| ≤ c1 ∀n ∈ N, (3.9)

lim
n→+∞

(1 + ‖un‖)‖ϕ′0(un)‖X∗ = 0. (3.10)

Through (3.10) one has∣∣∣〈Ap(un), w〉+
∫
∂Ω

β|un|p−2unw dσ

+
∫

Ω

(a+ ā)|un|p−2unw dx−
∫

Ω

f0(x, un)w dx
∣∣∣

≤ εn‖w‖
1 + ‖un‖

∀w ∈ X,

(3.11)

where εn → 0+. We first show that {un} is bounded. This evidently happens once
the same holds for both {u−n } and {u+

n }. By (3.7), choosing w := −u−n in (3.11)
easily yields

E(u−n ) + ā‖u−n ‖pp ≤ c2.
From (2.3) and the choice of ā it thus follows ‖u−n ‖ ≤ c3. As n was arbitrary, the
sequence {u−n } turns out to be bounded. So, in particular, on account of (3.9),

E(u+
n ) + ā‖u+

n ‖pp − p
∫

Ω

F0(x, u+
n (x)) dx ≤ c4 ∀n ∈ N.

Since∫
Ω

F0(x, u+
n ) dx =

∫
Ω

[F0(x, u+
n )− F0(x, u0)]dx+

∫
Ω

[f(x, u0) + āup−1
0 ]u0 dx,

an easy computation shows that

E(u+
n )− p

∫
Ω

F (x, u+
n (x)) dx ≤ c5, n ∈ N. (3.12)

Now, (3.11) written with w := u+
n furnishes

− E(u+
n )− ā‖u+

n ‖pp +
∫

Ω1

[f(x, u0) + āup−1
0 ]u+

n dx+
∫

Ω2

[f(x, u+
n ) + ā(u+

n )p−1]u+
n dx

≤ εn,

where Ω1 := {x ∈ Ω : 0 ≤ un(x) ≤ u0(x)} and Ω2 := {x ∈ Ω : un(x) > u0(x)}.
Hence,

− E(u+
n ) +

∫
Ω

f(x, u+
n )u+

n dx ≤ c6. (3.13)

Inequalities (3.12)–(3.13) lead to∫
Ω

H(x, u+
n (x)) dx ≤ c7 ∀n ∈ N.
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Via the same arguments used in the proof (Claim 1) of [14, Proposition 3.2], with 2
replaced by p, we achieve ‖u+

n ‖ ≤ c8. Therefore, {un} ⊆ X is bounded. As before,
and along a subsequence when necessary, one has un → u in X.

Claim 2: K(ϕ0) ⊆ {u ∈ X : u0 ≤ u}. If u ∈ K(ϕ0) then

〈Ap(u), v〉+
∫

Ω

(a+ ā)|u|p−2uv dx+
∫
∂Ω

β|u|p−2uv dσ =
∫

Ω

f0(x, u)v dx,

for all v ∈ X. Letting v := (u0 − u)+ and recalling that u0 solves (1.1) yields

〈Ap(u0)−Ap(u), (u0 − u)+〉+
∫

Ω

(a+ ā)(up−1
0 − |u|p−2u)(u0 − u)+dx

+
∫
∂Ω

β(up−1
0 − |u|p−2u)(u0 − u)+dσ = 0.

By (2.3) this entails

〈Ap(u0)−Ap(u), (u0 − u)+〉+
∫

Ω

(a+ ā)(up−1
0 − |u|p−2u)(u0 − u)+dx ≤ 0,

whence u0 ≤ u, because ā > ‖a‖∞.
We may evidently assume

K(ϕ0) ∩ [0, ū] = {u0}, (3.14)

otherwise, thanks to Claim 2, there would exist u1 ∈ K(ϕ0) ∩ [u0, ū] \ {u0}, i.e., a
second solution of (1.1). Moreover, Proposition 3.7 would give u1 ∈ int(C+)∩ (ū−
Ĉ+), and the conclusion follows.

