ASYMMETRIC ROBIN BOUNDARY-VALUE PROBLEMS WITH p-LAPLACIAN AND INDEFINITE POTENTIAL

SALVATORE A. MARANO, NIKOLAOS S. PAPAGEORGIOU

Communicated by Vicentiu D. Radulescu

Abstract

Four nontrivial smooth solutions to a Robin boundary-value problem with p-Laplacian, indefinite potential, and asymmetric nonlinearity superlinear at $+\infty$ are obtained, all with sign information. The semilinear case is also investigated, producing a nonzero fifth solution. Our proofs use variational methods, truncation techniques, and Morse theory.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^{n} with a C^{2}-boundary $\partial \Omega$, let $a \in L^{\infty}(\Omega)$, and let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function such that $f(\cdot, 0)=0$. Consider the Robin problem

$$
\begin{gather*}
-\Delta_{p} u+a(x)|u|^{p-2} u=f(x, u) \quad \text { in } \Omega, \\
\frac{\partial u}{\partial n_{p}}+\beta(x)|u|^{p-2} u=0 \quad \text { on } \partial \Omega, \tag{1.1}
\end{gather*}
$$

where $1<p<+\infty, \Delta_{p}$ indicates the p-Laplacian, $\frac{\partial u}{\partial n_{p}}:=|\nabla u|^{p-2} \nabla u \cdot n$, with n being the outward unit normal vector to $\partial \Omega$, and $\beta \in C^{0, \alpha}\left(\partial \Omega, \mathbb{R}_{0}^{+}\right)$. We say that $u \in W^{1, p}(\Omega)$ is a (weak) solution of (1.1) provided

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v d x+\int_{\partial \Omega} \beta|u|^{p-2} u v d \sigma+\int_{\Omega} a|u|^{p-2} u v d x=\int_{\Omega} f(x, u) v d x
$$

for all $v \in W^{1, p}(\Omega)$.
This paper studies the existence of multiple solutions to (1.1) when

- the potential function $x \mapsto a(x)$ is indefinite, i.e., sign changing, and
- the reaction term $(x, t) \mapsto f(x, t)$ exhibits an asymmetric behaviour as t goes from $-\infty$ to $+\infty$.
For $(x, \xi) \in \Omega \times \mathbb{R}$, we define

$$
\begin{equation*}
F(x, \xi):=\int_{0}^{\xi} f(x, \tau) d \tau, \quad H(x, \xi):=f(x, \xi) \xi-p F(x, \xi) . \tag{1.2}
\end{equation*}
$$

Roughly speaking, our assumptions on the rate of f at infinity are the following.

[^0](1) $\lim _{\xi \rightarrow+\infty} F(x, \xi) \xi^{-p}=+\infty$ uniformly in $x \in \Omega$ and there exists $c_{1}>0$ such that
$$
H\left(x, \xi_{1}\right) \leq H\left(x, \xi_{2}\right)+c_{1} \quad \text { whenever } \quad 0 \leq \xi_{1} \leq \xi_{2}
$$
(2) For appropriate $c_{2} \in \mathbb{R}$ one has
$$
c_{2} \leq \liminf _{t \rightarrow-\infty} \frac{f(x, t)}{|t|^{p-2} t} \leq \limsup _{t \rightarrow-\infty} \frac{f(x, t)}{|t|^{p-2} t} \leq \hat{\lambda}_{1}, \quad \lim _{\xi \rightarrow-\infty} H(x, \xi)=+\infty
$$
uniformly in $x \in \Omega$.
Here $\hat{\lambda}_{n}$ denotes the $n^{\text {th }}$-eigenvalue of the problem
\[

$$
\begin{equation*}
-\Delta_{p} u+a(x)|u|^{p-2} u=\lambda|u|^{p-2} u \quad \text { in } \quad \Omega, \quad \frac{\partial u}{\partial n_{p}}+\beta(x)|u|^{p-2} u=0 \quad \text { on } \partial \Omega . \tag{1.3}
\end{equation*}
$$

\]

It should be noted that a possible interaction (resonance) with $\hat{\lambda}_{1}$ is allowed and that $f(x, \cdot)$ grows $(p-1)$-super-linearly near $+\infty$. Nevertheless, contrary to most previous works, we do not need here the stronger unilateral Ambrosetti-Rabinowitz condition.

Under (1), (2), and some additional hypotheses, one of which forces a p-concave behaviour of $t \mapsto f(x, t)$ at zero, there are four C^{1}-solutions to 1.1 , two positive, one negative, and the remaining nodal; see Section 3. If $p:=2$ then 1.1 becomes

$$
\begin{gather*}
-\Delta u+a(x) u=f(x, u) \quad \text { in } \Omega \\
\frac{\partial u}{\partial n}+\beta(x) u=0 \quad \text { on } \partial \Omega \tag{1.4}
\end{gather*}
$$

As in [6, 14], the assumptions on a and β can be significantly relaxed. However, we obtain five nontrivial smooth solutions; cf. Theorem 4.4.

The adopted approach exploits variational methods, truncation techniques, and results from Morse theory. Regularity is a standard matter, unless $p:=2$, in which case [24, Lemmas 5.1, 5.2] are employed.

Problem (1.4) has been widely investigated under various points of view; see, for instance, 6, 14 and the references given there. On the contrary, the equation

$$
-\Delta_{p} u+a(x)|u|^{p-2} u=f(x, u) \quad \text { in } \quad \Omega,
$$

with Dirichlet, Neumann, or Robin boundary conditions, did not receive much attention when $p \neq 2$, a sign-changing potential appears, and $t \mapsto f(x, t)$ is asymmetric. Actually, we can only mention [16, where the Dirichlet problem is studied, [18, dealing with symmetric reactions and Neumann boundary conditions, 4, 6, devoted to $(p-1)$-super-linear reactions. The situation looks somewhat different if $a \equiv 0$; vide, e.g., [8, 15, 20, 21] and their bibliographies.

2. Preliminaries

Let $(X,\|\cdot\|)$ be a real Banach space. Given a set $V \subseteq X$, write \bar{V} for the closure of $V, \partial V$ for the boundary of V, and $\operatorname{int}_{X}(V)$ or simply int (V), when no confusion can arise, for the interior of V. If $x \in X$ and $\delta>0$ then

$$
B_{\delta}(x):=\{z \in X:\|z-x\|<\delta\} .
$$

The symbol $\left(X^{*},\|\cdot\|_{X^{*}}\right)$ denotes the dual space of $X,\langle\cdot, \cdot\rangle$ indicates the duality pairing between X and X^{*}, while $x_{n} \rightarrow x$ (respectively, $x_{n} \rightharpoonup x$) in X means 'the sequence $\left\{x_{n}\right\}$ converges strongly (respectively, weakly) in X^{\prime}.

We say that $\Phi: X \rightarrow \mathbb{R}$ is coercive if

$$
\lim _{\|x\| \rightarrow+\infty} \Phi(x)=+\infty .
$$

A function Φ is called weakly sequentially lower semi-continuous when

$$
x_{n} \rightharpoonup x \quad \text { in } X \Longrightarrow \Phi(x) \leq \liminf _{n \rightarrow \infty} \Phi\left(x_{n}\right) .
$$

Let $\Phi \in C^{1}(X)$. The classical Cerami compactness condition for Φ reads as follows.
(C) Every sequence $\left\{x_{n}\right\} \subseteq X$ such that $\left\{\Phi\left(x_{n}\right)\right\}$ is bounded and

$$
\lim _{n \rightarrow+\infty}\left(1+\left\|x_{n}\right\|\right)\left\|\Phi^{\prime}\left(x_{n}\right)\right\|_{X^{*}}=0
$$

has a convergent subsequence.
For $c \in \mathbb{R}$, we define

$$
\Phi^{c}:=\{x \in X: \Phi(x) \leq c\}, \quad K_{c}(\Phi):=K(\Phi) \cap \Phi^{-1}(c),
$$

where, as usual, $K(\Phi)$ denotes the critical set of Φ, i.e.,

$$
K(\Phi):=\left\{x \in X: \Phi^{\prime}(x)=0\right\} .
$$

We say that $A: X \rightarrow X^{*}$ is of type (S) $)_{+}$if

$$
x_{n} \rightharpoonup x \quad \text { in } X, \quad \limsup _{n \rightarrow+\infty}\left\langle A\left(x_{n}\right), x_{n}-x\right\rangle \leq 0 \Longrightarrow x_{n} \rightarrow x .
$$

Given a topological pair (A, B) fulfilling $B \subset A \subseteq X$, the symbol $H_{q}(A, B), q \in \mathbb{N}_{0}$, indicates the $\mathrm{q}^{\text {th }}$-relative singular homology group of (A, B) with integer coefficients. If $x_{0} \in K_{c}(\Phi)$ is an isolated point of $K(\Phi)$ then

$$
C_{q}\left(\Phi, x_{0}\right):=H_{q}\left(\Phi^{c} \cap V, \Phi^{c} \cap V \backslash\left\{x_{0}\right\}\right), \quad q \in \mathbb{N}_{0},
$$

are the critical groups of Φ at x_{0}. Here, V stands for any neighborhood of x_{0} such that $K(\Phi) \cap \Phi^{c} \cap V=\left\{x_{0}\right\}$. By excision, this definition does not depend on the choice of V. Suppose Φ satisfies condition (C), $\Phi\left\lfloor_{K(\Phi)}\right.$ is bounded below, and $c<\inf _{x \in K(\Phi)} \Phi(x)$. Put

$$
C_{q}(\Phi, \infty):=H_{q}\left(X, \Phi^{c}\right), \quad q \in \mathbb{N}_{0} .
$$

The second deformation lemma [10, Theorem 5.1.33] implies that this definition does not depend on the choice of c. If $K(\Phi)$ is finite, then setting

$$
M(t, x):=\sum_{q=0}^{+\infty} \operatorname{rank} C_{q}(\Phi, x) t^{q}, \quad P(t, \infty):=\sum_{q=0}^{+\infty} \operatorname{rank} C_{q}(\Phi, \infty) t^{q}
$$

for $(t, x) \in \mathbb{R} \times K(\Phi)$, the following Morse relation holds

$$
\begin{equation*}
\sum_{x \in K(\Phi)} M(t, x)=P(t, \infty)+(1+t) Q(t), \tag{2.1}
\end{equation*}
$$

where $Q(t)$ denotes a formal series with nonnegative integer coefficients; see for instance [17, Theorem 6.62].

Now, let X be a Hilbert space, let $x \in K(\Phi)$, and let Φ be C^{2} in a neighborhood of x. If $\Phi^{\prime \prime}(x)$ turns out to be invertible, then x is called non-degenerate. The Morse index d of x is the supremum of the dimensions of the vector subspaces of X on which $\Phi^{\prime \prime}(x)$ turns out to be negative definite. When x is non-degenerate and with Morse index d one has

$$
\begin{equation*}
C_{q}(\Phi, x)=\delta_{q, d} \mathbb{Z}, \quad q \in \mathbb{N}_{0} . \tag{2.2}
\end{equation*}
$$

The monograph [17] represents a general reference on the subject.
Throughout this article, Ω denotes a bounded domain of the real Euclidean N space $\left(\mathbb{R}^{N},|\cdot|\right)$ whose boundary $\partial \Omega$ is C^{2} while $n(x)$ indicates the outward unit normal vector to $\partial \Omega$ at its point x. On $\partial \Omega$ we will employ the ($N-1$)-dimensional Hausdorff measure σ. The symbol m stands for the Lebesgue measure, $p \in(1,+\infty)$, $p^{\prime}:=p /(p-1),\|\cdot\|_{q}$ with $q \geq 1$ is the usual norm of $L^{q}(\Omega), X:=W^{1, p}(\Omega)$, and

$$
\|u\|:=\left(\|\nabla u\|_{p}^{p}+\|u\|_{p}^{p}\right)^{1 / p}, \quad u \in X
$$

Write p^{*} for the critical exponent of the Sobolev embedding $W^{1, p}(\Omega) \subseteq L^{q}(\Omega)$. Recall that $p^{*}=N p /(N-p)$ if $p<N, p^{*}=+\infty$ otherwise, and the embedding turns out to be compact whenever $1 \leq q<p^{*}$.

Given $t \in \mathbb{R}, u, v: \Omega \rightarrow \mathbb{R}$, and $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$, define

$$
t^{ \pm}:=\max \{ \pm t, 0\}, \quad u^{ \pm}(x):=u(x)^{ \pm}, \quad N_{f}(u)(x):=f(x, u(x))
$$

$u \leq v$ (respectively, $u<v$, etc.) means $u(x) \leq v(x)$ (respectively, $u(x)<v(x)$, etc.) for almost every $x \in \Omega$. If u, v belong to a function space, say Y, then we set

$$
[u, v]:=\{w \in Y: u \leq w \leq v\}, \quad Y_{+}:=\{w \in Y: w \geq 0\}
$$

Putting $C_{+}:=C^{1}(\bar{\Omega})_{+}, \operatorname{int}\left(C_{+}\right):=\operatorname{int}_{C^{1}(\bar{\Omega})}\left(C_{+}\right), D_{+}:=\operatorname{int}_{C^{0}(\bar{\Omega})}\left(C_{+}\right)$, and

$$
\hat{C}_{+}:=\left\{u \in C_{+}: u(x)>0 \forall x \in \Omega,\left.\quad \frac{\partial u}{\partial n}\right|_{\partial \Omega \cap u^{-1}(0)}<0 \text { if } \partial \Omega \cap u^{-1}(0) \neq \emptyset\right\}
$$

one evidently has $D_{+}=\left\{u \in C_{+}: u(x)>0 \forall x \in \bar{\Omega}\right\}$ as well as

$$
D_{+} \subseteq \hat{C}_{+} \subseteq \operatorname{int}\left(C_{+}\right)
$$

Let $A_{p}: X \rightarrow X^{*}$ be the nonlinear operator stemming from the negative p Laplacian Δ_{p}, i.e.,

$$
\left\langle A_{p}(u), v\right\rangle:=\int_{\Omega}|\nabla u(x)|^{p-2} \nabla u(x) \cdot \nabla v(x) d x \quad \forall u, v \in X
$$

A standard argument [17, Proposition 2.72] ensures that A_{p} is of type $(\mathrm{S})_{+}$.
Remark 2.1. Given $u \in X, w \in L^{p^{\prime}}(\Omega)$, and $\beta \in C^{0, \alpha}\left(\partial \Omega, \mathbb{R}_{0}^{+}\right)$, the assertion

$$
\left\langle A_{p}(u), v\right\rangle+\int_{\partial \Omega} \beta(x)|u(x)|^{p-2} u(x) v(x) d \sigma=\int_{\Omega} w(x) v(x) d x, \quad v \in X
$$

is equivalent to

$$
-\Delta_{p} u=w \text { in } \quad \Omega, \quad \frac{\partial u}{\partial n_{p}}+\beta(x)|u|^{p-2} u=0 \text { on } \quad \partial \Omega
$$

This easily stems from the nonlinear Green's identity [10, Theorem 2.4.54]; see for instance the proof of [19, Proposition 3].

We shall employ some facts about the spectrum of the operator

$$
u \mapsto-\Delta_{p} u+a(x)|u|^{p-2} u
$$

in X with homogeneous Robin boundary conditions. So, consider the eigenvalue problem (1.3), where, henceforth,

$$
\begin{equation*}
a \in L^{\infty}(\Omega) \text { and } \beta \in C^{0, \alpha}\left(\partial \Omega, \mathbb{R}_{0}^{+}\right) \text {with } \alpha \in(0,1) \tag{2.3}
\end{equation*}
$$

Define

$$
\begin{equation*}
\mathcal{E}(u):=\|\nabla u\|_{p}^{p}+\int_{\Omega} a(x)|u(x)|^{p} d x+\int_{\partial \Omega} \beta(x)|u(x)|^{p} d \sigma \quad \forall u \in X \tag{2.4}
\end{equation*}
$$

The Liusternik-Schnirelman theory provides a strictly increasing sequence $\left\{\hat{\lambda}_{n}\right\}$ of eigenvalues for 1.3 . Denote by $E\left(\hat{\lambda}_{n}\right)$ the eigenspace corresponding to $\hat{\lambda}_{n}$. As in [18, 19], one has

$$
\begin{equation*}
\hat{\lambda}_{1} \text { is isolated and simple. Further, } \hat{\lambda}_{1}=\inf _{u \in X \backslash\{0\}} \frac{\mathcal{E}(u)}{\|u\|_{p}^{p}} \tag{2.5}
\end{equation*}
$$

There exists an L^{p}-normalized eigenfunction $\hat{u}_{1} \in D_{+}$associated with $\hat{\lambda}_{1}$.
Let $p:=2$. It is known [6, 14] that $H^{1}(\Omega)=\overline{\oplus_{n=1}^{\infty} E\left(\hat{\lambda}_{n}\right)}$ and that, for any $n \geq 2$,

$$
\begin{equation*}
\hat{\lambda}_{n}=\inf \left\{\frac{\mathcal{E}(u)}{\|u\|_{2}^{2}}: u \in \hat{H}_{n}, u \neq 0\right\}=\sup \left\{\frac{\mathcal{E}(u)}{\|u\|_{2}^{2}}: u \in \bar{H}_{n}, u \neq 0\right\} \tag{2.7}
\end{equation*}
$$

where

$$
\bar{H}_{m}:=\oplus_{n=1}^{m} E\left(\hat{\lambda}_{n}\right), \quad \hat{H}_{m}:=\oplus_{n=m}^{\infty} E\left(\hat{\lambda}_{n}\right)
$$

3. Existence Results

To avoid unnecessary technicalities, for every $x \in \Omega$ ' will take the place of 'for almost every $x \in \Omega$ ' while c_{1}, c_{2}, \ldots indicate positive constants arising from the context.

Henceforth, $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ denotes a Carathéodory function such that $f(\cdot, 0)=0$. Let F and H be given by 1.2 . We shall make the following assumptions.
(A1) There exist $a_{1} \in L^{\infty}(\Omega)$ and $r \in\left(p, p^{*}\right)$ such that

$$
|f(x, t)| \leq a_{1}(x)\left(1+|t|^{r-1}\right) \quad \forall(x, t) \in \Omega \times \mathbb{R}
$$

(A2) $\lim _{\xi \rightarrow+\infty} F(x, \xi) \xi^{-p}=+\infty$ uniformly in $x \in \Omega$. Moreover, for appropriate $a_{2} \in L^{1}(\Omega)_{+}$,

$$
\begin{equation*}
0 \leq \xi_{1} \leq \xi_{2} \Longrightarrow H\left(x, \xi_{1}\right) \leq H\left(x, \xi_{2}\right)+a_{2}(x) \quad \forall x \in \Omega \tag{3.1}
\end{equation*}
$$

(A3) There exists $\bar{u} \in D_{+}$fulfilling

$$
\left.\frac{\partial \bar{u}}{\partial n}\right|_{\partial \Omega}<0, \quad \Delta_{p} \bar{u} \in L^{p^{\prime}}(\Omega), \quad\left\langle A_{p}(\bar{u}), v\right\rangle \geq 0 \quad \forall v \in W^{1, p}(\Omega)_{+}
$$

and $\operatorname{ess} \sup _{x \in \Omega}\left[f(x, \bar{u}(x))-a(x) \bar{u}(x)^{p-1}\right]<0$.
(A4) For some $a_{3} \in L^{\infty}(\Omega)$ one has
$a_{3}(x) \leq \liminf _{t \rightarrow-\infty} \frac{f(x, t)}{|t|^{p-2} t} \leq \limsup _{t \rightarrow-\infty} \frac{f(x, t)}{|t|^{p-2} t} \leq \hat{\lambda}_{1}, \quad \lim _{\xi \rightarrow-\infty} H(x, \xi)=+\infty$
uniformly with respect to $x \in \Omega$.
(A5) There exist $q \in(1, p)$ and $\delta_{1}>0$ satisfying

$$
0<f(x, \xi) \xi \leq q F(x, \xi) \quad \text { in } \Omega \times\left(\left[-\delta_{1}, \delta_{1}\right] \backslash\{0\}\right)
$$

as well as $\operatorname{ess}^{\operatorname{sinf}}{ }_{x \in \Omega} F\left(x, \delta_{1}\right)>0$.
(A6) To every $\rho>0$ there corresponds $\mu_{\rho}>0$ such that $t \mapsto f(x, t)+\mu_{\rho} t^{p-1}$ is nondecreasing on $[0, \rho]$ for all $x \in \Omega$.
Remark 3.1. The assumption $\lim _{\xi \rightarrow+\infty} F(x, \xi) \xi^{-p}=+\infty$ is weaker than the unilateral Ambrosetti-Rabinowitz condition below.
(AR) For appropriate $\theta>p$ and $M>0$ one has ess $\inf _{x \in \Omega} F(x, M)>0$ and

$$
0<\theta F(x, \xi) \leq f(x, \xi) \xi \quad \text { in } \Omega \times[M,+\infty)
$$

A standard example is $f(x, t):=t^{p-1} \log t, t \geq M>1$.
Remark 3.2. Property (3.1) has been thoroughly investigated in [11, Lemma 2.4]. Among other things, this result ensures that (A2) forces $\lim _{t \rightarrow+\infty} f(x, t) t^{-p+1}=$ $+\infty$, i.e., $f(x, \cdot)$ turns out to be $(p-1)$-super-linear at $+\infty$.