For every x ∈ Ω, t, ξ ∈ R, we put

f̄0(x, t) :=

{
f0(x, t) if t ≤ ū(x),
f0(x, ū(x)) otherwise,

F̄0(x, ξ) :=
∫ ξ

0

f̄0(x, t) dt. (3.15)

The associated truncated functional

ϕ̄0(u) :=
1
p

(
E(u) + ā‖u‖pp

)
−
∫

Ω

F̄0(x, u(x)) dx, u ∈ X,

belongs to C1(X) and is coercive. A standard argument, based on the Sobolev
embedding theorem and the compactness of the trace operator, ensures that ϕ̄0 is
weakly sequentially lower semi-continuous. So,

inf
u∈X

ϕ̄0(u) = ϕ̄0(ū0) (3.16)

for some ū0 ∈ X. Since, like in the proof of Theorem 3.9, one has K(ϕ̄0) ⊆ [u0, ū],
(3.14)–(3.16) produce ū0 = u0. Observe now that

ϕ̄0b[0,ū]= ϕ0b[0,ū]

while, by Theorem 3.9, u0 ∈ intC1(Ω)([0, ū]). Thus, due to [19, Proposition 3], u0 is
a local minimizer for ϕ0. Without loss of generality, suppose u0 isolated in K(ϕ0),
or else (1.1) would possess infinitely many solutions bigger that u0; cf. Claim 2 and
(3.7). The same reasoning made in the proof of [1, Proposition 29] provides here
ρ > 0 fulfilling

ϕ0(u0) < inf
u∈∂Bρ(u0)

ϕ0(u).
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From (3.7) and (A2) it easily follows that

lim
τ→+∞

ϕ0(τ û1) = −∞.

Claim 1 guarantees that condition (C) holds for ϕ0. Hence, the mountain-pass
theorem gives a point u1 ∈ K(ϕ0) \ {u0}. Obviously, u0 ≤ u1 by Claim 2 and
u1 solves (1.1). Through the regularity arguments used above we then achieve
u1 ∈ C1(Ω). It remains to check that u1 ∈ int(C+), which can be performed
arguing as in the proof of Proposition 3.7. �

3.2. Negative solutions. The minimization method yields a negative solution
whenever (A4) is assumed.

Theorem 3.11. Let (2.3), (A1), (A4), and (A5) be satisfied. Then (1.1) possesses
a solution u2 ∈ − int(C+).

Proof. For x ∈ Ω and t, ξ ∈ R, we define

f̃(x, t) :=

{
f(x, t) + ā|t|p−2t if t ≤ 0,
0 otherwise,

F̃ (x, ξ) :=
∫ ξ

0

f̃(x, t) dt.

It is evident that the corresponding functional

ϕ̃(u) :=
1
p

(
E(u) + ā‖u‖pp

)
−
∫

Ω

F̃ (x, u(x)) dx, u ∈ X,

belongs to C1(X). A standard reasoning, which exploits Sobolev’s embedding
theorem besides the compactness of the trace operator, ensures that ϕ̃ turns out to
be weakly sequentially lower semi-continuous. Moreover, ϕ̃ is coercive. Indeed, if

‖un‖ → +∞ and ϕ̃(un) ≤ c1 ∀n ∈ N, (3.17)

then
1
p
E(u−n )−

∫
Ω

F (x,−u−n (x)) dx

≤ 1
p

min{1, ā− ‖a‖∞}‖u+
n ‖p +

1
p
E(u−n )−

∫
Ω

F (x,−u−n (x)) dx

≤ 1
p

(
E(un) + ā‖un‖pp

)
−
∫

Ω

F̃ (x,−u−n (x)) dx ≤ c1 , n ∈ N.

(3.18)

Suppose ‖u−n ‖ → +∞ and write wn := ‖u−n ‖−1u−n . From ‖wn‖ = 1 it follows, along
a subsequence when necessary,

wn ⇀ w in X, wn → w in Lp(Ω) and in Lp(∂Ω), w ≥ 0. (3.19)

Through (3.18) one has

1
p
E(wn)− 1

‖u−n ‖p

∫
Ω

F (x,−u−n (x)) dx ≤ c1

‖u−n ‖p
∀n ∈ N (3.20)

while by (A1) the sequence {‖u−n ‖−pNF (−u−n )} ⊆ L1(Ω) is uniformly integrable.
Using the arguments made in the proof of [1, Proposition 14], besides (A4), we thus
obtain a function θ ∈ L∞(Ω) such that −c2 ≤ θ ≤ λ̂1/p and