Remark 3.3. Assumption (A3) implies $\Delta_{p} \bar{u} \leq 0$. Indeed, via the nonlinear Green's identity [10, Theorem 2.4.54] we get

$$
\int_{\Omega} v(x) \Delta_{p} \bar{u}(x) d x=-\left\langle A_{p}(\bar{u}), v\right\rangle+\left\langle\frac{\partial \bar{u}}{\partial n_{p}}, v\right\rangle_{\partial \Omega} \leq 0 \quad \forall v \in W^{1, p}(\Omega)_{+}
$$

Here, $\langle\cdot, \cdot\rangle_{\partial \Omega}$ denotes the duality pairing between $W^{-\frac{1}{p^{\prime}}, p^{\prime}}(\partial \Omega)$ and $W^{\frac{1}{p^{\prime}}, p}(\partial \Omega)$. Moreover,

$$
\left\langle A_{p}(\bar{u}), v\right\rangle+\int_{\Omega} a(x) \bar{u}(x)^{p-1} v(x) d x \geq \int_{\Omega} f(x, \bar{u}(x)) v(x) d x, \quad v \in W^{1, p}(\Omega)_{+}
$$

whence \bar{u} is a super-solution of 1.1 .
Remark 3.4. Reasoning as in [6, Lemma 3.1] shows that (A4) entails

$$
\lim _{\xi \rightarrow-\infty}\left[\hat{\lambda}_{1}|\xi|^{p}-p F(x, \xi)\right]=+\infty \quad \text { uniformly with respect to } x \in \Omega
$$

Problem 1.1 is thus coercive in the negative direction, and direct methods can be used to find a negative solution.

Remark 3.5. After integration, (A5) easily leads to

$$
\begin{equation*}
\theta|\xi|^{q} \leq F(x, \xi) \quad \forall(x, \xi) \in \Omega \times\left[-\delta_{1}, \delta_{1}\right], \tag{3.2}
\end{equation*}
$$

with suitable $\theta>0$. Consequently, $f(x, \cdot)$ exhibits a concave behaviour at zero.
We start by pointing out some auxiliary results.
Proposition 3.6. Suppose $0 \leq a$. If $h_{i} \in L^{\infty}(\Omega), u_{i} \in C^{1}(\bar{\Omega}), i=1$, 2, fulfill

- $-\Delta_{p} u_{i}+a(x)\left|u_{i}\right|^{p-2} u_{i}=h_{i}$ in Ω,
- $\operatorname{ess} \inf _{x \in K}\left[h_{2}(x)-h_{1}(x)\right]>0$ for any compact set $K \subseteq \Omega$,
- $u_{1} \leq u_{2}$ and $\frac{\partial u_{2}}{\partial n}<0$ on $\partial \Omega$,
then $u_{2}-u_{1} \in \hat{C}_{+}$.
Proof. Recall that $a \in L^{\infty}(\Omega)$. The first conclusion, namely $u_{2}(x)-u_{1}(x)>0$ for all $x \in \Omega$, is achieved arguing exactly as in the proof of [3, Proposition 2.6], while the other directly follows from [22, Theorem 5.5.1].

Proposition 3.7. Let (A3) and (A6) be satisfied. Then each nontrivial solution $\tilde{u} \in[0, \bar{u}]$ to 1.1 lies in $\operatorname{int}\left(C_{+}\right) \cap\left(\bar{u}-\hat{C}_{+}\right)$.

Proof. Standard regularity arguments ensure that $\tilde{u} \in C_{+} \backslash\{0\}$. Fix

$$
\rho:=\|\bar{u}\|_{\infty} \geq\|\tilde{u}\|_{\infty}>0
$$

Assumption (A6) provides $\mu_{\rho}>\|a\|_{\infty}$ fulfilling

$$
-\Delta_{p} \tilde{u}(x)+\left(a(x)+\mu_{\rho}\right) \tilde{u}(x)^{p-1}=f(x, \tilde{u}(x))+\mu_{\rho} \tilde{u}(x)^{p-1} \geq 0 \quad \text { a.e. in } \quad \Omega
$$

Therefore, by [23, Theorem 5], $\tilde{u} \in \hat{C}_{+} \subseteq \operatorname{int}\left(C_{+}\right)$. Next, define $u_{\delta}:=\tilde{u}+\delta$, where $\delta>0$. Since

$$
\begin{aligned}
-\Delta_{p} \tilde{u}+\left(a+\mu_{\rho}\right) \tilde{u}^{p-1} & \leq-\Delta_{p} \tilde{u}+\left(a+\mu_{\rho}\right) u_{\delta}^{p-1} \\
& =-\Delta_{p} \tilde{u}+\left(a+\mu_{\rho}\right) \tilde{u}^{p-1}+o(\delta) \\
& =f(x, \tilde{u})+\mu_{\rho} \tilde{u}^{p-1}+o(\delta)
\end{aligned}
$$

using (A6) and (A3), with appropriate $c_{1}>0$, we obtain

$$
\begin{aligned}
-\Delta_{p} \tilde{u}+\left(a+\mu_{\rho}\right) \tilde{u}^{p-1} & \leq f(x, \bar{u})+\mu_{\rho} \bar{u}^{p-1}+o(\delta) \\
& \leq\left(a+\mu_{\rho}\right) \bar{u}^{p-1}-c_{1}+o(\delta) \\
& \leq\left(a+\mu_{\rho}\right) \bar{u}^{p-1}-\frac{c_{1}}{2} \\
& \leq-\Delta_{p} \bar{u}+\left(a+\mu_{\rho}\right) \bar{u}^{p-1}-\frac{c_{1}}{2}
\end{aligned}
$$

for any $\delta>0$ small enough, because $\Delta_{p} \bar{u} \leq 0$; cf. Remark 3.3 . Proposition 3.6 now gives $\bar{u}-\tilde{u} \in \hat{C}_{+}$, as desired.

To simplify notation, write $X:=W^{1, p}(\Omega)$. The energy functional $\varphi: X \rightarrow \mathbb{R}$ stemming from problem (1.1) is

$$
\begin{equation*}
\varphi(u):=\frac{1}{p} \mathcal{E}(u)-\int_{\Omega} F(x, u(x)) d x, \quad u \in X \tag{3.3}
\end{equation*}
$$

with \mathcal{E} and F given by 2.4 and 1.2 , respectively. One clearly has $\varphi \in C^{1}(X)$.
Proposition 3.8. Under 2.3), (A1), (A2), and (A4), the functional φ satisfies condition (C).

The proof is rather technical but standard (see, e.g., [14, Proposition 3.2]). So, we omit it.

Henceforth \bar{a} will denote a real constant strictly greater than $\|a\|_{\infty}$.
3.1. Positive solutions. Truncation-perturbation techniques and minimization methods produce a first positive solution whenever (A3) is assumed.

Theorem 3.9. Let (2.3), (A1), (A3), (A5), and (A6) be fulfilled. Then 1.1) has a positive solution $u_{0} \in \operatorname{int}_{C^{1}(\bar{\Omega})}([0, \bar{u}])$. Moreover, u_{0} turns out to be a local minimizer of φ.

Proof. For $x \in \Omega$ and $t, \xi \in \mathbb{R}$, we define

$$
\begin{gather*}
\bar{f}(x, t):= \begin{cases}f\left(x, t^{+}\right)+\bar{a}\left(t^{+}\right)^{p-1} & \text { if } t^{+} \leq \bar{u}(x) \\
f(x, \bar{u}(x))+\bar{a} \bar{u}(x)^{p-1} & \text { otherwise }\end{cases} \tag{3.4}\\
\bar{F}(x, \xi):=\int_{0}^{\xi} \bar{f}(x, t) d t
\end{gather*}
$$

It is evident that the corresponding functional

$$
\bar{\varphi}(u):=\frac{1}{p}\left(\mathcal{E}(u)+\bar{a}\|u\|_{p}^{p}\right)-\int_{\Omega} \bar{F}(x, u(x)) d x, \quad u \in X
$$

belongs to $C^{1}(X)$. A standard argument, which exploits Sobolev's embedding theorem besides the compactness of the trace operator, ensures that $\bar{\varphi}$ is weakly
sequentially lower semi-continuous. Since, by 2.3 , the choice of \bar{a}, and 3 , it is coercive, we have

$$
\begin{equation*}
\inf _{u \in X} \bar{\varphi}(u)=\bar{\varphi}\left(u_{0}\right) \tag{3.5}
\end{equation*}
$$

for some $u_{0} \in X$. Set $\delta:=\min \left\{\delta_{1}, \min _{x \in \bar{\Omega}} \bar{u}(x)\right\}$, where δ_{1} is as in (A5). If $\tau \in(0,1)$ complies with $\tau \hat{u}_{1} \leq \delta$, then

$$
\bar{\varphi}\left(\tau \hat{u}_{1}\right) \leq \frac{\tau^{p}}{p} \mathcal{E}\left(\hat{u}_{1}\right)-\theta \tau^{q}\left\|\hat{u}_{1}\right\|_{q}^{q}=\tau^{q}\left(\frac{\tau^{p-q}}{p} \hat{\lambda}_{1}-\theta\left\|\hat{u}_{1}\right\|_{q}^{q}\right)
$$

thanks to (3.4), (3.2), and (2.6). Thus, for τ small enough, $\bar{\varphi}\left(\tau \hat{u}_{1}\right)<0$, which entails

$$
\bar{\varphi}\left(u_{0}\right)<0=\bar{\varphi}(0)
$$

Consequently, $u_{0} \neq 0$. Through 3.5 we get $\bar{\varphi}^{\prime}\left(u_{0}\right)=0$, namely

$$
\begin{equation*}
\left\langle A_{p}\left(u_{0}\right), v\right\rangle+\int_{\Omega}(a+\bar{a})\left|u_{0}\right|^{p-2} u_{0} v d x+\int_{\partial \Omega} \beta\left|u_{0}\right|^{p-2} u_{0} v d \sigma=\int_{\Omega} \bar{f}\left(x, u_{0}\right) v d x \tag{3.6}
\end{equation*}
$$

for $v \in X$. Using (3.4) and (3.6) written for $v:=-u_{0}^{-}$produces

$$
\min \left\{1, \bar{a}-\|a\|_{\infty}\right\}\left\|u_{0}^{-}\right\|^{p} \leq \mathcal{E}\left(u_{0}^{-}\right)+\bar{a}\left\|u_{0}^{-}\right\|_{p}^{p}=0
$$

whence $u_{0} \geq 0$. Now, choose $v:=\left(u_{0}-\bar{u}\right)^{+}$in (3.6) and observe that

$$
\begin{aligned}
& \int_{\Omega} \bar{f}\left(x, u_{0}\right)\left(u_{0}-\bar{u}\right)^{+} d x \\
& =\int_{\Omega}\left[f(x, \bar{u})+\bar{a} \bar{u}^{p-1}\right]\left(u_{0}-\bar{u}\right)^{+} d x \\
& \leq \int_{\Omega}(a+\bar{a}) \bar{u}^{p-1}\left(u_{0}-\bar{u}\right)^{+} d x+\int_{\partial \Omega} \beta u_{0}^{p-1}\left(u_{0}-\bar{u}\right)^{+} d \sigma
\end{aligned}
$$

because of (3.4), (A3), and 2.3). This yields

$$
\left\langle A_{p}\left(u_{0}\right)-A_{p}(\bar{u}),\left(u_{0}-\bar{u}\right)^{+}\right\rangle+\left(\bar{a}-\|a\|_{\infty}\right) \int_{\Omega}\left(u_{0}^{p-1}-\bar{u}^{p-1}\right)\left(u_{0}-\bar{u}\right)^{+} d x \leq 0
$$

i.e., $u_{0} \leq \bar{u}$. Therefore, both $u_{0} \in[0, \bar{u}] \backslash\{0\}$ and u_{0} solves problem 1.1 , so that, due to Proposition 3.7. $u_{0} \in \operatorname{int}\left(C_{+}\right) \cap\left(\bar{u}-\hat{C}_{+}\right)$, which implies $u_{0} \in \operatorname{int}_{C^{1}(\bar{\Omega})}([0, \bar{u}])$. Finally, since

$$
\varphi\left\lfloor_{[0, \bar{u}]}=\bar{\varphi} L_{[0, \bar{u}]},\right.
$$

Equation (3.5), combined with [19, Proposition 3], ensures that u_{0} is a local minimizer for φ.

Critical point arguments produce a second positive solution.
Theorem 3.10. If (2.3), (A1)-(A3), (A5)-(A6) hold, then 1.1) possesses a solution $u_{1} \in \operatorname{int}\left(C_{+}\right) \backslash\left\{u_{0}\right\}$ such that $u_{0} \leq u_{1}$.

Proof. For $x \in \Omega$ and $t, \xi \in \mathbb{R}$, we define

$$
\begin{gather*}
f_{0}(x, t):= \begin{cases}f\left(x, u_{0}(x)\right)+\bar{a} u_{0}(x)^{p-1} & \text { if } t \leq u_{0}(x) \\
f(x, t)+\bar{a} t^{p-1} & \text { otherwise }\end{cases} \tag{3.7}\\
F_{0}(x, \xi):=\int_{0}^{\xi} f_{0}(x, t) d t
\end{gather*}
$$

It is evident that the corresponding truncated functional

$$
\begin{equation*}
\varphi_{0}(u):=\frac{1}{p}\left(\mathcal{E}(u)+\bar{a}\|u\|_{p}^{p}\right)-\int_{\Omega} F_{0}(x, u(x)) d x, \quad u \in X \tag{3.8}
\end{equation*}
$$

belongs to $C^{1}(X)$ also. A standard argument, which exploits Sobolev's embedding theorem and the compactness of the trace operator, ensures that φ_{0} is weakly sequentially lower semi-continuous.

Claim 1: φ_{0} satisfies condition (C). Let $\left\{u_{n}\right\}$ be a sequence in X be such that

$$
\begin{gather*}
\left|\varphi_{0}\left(u_{n}\right)\right| \leq c_{1} \quad \forall n \in \mathbb{N} \tag{3.9}\\
\lim _{n \rightarrow+\infty}\left(1+\left\|u_{n}\right\|\right)\left\|\varphi_{0}^{\prime}\left(u_{n}\right)\right\|_{X^{*}}=0 . \tag{3.10}
\end{gather*}
$$

Through 3.10 one has

$$
\begin{align*}
& \left.\left|\left\langle A_{p}\left(u_{n}\right), w\right\rangle+\int_{\partial \Omega} \beta\right| u_{n}\right|^{p-2} u_{n} w d \sigma \\
& +\int_{\Omega}(a+\bar{a})\left|u_{n}\right|^{p-2} u_{n} w d x-\int_{\Omega} f_{0}\left(x, u_{n}\right) w d x \mid \tag{3.11}\\
& \leq \frac{\varepsilon_{n}\|w\|}{1+\left\|u_{n}\right\|} \quad \forall w \in X
\end{align*}
$$

where $\varepsilon_{n} \rightarrow 0^{+}$. We first show that $\left\{u_{n}\right\}$ is bounded. This evidently happens once the same holds for both $\left\{u_{n}^{-}\right\}$and $\left\{u_{n}^{+}\right\}$. By (3.7, choosing $w:=-u_{n}^{-}$in 3.11) easily yields

$$
\mathcal{E}\left(u_{n}^{-}\right)+\bar{a}\left\|u_{n}^{-}\right\|_{p}^{p} \leq c_{2}
$$

From (2.3) and the choice of \bar{a} it thus follows $\left\|u_{n}^{-}\right\| \leq c_{3}$. As n was arbitrary, the sequence $\left\{u_{n}^{-}\right\}$turns out to be bounded. So, in particular, on account of 3.9),

$$
\mathcal{E}\left(u_{n}^{+}\right)+\bar{a}\left\|u_{n}^{+}\right\|_{p}^{p}-p \int_{\Omega} F_{0}\left(x, u_{n}^{+}(x)\right) d x \leq c_{4} \quad \forall n \in \mathbb{N}
$$

Since

$$
\int_{\Omega} F_{0}\left(x, u_{n}^{+}\right) d x=\int_{\Omega}\left[F_{0}\left(x, u_{n}^{+}\right)-F_{0}\left(x, u_{0}\right)\right] d x+\int_{\Omega}\left[f\left(x, u_{0}\right)+\bar{a} u_{0}^{p-1}\right] u_{0} d x
$$

an easy computation shows that

$$
\begin{equation*}
\mathcal{E}\left(u_{n}^{+}\right)-p \int_{\Omega} F\left(x, u_{n}^{+}(x)\right) d x \leq c_{5}, \quad n \in \mathbb{N} \tag{3.12}
\end{equation*}
$$

Now, 3.11 written with $w:=u_{n}^{+}$furnishes

$$
\begin{aligned}
& -\mathcal{E}\left(u_{n}^{+}\right)-\bar{a}\left\|u_{n}^{+}\right\|_{p}^{p}+\int_{\Omega_{1}}\left[f\left(x, u_{0}\right)+\bar{a} u_{0}^{p-1}\right] u_{n}^{+} d x+\int_{\Omega_{2}}\left[f\left(x, u_{n}^{+}\right)+\bar{a}\left(u_{n}^{+}\right)^{p-1}\right] u_{n}^{+} d x \\
& \leq \varepsilon_{n}
\end{aligned}
$$

where $\Omega_{1}:=\left\{x \in \Omega: 0 \leq u_{n}(x) \leq u_{0}(x)\right\}$ and $\Omega_{2}:=\left\{x \in \Omega: u_{n}(x)>u_{0}(x)\right\}$. Hence,

$$
\begin{equation*}
-\mathcal{E}\left(u_{n}^{+}\right)+\int_{\Omega} f\left(x, u_{n}^{+}\right) u_{n}^{+} d x \leq c_{6} \tag{3.13}
\end{equation*}
$$

Inequalities 3.12-3.13 lead to

$$
\int_{\Omega} H\left(x, u_{n}^{+}(x)\right) d x \leq c_{7} \quad \forall n \in \mathbb{N}
$$

Via the same arguments used in the proof (Claim 1) of [14, Proposition 3.2], with 2 replaced by p, we achieve $\left\|u_{n}^{+}\right\| \leq c_{8}$. Therefore, $\left\{u_{n}\right\} \subseteq X$ is bounded. As before, and along a subsequence when necessary, one has $u_{n} \rightarrow u$ in X.