1
‖u−n ‖p

NF (−u−n ) ⇀
1
p
θwp in L1(Ω). (3.21)
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Thanks to (3.19)–(3.20) this implies, as n→ +∞,

E(w) ≤
∫

Ω

θ(x)w(x)pdx. (3.22)

If θ 6= λ̂1, then [18, Lemma 4.11] forces w = 0. From (3.19)–(3.21) it follows
‖wn‖ → 0. However, this is impossible. So, suppose θ = λ̂1. Gathering (3.22)
and (p2) together leads to w = tû1 for some t ≥ 0. The above reasoning shows
that t > 0. Hence, w ∈ int(C+). By the definition of {wn} we actually have
u−n (x)→ +∞ for every x ∈ Ω. Since (A4) easily yields

lim
ξ→−∞

[λ̂1|ξ|p − pF (x, ξ)] = +∞ uniformly in x ∈ Ω

(cf. Remark 3.4), Fatou’s lemma gives

lim
n→+∞

∫
Ω

[λ̂1(u−n )p − pF (x,−u−n (x))]dx = +∞. (3.23)

On the other hand, via (3.18), besides (2.5), we get∫
Ω

[λ̂1u
−
n (x)p − pF (x,−u−n (x))]dx ≤ pc1 ∀n ∈ N,

against (3.23). Therefore, the sequence {u−n } ⊆ X is bounded. Using (3.18) again
one sees that {u+

n } enjoys the same property, which contradicts (3.17).
Let u2 ∈ X satisfy

inf
u∈X

ϕ̃(u) = ϕ̃(u2).

Arguing as in the proof of Theorem 3.9 we achieve u2 ≤ 0 and u2 6= 0. So, u2 solves
problem (1.1) and belongs to (−C+) \ {0} by standard nonlinear regularity results.
Finally, (A1) and (A4) provide µ̃ > ‖a‖∞ such that

f(x, t) + µ̃|t|p−2t ≤ 0, (x, t) ∈ Ω× R−0 .

Consequently,

∆p(−u2) + (a+ µ̃)|u2|p−2u2 = f(x, u2) + µ̃|u2|p−2u2 ≤ 0,

whence
∆p(−u2) ≤ (a+ µ̃)(−u2)p−1 in Ω.

Through [23, Theorem 5] this implies −u2 ∈ int(C+), as desired. �

3.3. Extremal constant-sign and nodal solutions. The following stronger ver-
sion of (A5) will be used.

(A5’) There exist q ∈ (1, p), a4 > 0, and δ1 > 0 such that

a4|ξ|q ≤ f(x, ξ)ξ ≤ qF (x, ξ) ∀(x, ξ) ∈ Ω× [−δ1, δ1].

It plays a crucial role in getting useful information on the critical groups of ϕ at zero.
Precisely, the result below, whose proof is analogous to that of [21, Proposition 4.1]
(cf. also [12, Theorem 3.6]), holds.

Lemma 3.12. Suppose (2.3), (A1), (A5’) hold and K(ϕ) is a finite set. Then
Ck(ϕ, 0) = 0 for all k ∈ N0.
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Combining (A1) with (A5’) we obtain

f(x, t)t ≥ a4|t|q − a5|t|r in Ω× R (3.24)

for an appropriate a5 > 0. Consider the auxiliary problem

−∆pu+ a(x)|u|p−2u = a4|u|q−2u− a5|u|r−2u in Ω,
∂u

∂np
+ β(x)|u|p−2u = 0 on ∂Ω.

(3.25)

Note that if u is a solution then −u also solves this problem.

Lemma 3.13. If (2.3) holds then (3.25) admits a unique positive solution u+ ∈
int(C+).

Proof. The C1-functional ψ : X → R given by

ψ(u) :=
1
p

(
E(u) + ā‖u−‖pp

)
− a4

q
‖u+‖qq +

a5

r
‖u+‖rr , u ∈ X,

is coercive. Indeed, recalling that β ≥ 0, ā ≥ ‖a‖∞, and q < p < r, we have

ψ(u) =
1
p
E(u+) +

a5

r
‖u+‖rr −

a4

q
‖u+‖qq +

1
p

(
E(u−) + ā‖u−‖pp

)
≥ 1
p
‖∇u+‖pp + c1‖u+‖rp − c2

(
‖u+‖pp + 1

)
+ c3‖u−‖p

=
1
p
‖∇u+‖pp + ‖u+‖pp

(
c1‖u+‖r−pp − c2

)
+ c3‖u−‖p − c2

≥ c4‖u‖p − c5 .

Since ψ is weakly sequentially lower semi-continuous also, there exists u+ ∈ X
fulfilling

ψ(u+) = inf
u∈X

ψ(u).

Moreover, u+ 6= 0 because ψ(t) < 0 for any t > 0 small enough. As in the proof of
Theorem 3.9 we next get u+ ≥ 0. Hence, by standard nonlinear regularity results,
u+ ∈ C+ \ {0}. The conclusion u+ ∈ int(C+) easily derives from

∆pu+ ≤
(
‖a‖∞ + a5‖u+‖r−p∞

)
up−1

+ ≤ c6up−1
+ ;

cf. [23, Theorem 5]. Let us now come to uniqueness. Suppose û ∈ int(C+) is
another solution of (3.25). For u ∈ L1(Ω), we put

J(u) :=

{
1
p

(
‖∇u1/p‖pp +

∫
∂Ω
au dσ

)
if u ≥ 0, u1/p ∈ X,

+∞ otherwise.

[7, Lemma 1 ] ensures that J : L1(Ω) → R ∪ {+∞} is proper, convex, and lower
semi-continuous. A simple computation, chiefly based on [10, Theorem 2.4.54],
yields

J ′(up+)(v) =
1
p

∫
Ω

−∆pu+

up−1
+

v dx , J ′(ûp)(v) =
1
p

∫
Ω

−∆pû

ûp−1
v dx ∀v ∈ C1(Ω),

while the monotonicity of J ′ leads to∫
Ω

(−∆pu+

up−1
+

− −∆pû

ûp−1

) (
up+ − ûp

)
dx ≥ 0.
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Therefore, ∫
Ω

[
a4

( 1
up−q+

− 1
ûp−q

)
− a5(ur−p+ − ûr−p)

] (
up+ − ûp

)
dx ≥ 0,

which implies u+ = û, because q < p < r. �

Remark 3.14. Recall that when u is a solution, so is −u. Then u− := −u+

represents the unique negative solution of (3.25).

We define

Σ+ := {u ∈ X \ {0} : 0 ≤ u, u solves (1.1)},
Σ− := {u ∈ X \ {0} : u ≤ 0, u solves (1.1)}.

We already know (see Sections 3.1–3.2) that these sets are both nonempty and that

Σ+,−Σ− ⊆ int(C+).

Moreover, Σ+ (resp., Σ−) turns out to be downward (resp., upward) directed, as a
standard argument shows; see for instance [8, Lemmas 4.2–4.3].

Lemma 3.15. Under assumptions (A1)–(A4), (A5’), and (A6) one has

u+ ≤ u ∀u ∈ Σ+ , u ≤ u− ∀u ∈ Σ− .

Proof. Pick u ∈ Σ+. For x ∈ Ω, t, ξ ∈ R, we define

g(x, t) :=

{
a4(t+)q−1 − a5(t+)r−1 if t+ ≤ u(x),
a4u(x)q−1 − a5u(x)r−1 + āu(x)p−1 otherwise,

G(x, ξ) :=
∫ ξ

0

g(x, t) dt .

Evidently, the functional

ψ+(w) :=
1
p

(
E(w) + ā‖w‖pp

)
−
∫

Ω

G(x,w(x)) dx , w ∈ X,

is C1, weakly sequentially lower semi-continuous, and coercive. So, there exists
w0 ∈ X such that

ψ+(w0) = inf
w∈X

ψ+(w).

From q < p < r it follows ψ+(w0) < 0 = ψ+(0), whence w0 6= 0. Via (3.24),
reasoning as in the proof of Theorem 3.9, we arrive at

w0 ∈ [0, u] ∩ int(C+). (3.26)

So, w0 turns out to be a positive solution of (3.25). By Lemma 3.13 one has
w0 = u+, and (3.26) then yields u+ ≤ u. Analogously, u ≤ u− for all u ∈ Σ−. �

Theorem 3.16. Let (2.3), (A1)–(A4), (A5’), (A6) be satisfied. Then (1.1) pos-
sesses a smallest positive solution u∗ and a biggest negative solution v∗. Further,
−v∗, u∗ ∈ int(C+).