Claim 2: $K\left(\varphi_{0}\right) \subseteq\left\{u \in X: u_{0} \leq u\right\}$. If $u \in K\left(\varphi_{0}\right)$ then

$$
\left\langle A_{p}(u), v\right\rangle+\int_{\Omega}(a+\bar{a})|u|^{p-2} u v d x+\int_{\partial \Omega} \beta|u|^{p-2} u v d \sigma=\int_{\Omega} f_{0}(x, u) v d x
$$

for all $v \in X$. Letting $v:=\left(u_{0}-u\right)^{+}$and recalling that u_{0} solves 1.1) yields

$$
\begin{aligned}
& \left\langle A_{p}\left(u_{0}\right)-A_{p}(u),\left(u_{0}-u\right)^{+}\right\rangle+\int_{\Omega}(a+\bar{a})\left(u_{0}^{p-1}-|u|^{p-2} u\right)\left(u_{0}-u\right)^{+} d x \\
& +\int_{\partial \Omega} \beta\left(u_{0}^{p-1}-|u|^{p-2} u\right)\left(u_{0}-u\right)^{+} d \sigma=0
\end{aligned}
$$

By (2.3) this entails

$$
\left\langle A_{p}\left(u_{0}\right)-A_{p}(u),\left(u_{0}-u\right)^{+}\right\rangle+\int_{\Omega}(a+\bar{a})\left(u_{0}^{p-1}-|u|^{p-2} u\right)\left(u_{0}-u\right)^{+} d x \leq 0
$$

whence $u_{0} \leq u$, because $\bar{a}>\|a\|_{\infty}$.
We may evidently assume

$$
\begin{equation*}
K\left(\varphi_{0}\right) \cap[0, \bar{u}]=\left\{u_{0}\right\} \tag{3.14}
\end{equation*}
$$

otherwise, thanks to Claim 2, there would exist $u_{1} \in K\left(\varphi_{0}\right) \cap\left[u_{0}, \bar{u}\right] \backslash\left\{u_{0}\right\}$, i.e., a second solution of 1.1). Moreover, Proposition 3.7 would give $u_{1} \in \operatorname{int}\left(C_{+}\right) \cap(\bar{u}-$ \hat{C}_{+}), and the conclusion follows.

For every $x \in \Omega, t, \xi \in \mathbb{R}$, we put

$$
\bar{f}_{0}(x, t):= \begin{cases}f_{0}(x, t) & \text { if } t \leq \bar{u}(x), \quad \bar{F}_{0}(x, \xi):=\int_{0}^{\xi} \bar{f}_{0}(x, t) d t \tag{3.15}\\ f_{0}(x, \bar{u}(x)) & \text { otherwise },\end{cases}
$$

The associated truncated functional

$$
\bar{\varphi}_{0}(u):=\frac{1}{p}\left(\mathcal{E}(u)+\bar{a}\|u\|_{p}^{p}\right)-\int_{\Omega} \bar{F}_{0}(x, u(x)) d x, \quad u \in X
$$

belongs to $C^{1}(X)$ and is coercive. A standard argument, based on the Sobolev embedding theorem and the compactness of the trace operator, ensures that $\bar{\varphi}_{0}$ is weakly sequentially lower semi-continuous. So,

$$
\begin{equation*}
\inf _{u \in X} \bar{\varphi}_{0}(u)=\bar{\varphi}_{0}\left(\bar{u}_{0}\right) \tag{3.16}
\end{equation*}
$$

for some $\bar{u}_{0} \in X$. Since, like in the proof of Theorem 3.9 , one has $K\left(\bar{\varphi}_{0}\right) \subseteq\left[u_{0}, \bar{u}\right]$, (3.14)-3.16) produce $\bar{u}_{0}=u_{0}$. Observe now that

$$
\bar{\varphi}_{0} L_{[0, \bar{u}]}=\varphi_{0} L_{[0, \bar{u}]}
$$

while, by Theorem 3.9, $u_{0} \in \operatorname{int}_{C^{1}(\bar{\Omega})}([0, \bar{u}])$. Thus, due to [19, Proposition 3], u_{0} is a local minimizer for φ_{0}. Without loss of generality, suppose u_{0} isolated in $K\left(\varphi_{0}\right)$, or else (1.1) would possess infinitely many solutions bigger that u_{0}; cf. Claim 2 and (3.7). The same reasoning made in the proof of [1, Proposition 29] provides here $\rho>0$ fulfilling

$$
\varphi_{0}\left(u_{0}\right)<\inf _{u \in \partial B_{\rho}\left(u_{0}\right)} \varphi_{0}(u)
$$

From 3.7 and (A2) it easily follows that

$$
\lim _{\tau \rightarrow+\infty} \varphi_{0}\left(\tau \hat{u}_{1}\right)=-\infty
$$

Claim 1 guarantees that condition (C) holds for φ_{0}. Hence, the mountain-pass theorem gives a point $u_{1} \in K\left(\varphi_{0}\right) \backslash\left\{u_{0}\right\}$. Obviously, $u_{0} \leq u_{1}$ by Claim 2 and u_{1} solves (1.1). Through the regularity arguments used above we then achieve $u_{1} \in C^{1}(\bar{\Omega})$. It remains to check that $u_{1} \in \operatorname{int}\left(C_{+}\right)$, which can be performed arguing as in the proof of Proposition 3.7 .
3.2. Negative solutions. The minimization method yields a negative solution whenever (A4) is assumed.

Theorem 3.11. Let 2.3), (A1), (A4), and (A5) be satisfied. Then 1.1) possesses a solution $u_{2} \in-\operatorname{int}\left(C_{+}\right)$.

Proof. For $x \in \Omega$ and $t, \xi \in \mathbb{R}$, we define

$$
\tilde{f}(x, t):=\left\{\begin{array}{ll}
f(x, t)+\bar{a}|t|^{p-2} t & \text { if } t \leq 0, \\
0 & \text { otherwise }
\end{array} \quad \tilde{F}(x, \xi):=\int_{0}^{\xi} \tilde{f}(x, t) d t\right.
$$

It is evident that the corresponding functional

$$
\tilde{\varphi}(u):=\frac{1}{p}\left(\mathcal{E}(u)+\bar{a}\|u\|_{p}^{p}\right)-\int_{\Omega} \tilde{F}(x, u(x)) d x, \quad u \in X
$$

belongs to $C^{1}(X)$. A standard reasoning, which exploits Sobolev's embedding theorem besides the compactness of the trace operator, ensures that $\tilde{\varphi}$ turns out to be weakly sequentially lower semi-continuous. Moreover, $\tilde{\varphi}$ is coercive. Indeed, if

$$
\begin{equation*}
\left\|u_{n}\right\| \rightarrow+\infty \quad \text { and } \quad \tilde{\varphi}\left(u_{n}\right) \leq c_{1} \quad \forall n \in \mathbb{N} \tag{3.17}
\end{equation*}
$$

then

$$
\begin{align*}
& \frac{1}{p} \mathcal{E}\left(u_{n}^{-}\right)-\int_{\Omega} F\left(x,-u_{n}^{-}(x)\right) d x \\
& \leq \frac{1}{p} \min \left\{1, \bar{a}-\|a\|_{\infty}\right\}\left\|u_{n}^{+}\right\|^{p}+\frac{1}{p} \mathcal{E}\left(u_{n}^{-}\right)-\int_{\Omega} F\left(x,-u_{n}^{-}(x)\right) d x \tag{3.18}\\
& \leq \frac{1}{p}\left(\mathcal{E}\left(u_{n}\right)+\bar{a}\left\|u_{n}\right\|_{p}^{p}\right)-\int_{\Omega} \tilde{F}\left(x,-u_{n}^{-}(x)\right) d x \leq c_{1}, \quad n \in \mathbb{N} .
\end{align*}
$$

Suppose $\left\|u_{n}^{-}\right\| \rightarrow+\infty$ and write $w_{n}:=\left\|u_{n}^{-}\right\|^{-1} u_{n}^{-}$. From $\left\|w_{n}\right\|=1$ it follows, along a subsequence when necessary,

$$
\begin{equation*}
w_{n} \rightharpoonup w \text { in } X, \quad w_{n} \rightarrow w \text { in } L^{p}(\Omega) \text { and in } L^{p}(\partial \Omega), \quad w \geq 0 \tag{3.19}
\end{equation*}
$$

Through (3.18) one has

$$
\begin{equation*}
\frac{1}{p} \mathcal{E}\left(w_{n}\right)-\frac{1}{\left\|u_{n}^{-}\right\|^{p}} \int_{\Omega} F\left(x,-u_{n}^{-}(x)\right) d x \leq \frac{c_{1}}{\left\|u_{n}^{-}\right\|^{p}} \quad \forall n \in \mathbb{N} \tag{3.20}
\end{equation*}
$$

while by (A1) the sequence $\left\{\left\|u_{n}^{-}\right\|^{-p} N_{F}\left(-u_{n}^{-}\right)\right\} \subseteq L^{1}(\Omega)$ is uniformly integrable. Using the arguments made in the proof of [1, Proposition 14], besides (A4), we thus obtain a function $\theta \in L^{\infty}(\Omega)$ such that $-c_{2} \leq \theta \leq \hat{\lambda}_{1} / p$ and

$$
\begin{equation*}
\frac{1}{\left\|u_{n}^{-}\right\|^{p}} N_{F}\left(-u_{n}^{-}\right) \rightharpoonup \frac{1}{p} \theta w^{p} \quad \text { in } L^{1}(\Omega) \tag{3.21}
\end{equation*}
$$

Thanks to 3.19-3.20 this implies, as $n \rightarrow+\infty$,

$$
\begin{equation*}
\mathcal{E}(w) \leq \int_{\Omega} \theta(x) w(x)^{p} d x \tag{3.22}
\end{equation*}
$$

If $\theta \neq \hat{\lambda}_{1}$, then [18, Lemma 4.11] forces $w=0$. From (3.19-3.21) it follows $\left\|w_{n}\right\| \rightarrow 0$. However, this is impossible. So, suppose $\theta=\hat{\lambda}_{1}$. Gathering (3.22) and (p_{2}) together leads to $w=t \hat{u}_{1}$ for some $t \geq 0$. The above reasoning shows that $t>0$. Hence, $w \in \operatorname{int}\left(C_{+}\right)$. By the definition of $\left\{w_{n}\right\}$ we actually have $u_{n}^{-}(x) \rightarrow+\infty$ for every $x \in \Omega$. Since (A4) easily yields

$$
\lim _{\xi \rightarrow-\infty}\left[\hat{\lambda}_{1}|\xi|^{p}-p F(x, \xi)\right]=+\infty \quad \text { uniformly in } x \in \Omega
$$

(cf. Remark 3.4), Fatou's lemma gives

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\Omega}\left[\hat{\lambda}_{1}\left(u_{n}^{-}\right)^{p}-p F\left(x,-u_{n}^{-}(x)\right)\right] d x=+\infty . \tag{3.23}
\end{equation*}
$$

On the other hand, via (3.18), besides 2.5), we get

$$
\int_{\Omega}\left[\hat{\lambda}_{1} u_{n}^{-}(x)^{p}-p F\left(x,-u_{n}^{-}(x)\right)\right] d x \leq p c_{1} \quad \forall n \in \mathbb{N}
$$

against (3.23). Therefore, the sequence $\left\{u_{n}^{-}\right\} \subseteq X$ is bounded. Using (3.18) again one sees that $\left\{u_{n}^{+}\right\}$enjoys the same property, which contradicts (3.17).