Proof. Recall that Σ+ is downward directed. The same arguments employed to
establish [2, Proposition 8] yield

(1) inf Σ+ = infn∈N un = u∗ for some {un} ⊆ Σ+, u∗ ∈ X;
(2) un → u∗ in X and in Lp(∂Ω).
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Hence, the function u∗ solves (1.1). Through Lemma 3.15 we next obtain u+ ≤ u∗,
namely u∗ ∈ Σ+ ⊆ int(C+). Finally, 1) ensures that u∗ is minimal. A similar proof
gives a function v∗ with the asserted properties. �

Next, for every x ∈ Ω and t, ξ ∈ R, we define

f̂(x, t) :=


f(x, v∗(x)) + ā|v∗(x)|p−2v∗(x) if t < v∗(x),
f(x, t) + ā|t|p−2t if v∗(x) ≤ t ≤ u∗(x),
f(x, u∗(x)) + āu∗(x)p−1 if t > u∗(x),

f̂±(x, t) := f̂(x, t±),

F̂ (x, ξ) :=
∫ ξ

0

f̂(x, t)dt, F̂±(x, ξ) :=
∫ ξ

0

f̂±(x, t) dt.

(3.27)

It is evident that the corresponding truncated functionals

ϕ̂(u) :=
1
p

(
E(u) + ā‖u‖pp

)
−
∫

Ω

F̂ (x, u(x)) dx, u ∈ X,

ϕ̂±(u) :=
1
p

(
E(u) + ā‖u‖pp

)
−
∫

Ω

F̂±(x, u(x)) dx, u ∈ X,
(3.28)

belong to C1(X). Moreover, by construction, one has

K(ϕ̂) ⊆ [v∗, u∗], K(ϕ̂−) = {0, v∗}, K(ϕ̂+) = {0, u∗}; (3.29)

see, e.g., [15, Lemma 3.1].

Theorem 3.17. If (2.3), (A1)–(A4), (A5’), (A6) hold, then (1.1) possesses a nodal
solution u3 ∈ [v∗, u∗] ∩ C1(Ω).

Proof. X compactly embeds in Lp(Ω) while the Nemitskii operator Nf̂+ turns out
to be continuous on Lp(Ω). Thus, a standard argument ensures that ϕ̂+ is weakly
sequentially lower semi-continuous. Since, on account of (3.27), it is coercive, we
obtain

inf
u∈X

ϕ̂+(u) = ϕ̂+(u0)

for some u0 ∈ X. Reasoning as in the proof of Theorem 3.9 produces u0 ∈ int(C+)
and, by (3.29), u0 = u∗. Since ϕ̂bC+= ϕ̂+bC+ , the function u∗ turns out to be a
C1(Ω)-local minimizer for ϕ̂. Now, [19, Proposition 3] guarantees that the same
remains true with X in place of C1(Ω). A similar argument applies to v∗. Conse-
quently, u∗, v∗ are local minimizer for ϕ̂.

We may assume K(ϕ̂) finite, otherwise infinitely many nodal solutions do exist
by (3.29). Let ϕ̂(v∗) ≤ ϕ̂(u∗) (the other case is analogous). Without loss of
generality, the local minimizer u∗ for ϕ̂ can be supposed proper. Thus, there exists
ρ ∈ (0, ‖u∗ − v∗‖) such that

ϕ̂(u∗) < cρ := inf
u∈∂Bρ(u∗)

ϕ̂(u). (3.30)

Moreover, ϕ̂ fulfills condition (C) because, by (3.27), it is coercive; vide for in-
stance [13, Proposition 2.2]. So, the mountain-pass theorem yields a point u3 ∈ X
complying with ϕ̂′(u3) = 0 and

cρ ≤ ϕ̂(u3) = inf
γ∈Γ

max
t∈[0,1]

ϕ̂(γ(t)), (3.31)
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where
Γ := {γ ∈ C0([0, 1], X) : γ(0) = v∗, γ(1) = u∗} .

Obviously, u3 solves (1.1). Through (3.30)–(3.31), besides (3.29), we get

u3 ∈ [v∗, u∗] \ {v∗, u∗},

while standard regularity arguments yield u3 ∈ C1(Ω). The proof is thus completed
once one verifies that u3 6= 0. This will follow from

C1(ϕ̂, 0) = 0 , (3.32)

because C1(ϕ̂, u3) 6= 0 by [17, Corollary 6.81]. We claim that

Ck(ϕ̂, 0) = Ck(ϕ, 0) ∀k ∈ N0. (3.33)

Indeed, consider the homotopy

h(t, u) := (1− t)ϕ̂(u) + tϕ(u) , (t, u) ∈ [0, 1]×X.
If there exist {tn} ⊆ [0, 1] and {un} ⊆ X satisfying

tn → t, un → 0, um 6= un for m 6= n, h′u(t, un) = 0 ∀n ∈ N (3.34)

then the same arguments of [20, Proposition 7] give ‖un‖∞ ≤ c1. By regularity,
the sequence {un} is bounded in C1,α(Ω) for some α ∈ (0, 1), whence un → 0 in
C1(Ω). Thus, un ∈ [v∗, u∗] provided n is large enough, and (3.27), (3.29), besides
(3.34), lead to un ∈ K(ϕ̂). However, this contradicts the assumption K(ϕ̂) finite.
Now, [5, Theorem 5.2] directly yields (3.33). Combining (3.33) with Lemma 3.12
we finally arrive at (3.32), as desired. �

If f(x, ·) exhibits a (p− 1)-linear behavior at zero then the problem’s geometry
changes, and another technical approach is necessary. We will use the hypothesis
(A5”) There exist a6 > λ̂2 and a7 > 0 such that

a6 ≤ lim inf
t→0

f(x, t)
|t|p−2t

≤ lim sup
t→0

f(x, t)
|t|p−2t

≤ a7

uniformly in x ∈ Ω.
Via (A1) and (A5”) one has

f(x, t)t ≥ a8|t|p − a9|t|r, (x, t) ∈ Ω× R,

for appropriate a8 > λ̂2, a9 > 0. Consider the auxiliary problem

−∆pu+ a(x)|u|p−2u = a8|u|p−2u− a9|u|r−2u in Ω,
∂u

∂np
+ β(x)|u|p−2u = 0 on ∂Ω.

(3.35)

Note that if u is a solution then −u also solves this problem. Reasoning as above
we see that:

• Problem (3.35) admits a unique positive solution u+ ∈ int(C+).
• u− := −u+ represents the unique negative solution of (3.35).
• Under assumptions (A1)–(A4), (A5”), (A6) and (2.3), problem (1.1) pos-

sesses both a smallest positive solution u∗ and a biggest negative solution
v∗. Further, −v∗, u∗ ∈ int(C+).

Now, the same arguments used in the proof of [15, Theorem 3.3] yield the following
result.
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Theorem 3.18. Let (2.3), (A1)–(A4), (A5”), and (A6) be satisfied. Then (1.1)
admits a nodal solution u3 ∈ [v∗, u∗] ∩ C1(Ω).

3.4. Existence of at least four nontrivial solutions. Gathering the results in
Sections 3.1–3.3 we directly obtain the next one.

Theorem 3.19. If (2.3), (A1)–(A4), (A5’)–(A6) hold, then (1.1) possesses at least
four solutions u0, u1 ∈ int(C+), u2 ∈ − int(C+), and u3 ∈ [u2, u0] ∩ C1(Ω) nodal.
Moreover, u0 ≤ u1.

Remark 3.20. Hypothesis (A5’) can be substituted by (A5”) without changing
the conclusion.

4. Semilinear case

From now on we shall assume p = 2. Then the regularity results of [24] allow to
weaken (2.3) as follow, see [6, 14],

a ∈ Ls(Ω) for some s > N , a+ ∈ L∞(Ω), β ∈W 1,∞(∂Ω), and β ≥ 0. (4.1)

Further, the energy functional ϕ given by (3.3) fulfills condition (C) once (4.1),
(A1), (A2), and (A4) hold; see Proposition 3.8.