Let $u_{2} \in X$ satisfy

$$
\inf _{u \in X} \tilde{\varphi}(u)=\tilde{\varphi}\left(u_{2}\right)
$$

Arguing as in the proof of Theorem 3.9 we achieve $u_{2} \leq 0$ and $u_{2} \neq 0$. So, u_{2} solves problem (1.1) and belongs to $\left(-C_{+}\right) \backslash\{0\}$ by standard nonlinear regularity results. Finally, (A1) and (A4) provide $\tilde{\mu}>\|a\|_{\infty}$ such that

$$
f(x, t)+\tilde{\mu}|t|^{p-2} t \leq 0, \quad(x, t) \in \Omega \times \mathbb{R}_{0}^{-}
$$

Consequently,

$$
\Delta_{p}\left(-u_{2}\right)+(a+\tilde{\mu})\left|u_{2}\right|^{p-2} u_{2}=f\left(x, u_{2}\right)+\tilde{\mu}\left|u_{2}\right|^{p-2} u_{2} \leq 0
$$

whence

$$
\Delta_{p}\left(-u_{2}\right) \leq(a+\tilde{\mu})\left(-u_{2}\right)^{p-1} \quad \text { in } \quad \Omega .
$$

Through [23, Theorem 5] this implies $-u_{2} \in \operatorname{int}\left(C_{+}\right)$, as desired.
3.3. Extremal constant-sign and nodal solutions. The following stronger version of (A5) will be used.
(A5') There exist $q \in(1, p), a_{4}>0$, and $\delta_{1}>0$ such that

$$
a_{4}|\xi|^{q} \leq f(x, \xi) \xi \leq q F(x, \xi) \quad \forall(x, \xi) \in \Omega \times\left[-\delta_{1}, \delta_{1}\right] .
$$

It plays a crucial role in getting useful information on the critical groups of φ at zero. Precisely, the result below, whose proof is analogous to that of [21, Proposition 4.1] (cf. also [12, Theorem 3.6]), holds.

Lemma 3.12. Suppose (2.3), (A1), (A5') hold and $K(\varphi)$ is a finite set. Then $C_{k}(\varphi, 0)=0$ for all $k \in \mathbb{N}_{0}$.

Combining (A1) with (A5') we obtain

$$
\begin{equation*}
f(x, t) t \geq a_{4}|t|^{q}-a_{5}|t|^{r} \quad \text { in } \Omega \times \mathbb{R} \tag{3.24}
\end{equation*}
$$

for an appropriate $a_{5}>0$. Consider the auxiliary problem

$$
\begin{gather*}
-\Delta_{p} u+a(x)|u|^{p-2} u=a_{4}|u|^{q-2} u-a_{5}|u|^{r-2} u \quad \text { in } \Omega \\
\frac{\partial u}{\partial n_{p}}+\beta(x)|u|^{p-2} u=0 \quad \text { on } \partial \Omega \tag{3.25}
\end{gather*}
$$

Note that if u is a solution then $-u$ also solves this problem.
Lemma 3.13. If 2.3 holds then 3.25 admits a unique positive solution $u_{+} \in$ $\operatorname{int}\left(C_{+}\right)$.

Proof. The C^{1}-functional $\psi: X \rightarrow \mathbb{R}$ given by

$$
\psi(u):=\frac{1}{p}\left(\mathcal{E}(u)+\bar{a}\left\|u^{-}\right\|_{p}^{p}\right)-\frac{a_{4}}{q}\left\|u^{+}\right\|_{q}^{q}+\frac{a_{5}}{r}\left\|u^{+}\right\|_{r}^{r}, \quad u \in X
$$

is coercive. Indeed, recalling that $\beta \geq 0, \bar{a} \geq\|a\|_{\infty}$, and $q<p<r$, we have

$$
\begin{aligned}
\psi(u) & =\frac{1}{p} \mathcal{E}\left(u^{+}\right)+\frac{a_{5}}{r}\left\|u^{+}\right\|_{r}^{r}-\frac{a_{4}}{q}\left\|u^{+}\right\|_{q}^{q}+\frac{1}{p}\left(\mathcal{E}\left(u^{-}\right)+\bar{a}\left\|u^{-}\right\|_{p}^{p}\right) \\
& \geq \frac{1}{p}\left\|\nabla u^{+}\right\|_{p}^{p}+c_{1}\left\|u^{+}\right\|_{p}^{r}-c_{2}\left(\left\|u^{+}\right\|_{p}^{p}+1\right)+c_{3}\left\|u^{-}\right\|^{p} \\
& =\frac{1}{p}\left\|\nabla u^{+}\right\|_{p}^{p}+\left\|u^{+}\right\|_{p}^{p}\left(c_{1}\left\|u^{+}\right\|_{p}^{r-p}-c_{2}\right)+c_{3}\left\|u^{-}\right\|^{p}-c_{2} \\
& \geq c_{4}\|u\|^{p}-c_{5}
\end{aligned}
$$

Since ψ is weakly sequentially lower semi-continuous also, there exists $u_{+} \in X$ fulfilling

$$
\psi\left(u_{+}\right)=\inf _{u \in X} \psi(u)
$$

Moreover, $u_{+} \neq 0$ because $\psi(t)<0$ for any $t>0$ small enough. As in the proof of Theorem 3.9 we next get $u_{+} \geq 0$. Hence, by standard nonlinear regularity results, $u_{+} \in C_{+} \backslash\{0\}$. The conclusion $u_{+} \in \operatorname{int}\left(C_{+}\right)$easily derives from

$$
\Delta_{p} u_{+} \leq\left(\|a\|_{\infty}+a_{5}\left\|u_{+}\right\|_{\infty}^{r-p}\right) u_{+}^{p-1} \leq c_{6} u_{+}^{p-1}
$$

cf. [23, Theorem 5]. Let us now come to uniqueness. Suppose $\hat{u} \in \operatorname{int}\left(C_{+}\right)$is another solution of 3.25 . For $u \in L^{1}(\Omega)$, we put

$$
J(u):= \begin{cases}\frac{1}{p}\left(\left\|\nabla u^{1 / p}\right\|_{p}^{p}+\int_{\partial \Omega} a u d \sigma\right) & \text { if } u \geq 0, u^{1 / p} \in X \\ +\infty & \text { otherwise }\end{cases}
$$

[7, Lemma 1] ensures that $J: L^{1}(\Omega) \rightarrow \mathbb{R} \cup\{+\infty\}$ is proper, convex, and lower semi-continuous. A simple computation, chiefly based on [10, Theorem 2.4.54], yields

$$
J^{\prime}\left(u_{+}^{p}\right)(v)=\frac{1}{p} \int_{\Omega} \frac{-\Delta_{p} u_{+}}{u_{+}^{p-1}} v d x, \quad J^{\prime}\left(\hat{u}^{p}\right)(v)=\frac{1}{p} \int_{\Omega} \frac{-\Delta_{p} \hat{u}}{\hat{u}^{p-1}} v d x \quad \forall v \in C^{1}(\bar{\Omega}),
$$

while the monotonicity of J^{\prime} leads to

$$
\int_{\Omega}\left(\frac{-\Delta_{p} u_{+}}{u_{+}^{p-1}}-\frac{-\Delta_{p} \hat{u}}{\hat{u}^{p-1}}\right)\left(u_{+}^{p}-\hat{u}^{p}\right) d x \geq 0
$$

Therefore,

$$
\int_{\Omega}\left[a_{4}\left(\frac{1}{u_{+}^{p-q}}-\frac{1}{\hat{u}^{p-q}}\right)-a_{5}\left(u_{+}^{r-p}-\hat{u}^{r-p}\right)\right]\left(u_{+}^{p}-\hat{u}^{p}\right) d x \geq 0
$$

which implies $u_{+}=\hat{u}$, because $q<p<r$.
Remark 3.14. Recall that when u is a solution, so is $-u$. Then $u_{-}:=-u_{+}$ represents the unique negative solution of 3.25).

We define

$$
\begin{aligned}
& \Sigma_{+}:=\{u \in X \backslash\{0\}: 0 \leq u, u \text { solves 1.1) }\} \\
& \Sigma_{-}:=\{u \in X \backslash\{0\}: u \leq 0, u \text { solves 1.1) }\}
\end{aligned}
$$

We already know (see Sections 3.13 .2 that these sets are both nonempty and that

$$
\Sigma_{+},-\Sigma_{-} \subseteq \operatorname{int}\left(C_{+}\right)
$$

Moreover, Σ_{+}(resp., Σ_{-}) turns out to be downward (resp., upward) directed, as a standard argument shows; see for instance [8, Lemmas 4.2-4.3].
Lemma 3.15. Under assumptions (A1)-(A4), (A5'), and (A6) one has

$$
u_{+} \leq u \quad \forall u \in \Sigma_{+}, \quad u \leq u_{-} \quad \forall u \in \Sigma_{-}
$$

Proof. Pick $u \in \Sigma_{+}$. For $x \in \Omega, t, \xi \in \mathbb{R}$, we define

$$
\begin{gathered}
g(x, t):= \begin{cases}a_{4}\left(t^{+}\right)^{q-1}-a_{5}\left(t^{+}\right)^{r-1} & \text { if } t^{+} \leq u(x) \\
a_{4} u(x)^{q-1}-a_{5} u(x)^{r-1}+\bar{a} u(x)^{p-1} & \text { otherwise }\end{cases} \\
G(x, \xi):=\int_{0}^{\xi} g(x, t) d t
\end{gathered}
$$

Evidently, the functional

$$
\psi_{+}(w):=\frac{1}{p}\left(\mathcal{E}(w)+\bar{a}\|w\|_{p}^{p}\right)-\int_{\Omega} G(x, w(x)) d x, \quad w \in X
$$

is C^{1}, weakly sequentially lower semi-continuous, and coercive. So, there exists $w_{0} \in X$ such that

$$
\psi_{+}\left(w_{0}\right)=\inf _{w \in X} \psi_{+}(w)
$$

From $q<p<r$ it follows $\psi_{+}\left(w_{0}\right)<0=\psi_{+}(0)$, whence $w_{0} \neq 0$. Via (3.24), reasoning as in the proof of Theorem 3.9. we arrive at

$$
\begin{equation*}
w_{0} \in[0, u] \cap \operatorname{int}\left(C_{+}\right) \tag{3.26}
\end{equation*}
$$

So, w_{0} turns out to be a positive solution of 3.25. By Lemma 3.13 one has $w_{0}=u_{+}$, and (3.26) then yields $u_{+} \leq u$. Analogously, $u \leq u_{-}$for all $u \in \Sigma_{-}$.
Theorem 3.16. Let (2.3), (A1)-(A4), (A5'), (A6) be satisfied. Then 1.1) possesses a smallest positive solution u_{*} and a biggest negative solution v_{*}. Further, $-v_{*}, u_{*} \in \operatorname{int}\left(C_{+}\right)$.