Lemma 4.1. Under assumptions (4.1), (A1), and

(A7) λ̂mt
2 ≤ f(x, t)t ≤ λ̂m+1t

2 in Ω× [−δ2, δ2], with appropriate m ∈ N, δ2 > 0,
one has

Ck(ϕ, 0) = δk,dmZ ∀k ∈ N0 ,

where dm := dim(H̄m), provided ϕ satisfies (C) and 0 ∈ K(ϕ) is isolated.

Proof. It is similar to that of [6, Lemma 3.3]. So, we only sketch the main points.
Pick a θ ∈ (λ̂m, λ̂m+1) and define

ψ(u) :=
1
2
(
E(u)− θ‖u‖22

)
, u ∈ X .

Thanks to (A7), zero is a non-degenerate critical point of ψ having Morse index
dm, which entails

Ck(ψ, 0) = δk,dmZ ∀k ∈ N0 ;

see (2.2). Now, recall that every v ∈ X admits a unique sum decomposition v =
v̄ + v̂, with v̄ ∈ H̄m, v̂ ∈ Ĥm+1. If u ∈ C1(Ω) and 0 < ‖u‖C1(Ω) < δ2 then

〈ϕ′(u), û− ū〉 = E(û)− E(ū)−
∫

Ω

f(x, u)(û− ū) dx . (4.2)

By (A7) again, one arrives at

f(x, u)(û− ū) =
f(x, u)
u

u(û− ū) ≤

{
λ̂m+1(û2 − ū2) if u(û− ū) ≥ 0,
−λ̂m(ū2 − û2) otherwise.

Hence,
f(x, u(x))(û(x)− ū(x)) ≤ λ̂m+1û(x)2 − λ̂mū(x)2 in Ω . (4.3)

From (4.2), (4.3), and (2.7) it follows that

〈ϕ′(u), û− ū〉 ≥ E(û)− λ̂m+1‖û‖22 − [E(ū)− λ̂m‖ū‖22] ≥ 0 .
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Using [6, Lemma 2.2] we obtain

〈ψ′(u), û− ū〉 = E(û)− θ‖û‖22 − [E(ū)− θ‖ū‖22] ≥ c1‖u‖2

for some c1 > 0. Therefore, the homotopy

h(t, v) := (1− t)ϕ(v) + tψ(v), (t, v) ∈ [0, 1]×X

fulfills the inequality

〈h′v(t, u), û− ū〉 ≥ tc1‖u‖2 ∀t ∈ [0, 1] ,

and [5, Theorem 5.2] can be applied. By that result Ck(ϕ, 0) = Ck(ψ, 0), which
completes the proof. �

The same arguments made in [20, Proposition 15] yield the next result.

Lemma 4.2. Assume (4.1), (A1), and (A2) hold. If ϕ satisfies (C) and is bounded
below on K(ϕ), then Ck(ϕ,∞) = 0 for all k ∈ N0.

The condition below will take the place of (A1).
(A1’) f(x, ·) ∈ C1(R) for every x ∈ Ω. There exist a1 ∈ L∞(Ω), r ∈ (2, 2∗) such

that
|f ′t(x, t)| ≤ a1(x)(1 + |t|r−2) ∀(x, t) ∈ Ω× R.

Remark 4.3. An easy computation shows that (A1’) implies (A6).

We are now in a position to establish a five-solutions existence result. It com-
plements those previously obtained in [6, 14].

Theorem 4.4. Let (4.1), (A1’), (A2)–(A4) be satisfied. Suppose also that
(A7’) either

a10t
2 ≤ f(x, t)t ≤ λ̂3t

2, (x, t) ∈ Ω× [−δ3, δ3],

for some a10 > λ̂2 and δ3 > 0, or

λ̂mt
2 ≤ f(x, t)t ≤ λ̂m+1t

2, (x, t) ∈ Ω× [−δ3, δ3],

where m ≥ 3.
Then (1.4) possesses at least five nontrivial solutions ui ∈ C1(Ω), i = 0, . . . , 4,

with u0, u1, u2, u3 as in Theorem 3.19.

Proof. Thanks to Remarks 3.20 and 4.3, the conclusion of Theorem 3.19 holds for
the present framework. So, it remains to find a further solution u4 ∈ C1(Ω) \ {0}.
Without loss of generality, we assume that u0, u3 are extremal (see Section 3.3),
while a standard argument based on (A6) and (4.1) yields u3 ∈ intC1(Ω)([u2, u0]);

vide, e.g., [14, Theorem 3.2]. Still we write f̂ for the function defined in (3.27)
but with v∗ and u∗ replaced by u2 and u0, respectively. [6, Lemma 2.1] provides
â, b̂ > 0 fulfilling

E(u) + â‖u‖22 ≥ b̂‖u‖2 ∀u ∈ X .

Pick any ā ≥ â and consider the functional ϕ̂ given by (3.28). The same reasoning
adopted in the proof of Theorem 3.17 ensures here that Ck(ϕ̂, u3) = Ck(ϕ, u3).
Thus

C1(ϕ, u3) 6= 0 ,
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because u3 is a mountain-pass type critical point for ϕ̂; cf. [17, Corollary 6.81]. By
(A1’) one has ϕ ∈ C2(X) as well as

〈ϕ′′(u3)u, v〉 =
∫

Ω

(∇u · ∇v + auv)dx+
∫
∂Ω

βuv dσ −
∫

Ω

f ′t(x, u3)uvdx, (4.4)

for u, v ∈ X. Hence, if the Morse index of u3 is zero, then

‖∇u‖22 +
∫
∂Ω

βu2dσ ≥
∫

Ω

[f ′t(x, u3)− a]u2dx ∀u ∈ X. (4.5)

Write α := [f ′t(x, u3)−a]+ and observe that α ∈ Ls(Ω). Two situations may occur.

(1) α = 0. Due to (4.4), for every u ∈ kerϕ′′(u3) we get

‖∇u‖22 +
∫
∂Ω

β(x)u(x)2dσ ≤ 0,

which implies u constant.
(2) α 6= 0. From (4.5) it follows λ̂1(α) ≥ 1 and by (4.4) the assertion kerϕ′′(u3) 6=
{0} forces λ̂1(α) = 1, whence dim kerϕ′′(u3) = 1.

In both cases we arrive at dim kerϕ′′(u3) ≤ 1. So, on account of [17, Proposition
6.101],

Ck(ϕ, u3) = δk,1Z ∀k ∈ N0. (4.6)
Next, we define

ϕ+(u) :=
1
2
E(u)−

∫
Ω

F+(x, u(x)) dx, u ∈ X,

where F+(x, ξ) :=
∫ ξ

0
f(x, t)+ dt. Assumption (A7) easily leads to ϕbC+= ϕ+bC+ ,

which entails
Ck(ϕbC1(Ω), u1) = Ck(ϕ+bC1(Ω), u1)

because u1 ∈ int(C+); see Theorem 3.10. By denseness one has Ck(ϕ, u1) =
Ck(ϕ+, u1). Now, observe that ϕ+ = ϕ0 + c, with appropriate c > 0 and ϕ0

as in (3.8), on a neighbourhood of u1. Consequently, Ck(ϕ+, u1) = Ck(ϕ0, u1).
Since u1 is a mountain-pass type critical point for ϕ0 (cf. the proof of Theorem
3.10), the same argument made above gives

Ck(ϕ, u1) = δk,1Z , k ∈ N0. (4.7)

Gathering Theorem 3.10 and [17, Proposition 6.95], we derive

Ck(ϕ, u0) = δk,0Z ∀k ∈ N0. (4.8)

Likewise,
Ck(ϕ, u2) = δk,0Z , ∀k ∈ N0, (4.9)

while Lemmas 4.1–4.2 yield

Ck(ϕ, 0) = δk,dmZ , Ck(ϕ,∞) = 0 ∀k ∈ N0. (4.10)

Finally, if K(ϕ) = {0, u0, u1, u2, u3} then (2.1), with t = −1, and (4.6)–(4.10) would
imply

(−1)dm + 2(−1)0 + 2(−1)1 = 0,
which is impossible. Thus, there exists u4 ∈ K(ϕ) \ {0, u0, u1, u2, u3}, i.e., a fifth
nontrivial solution to (1.1). Standard regularity results [24] ensure that u4 ∈ C1(Ω).

�
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