Proof. Recall that Σ_{+}is downward directed. The same arguments employed to establish [2, Proposition 8] yield
(1) $\inf \Sigma_{+}=\inf _{n \in \mathbb{N}} u_{n}=u_{*}$ for some $\left\{u_{n}\right\} \subseteq \Sigma_{+}, u_{*} \in X$;
(2) $u_{n} \rightarrow u_{*}$ in X and in $L^{p}(\partial \Omega)$.

Hence, the function u_{*} solves (1.1). Through Lemma 3.15 we next obtain $u_{+} \leq u_{*}$, namely $u_{*} \in \Sigma_{+} \subseteq \operatorname{int}\left(C_{+}\right)$. Finally, 1) ensures that u_{*} is minimal. A similar proof gives a function v_{*} with the asserted properties.

Next, for every $x \in \Omega$ and $t, \xi \in \mathbb{R}$, we define

$$
\begin{gather*}
\hat{f}(x, t):= \begin{cases}f\left(x, v_{*}(x)\right)+\bar{a}\left|v_{*}(x)\right|^{p-2} v_{*}(x) & \text { if } t<v_{*}(x) \\
f(x, t)+\bar{a}|t|^{p-2} t & \text { if } v_{*}(x) \leq t \leq u_{*}(x), \\
f\left(x, u_{*}(x)\right)+\bar{a} u_{*}(x)^{p-1} & \text { if } t>u_{*}(x), \\
\hat{f}_{ \pm}(x, t):=\hat{f}\left(x, t^{ \pm}\right),\end{cases} \tag{3.27}\\
\hat{F}(x, \xi):=\int_{0}^{\xi} \hat{f}(x, t) d t, \quad \hat{F}_{ \pm}(x, \xi):=\int_{0}^{\xi} \hat{f}_{ \pm}(x, t) d t .
\end{gather*}
$$

It is evident that the corresponding truncated functionals

$$
\begin{align*}
\hat{\varphi}(u) & :=\frac{1}{p}\left(\mathcal{E}(u)+\bar{a}\|u\|_{p}^{p}\right)-\int_{\Omega} \hat{F}(x, u(x)) d x, \quad u \in X, \\
\hat{\varphi}_{ \pm}(u) & :=\frac{1}{p}\left(\mathcal{E}(u)+\bar{a}\|u\|_{p}^{p}\right)-\int_{\Omega} \hat{F}_{ \pm}(x, u(x)) d x, \quad u \in X, \tag{3.28}
\end{align*}
$$

belong to $C^{1}(X)$. Moreover, by construction, one has

$$
\begin{equation*}
K(\hat{\varphi}) \subseteq\left[v_{*}, u_{*}\right], \quad K\left(\hat{\varphi}_{-}\right)=\left\{0, v_{*}\right\}, \quad K\left(\hat{\varphi}_{+}\right)=\left\{0, u_{*}\right\} ; \tag{3.29}
\end{equation*}
$$

see, e.g., [15, Lemma 3.1].
Theorem 3.17. If (2.3), (A1)-(A4), (A5'), (A6) hold, then 1.1) possesses a nodal solution $u_{3} \in\left[v_{*}, u_{*}\right] \cap C^{1}(\bar{\Omega})$.

Proof. X compactly embeds in $L^{p}(\Omega)$ while the Nemitskii operator $N_{\hat{f}_{+}}$turns out to be continuous on $L^{p}(\Omega)$. Thus, a standard argument ensures that $\hat{\varphi}_{+}$is weakly sequentially lower semi-continuous. Since, on account of (3.27), it is coercive, we obtain

$$
\inf _{u \in X} \hat{\varphi}_{+}(u)=\hat{\varphi}_{+}\left(u_{0}\right)
$$

for some $u_{0} \in X$. Reasoning as in the proof of Theorem 3.9 produces $u_{0} \in \operatorname{int}\left(C_{+}\right)$ and, by (3.29), $u_{0}=u_{*}$. Since $\hat{\varphi}{L_{C}}_{+}=\hat{\varphi}_{+}\left\lfloor_{C_{+}}\right.$, the function u_{*} turns out to be a $C^{1}(\bar{\Omega})$-local minimizer for $\hat{\varphi}$. Now, [19, Proposition 3] guarantees that the same remains true with X in place of $C^{1}(\bar{\Omega})$. A similar argument applies to v_{*}. Consequently, u_{*}, v_{*} are local minimizer for $\hat{\varphi}$.

We may assume $K(\hat{\varphi})$ finite, otherwise infinitely many nodal solutions do exist by 3.29). Let $\hat{\varphi}\left(v_{*}\right) \leq \hat{\varphi}\left(u_{*}\right)$ (the other case is analogous). Without loss of generality, the local minimizer u_{*} for $\hat{\varphi}$ can be supposed proper. Thus, there exists $\rho \in\left(0,\left\|u_{*}-v_{*}\right\|\right)$ such that

$$
\begin{equation*}
\hat{\varphi}\left(u_{*}\right)<c_{\rho}:=\inf _{u \in \partial B_{\rho}\left(u_{*}\right)} \hat{\varphi}(u) \tag{3.30}
\end{equation*}
$$

Moreover, $\hat{\varphi}$ fulfills condition (C) because, by 3.27, it is coercive; vide for instance [13, Proposition 2.2]. So, the mountain-pass theorem yields a point $u_{3} \in X$ complying with $\hat{\varphi}^{\prime}\left(u_{3}\right)=0$ and

$$
\begin{equation*}
c_{\rho} \leq \hat{\varphi}\left(u_{3}\right)=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} \hat{\varphi}(\gamma(t)) \tag{3.31}
\end{equation*}
$$

where

$$
\Gamma:=\left\{\gamma \in C^{0}([0,1], X): \gamma(0)=v_{*}, \gamma(1)=u_{*}\right\}
$$

Obviously, u_{3} solves (1.1). Through (3.30-(3.31), besides 3.29), we get

$$
u_{3} \in\left[v_{*}, u_{*}\right] \backslash\left\{v_{*}, u_{*}\right\},
$$

while standard regularity arguments yield $u_{3} \in C^{1}(\bar{\Omega})$. The proof is thus completed once one verifies that $u_{3} \neq 0$. This will follow from

$$
\begin{equation*}
C_{1}(\hat{\varphi}, 0)=0 \tag{3.32}
\end{equation*}
$$

because $C_{1}\left(\hat{\varphi}, u_{3}\right) \neq 0$ by [17, Corollary 6.81]. We claim that

$$
\begin{equation*}
C_{k}(\hat{\varphi}, 0)=C_{k}(\varphi, 0) \quad \forall k \in \mathbb{N}_{0} \tag{3.33}
\end{equation*}
$$

Indeed, consider the homotopy

$$
h(t, u):=(1-t) \hat{\varphi}(u)+t \varphi(u), \quad(t, u) \in[0,1] \times X
$$

If there exist $\left\{t_{n}\right\} \subseteq[0,1]$ and $\left\{u_{n}\right\} \subseteq X$ satisfying

$$
\begin{equation*}
t_{n} \rightarrow t, \quad u_{n} \rightarrow 0, \quad u_{m} \neq u_{n} \quad \text { for } m \neq n, \quad h_{u}^{\prime}\left(t, u_{n}\right)=0 \forall n \in \mathbb{N} \tag{3.34}
\end{equation*}
$$

then the same arguments of [20, Proposition 7] give $\left\|u_{n}\right\|_{\infty} \leq c_{1}$. By regularity, the sequence $\left\{u_{n}\right\}$ is bounded in $C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$, whence $u_{n} \rightarrow 0$ in $C^{1}(\bar{\Omega})$. Thus, $u_{n} \in\left[v_{*}, u_{*}\right]$ provided n is large enough, and (3.27), (3.29), besides (3.34), lead to $u_{n} \in K(\hat{\varphi})$. However, this contradicts the assumption $K(\hat{\varphi})$ finite. Now, [5, Theorem 5.2] directly yields (3.33). Combining (3.33) with Lemma 3.12 we finally arrive at (3.32), as desired.

If $f(x, \cdot)$ exhibits a $(p-1)$-linear behavior at zero then the problem's geometry changes, and another technical approach is necessary. We will use the hypothesis (A5") There exist $a_{6}>\hat{\lambda}_{2}$ and $a_{7}>0$ such that

$$
a_{6} \leq \liminf _{t \rightarrow 0} \frac{f(x, t)}{|t|^{p-2} t} \leq \limsup _{t \rightarrow 0} \frac{f(x, t)}{|t|^{p-2} t} \leq a_{7}
$$

uniformly in $x \in \Omega$.
Via (A1) and (A5") one has

$$
f(x, t) t \geq a_{8}|t|^{p}-a_{9}|t|^{r}, \quad(x, t) \in \Omega \times \mathbb{R}
$$

for appropriate $a_{8}>\hat{\lambda}_{2}, a_{9}>0$. Consider the auxiliary problem

$$
\begin{gather*}
-\Delta_{p} u+a(x)|u|^{p-2} u=a_{8}|u|^{p-2} u-a_{9}|u|^{r-2} u \quad \text { in } \Omega \\
\frac{\partial u}{\partial n_{p}}+\beta(x)|u|^{p-2} u=0 \quad \text { on } \partial \Omega \tag{3.35}
\end{gather*}
$$

Note that if u is a solution then $-u$ also solves this problem. Reasoning as above we see that:

- Problem 3.35 admits a unique positive solution $u_{+} \in \operatorname{int}\left(C_{+}\right)$.
- $u_{-}:=-u_{+}$represents the unique negative solution of 3.35).
- Under assumptions (A1)-(A4), (A5"), (A6) and 2.3), problem 1.1) possesses both a smallest positive solution u_{*} and a biggest negative solution v_{*}. Further, $-v_{*}, u_{*} \in \operatorname{int}\left(C_{+}\right)$.
Now, the same arguments used in the proof of [15, Theorem 3.3] yield the following result.

Theorem 3.18. Let 2.3), (A1)-(A4), (A5"), and (A6) be satisfied. Then 1.1) admits a nodal solution $u_{3} \in\left[v_{*}, u_{*}\right] \cap C^{1}(\bar{\Omega})$.
3.4. Existence of at least four nontrivial solutions. Gathering the results in Sections 3.1-3.3 we directly obtain the next one.
Theorem 3.19. If 2.3), (A1)-(A4), (A5')-(A6) hold, then 1.1 possesses at least four solutions $u_{0}, u_{1} \in \operatorname{int}\left(C_{+}\right), u_{2} \in-\operatorname{int}\left(C_{+}\right)$, and $u_{3} \in\left[u_{2}, u_{0}\right] \cap C^{1}(\bar{\Omega})$ nodal. Moreover, $u_{0} \leq u_{1}$.

Remark 3.20. Hypothesis (A5') can be substituted by (A5") without changing the conclusion.

4. SEmilinear case

From now on we shall assume $p=2$. Then the regularity results of 24] allow to weaken (2.3) as follow, see [6, 14,

$$
\begin{equation*}
a \in L^{s}(\Omega) \text { for some } s>N, a^{+} \in L^{\infty}(\Omega), \quad \beta \in W^{1, \infty}(\partial \Omega), \text { and } \beta \geq 0 \tag{4.1}
\end{equation*}
$$

Further, the energy functional φ given by $(3.3$ fulfills condition (C) once (4.1), (A1), (A2), and (A4) hold; see Proposition 3.8 .
Lemma 4.1. Under assumptions 4.1), (A1), and
(A7) $\hat{\lambda}_{m} t^{2} \leq f(x, t) t \leq \hat{\lambda}_{m+1} t^{2}$ in $\Omega \times\left[-\delta_{2}, \delta_{2}\right]$, with appropriate $m \in \mathbb{N}, \delta_{2}>0$, one has

$$
C_{k}(\varphi, 0)=\delta_{k, d_{m}} \mathbb{Z} \quad \forall k \in \mathbb{N}_{0}
$$

where $d_{m}:=\operatorname{dim}\left(\bar{H}_{m}\right)$, provided φ satisfies (C) and $0 \in K(\varphi)$ is isolated.
Proof. It is similar to that of [6, Lemma 3.3]. So, we only sketch the main points. Pick a $\theta \in\left(\hat{\lambda}_{m}, \hat{\lambda}_{m+1}\right)$ and define

$$
\psi(u):=\frac{1}{2}\left(\mathcal{E}(u)-\theta\|u\|_{2}^{2}\right), \quad u \in X
$$

Thanks to (A7), zero is a non-degenerate critical point of ψ having Morse index d_{m}, which entails

$$
C_{k}(\psi, 0)=\delta_{k, d_{m}} \mathbb{Z} \quad \forall k \in \mathbb{N}_{0}
$$

see (2.2). Now, recall that every $v \in X$ admits a unique sum decomposition $v=$ $\bar{v}+\hat{v}$, with $\bar{v} \in \bar{H}_{m}, \hat{v} \in \overline{\hat{H}_{m+1}}$. If $u \in C^{1}(\bar{\Omega})$ and $0<\|u\|_{C^{1}(\bar{\Omega})}<\delta_{2}$ then

$$
\begin{equation*}
\left\langle\varphi^{\prime}(u), \hat{u}-\bar{u}\right\rangle=\mathcal{E}(\hat{u})-\mathcal{E}(\bar{u})-\int_{\Omega} f(x, u)(\hat{u}-\bar{u}) d x \tag{4.2}
\end{equation*}
$$

By (A7) again, one arrives at

$$
f(x, u)(\hat{u}-\bar{u})=\frac{f(x, u)}{u} u(\hat{u}-\bar{u}) \leq \begin{cases}\hat{\lambda}_{m+1}\left(\hat{u}^{2}-\bar{u}^{2}\right) & \text { if } u(\hat{u}-\bar{u}) \geq 0 \\ -\hat{\lambda}_{m}\left(\bar{u}^{2}-\hat{u}^{2}\right) & \text { otherwise }\end{cases}
$$

Hence,

$$
\begin{equation*}
f(x, u(x))(\hat{u}(x)-\bar{u}(x)) \leq \hat{\lambda}_{m+1} \hat{u}(x)^{2}-\hat{\lambda}_{m} \bar{u}(x)^{2} \quad \text { in } \Omega . \tag{4.3}
\end{equation*}
$$

From 4.2, 4.3, and (2.7) it follows that

$$
\left\langle\varphi^{\prime}(u), \hat{u}-\bar{u}\right\rangle \geq \mathcal{E}(\hat{u})-\hat{\lambda}_{m+1}\|\hat{u}\|_{2}^{2}-\left[\mathcal{E}(\bar{u})-\hat{\lambda}_{m}\|\bar{u}\|_{2}^{2}\right] \geq 0 .
$$

Using [6, Lemma 2.2] we obtain

$$
\left\langle\psi^{\prime}(u), \hat{u}-\bar{u}\right\rangle=\mathcal{E}(\hat{u})-\theta\|\hat{u}\|_{2}^{2}-\left[\mathcal{E}(\bar{u})-\theta\|\bar{u}\|_{2}^{2}\right] \geq c_{1}\|u\|^{2}
$$

for some $c_{1}>0$. Therefore, the homotopy

$$
h(t, v):=(1-t) \varphi(v)+t \psi(v), \quad(t, v) \in[0,1] \times X
$$

fulfills the inequality

$$
\left\langle h_{v}^{\prime}(t, u), \hat{u}-\bar{u}\right\rangle \geq t c_{1}\|u\|^{2} \quad \forall t \in[0,1]
$$

and [5, Theorem 5.2] can be applied. By that result $C_{k}(\varphi, 0)=C_{k}(\psi, 0)$, which completes the proof.

The same arguments made in [20, Proposition 15] yield the next result.
Lemma 4.2. Assume 4.1), (A1), and (A2) hold. If φ satisfies (C) and is bounded below on $K(\varphi)$, then $C_{k}(\varphi, \infty)=0$ for all $k \in \mathbb{N}_{0}$.

The condition below will take the place of (A1).
(A1') $f(x, \cdot) \in C^{1}(\mathbb{R})$ for every $x \in \Omega$. There exist $a_{1} \in L^{\infty}(\Omega), r \in\left(2,2^{*}\right)$ such that

$$
\left|f_{t}^{\prime}(x, t)\right| \leq a_{1}(x)\left(1+|t|^{r-2}\right) \quad \forall(x, t) \in \Omega \times \mathbb{R}
$$

Remark 4.3. An easy computation shows that (A1') implies (A6).
We are now in a position to establish a five-solutions existence result. It complements those previously obtained in [6, 14].

Theorem 4.4. Let 4.1), (A1'), (A2)-(A4) be satisfied. Suppose also that (A7') either

$$
a_{10} t^{2} \leq f(x, t) t \leq \hat{\lambda}_{3} t^{2}, \quad(x, t) \in \Omega \times\left[-\delta_{3}, \delta_{3}\right]
$$

for some $a_{10}>\hat{\lambda}_{2}$ and $\delta_{3}>0$, or

$$
\hat{\lambda}_{m} t^{2} \leq f(x, t) t \leq \hat{\lambda}_{m+1} t^{2}, \quad(x, t) \in \Omega \times\left[-\delta_{3}, \delta_{3}\right]
$$

where $m \geq 3$.
Then (1.4) possesses at least five nontrivial solutions $u_{i} \in C^{1}(\bar{\Omega}), i=0, \ldots, 4$, with $u_{0}, u_{1}, u_{2}, u_{3}$ as in Theorem 3.19 .
Proof. Thanks to Remarks 3.20 and 4.3 the conclusion of Theorem 3.19 holds for the present framework. So, it remains to find a further solution $u_{4} \in C^{1}(\bar{\Omega}) \backslash\{0\}$. Without loss of generality, we assume that u_{0}, u_{3} are extremal (see Section 3.3), while a standard argument based on (A6) and 4.1) yields $u_{3} \in \operatorname{int}_{C^{1}(\bar{\Omega})}\left(\left[u_{2}, u_{0}\right]\right)$; vide, e.g., [14, Theorem 3.2]. Still we write \hat{f} for the function defined in 3.27) but with v_{*} and u_{*} replaced by u_{2} and u_{0}, respectively. [6, Lemma 2.1] provides $\hat{a}, \hat{b}>0$ fulfilling

$$
\mathcal{E}(u)+\hat{a}\|u\|_{2}^{2} \geq \hat{b}\|u\|^{2} \quad \forall u \in X
$$

Pick any $\bar{a} \geq \hat{a}$ and consider the functional $\hat{\varphi}$ given by (3.28). The same reasoning adopted in the proof of Theorem 3.17 ensures here that $C_{k}\left(\hat{\varphi}, u_{3}\right)=C_{k}\left(\varphi, u_{3}\right)$. Thus

$$
C_{1}\left(\varphi, u_{3}\right) \neq 0
$$

because u_{3} is a mountain-pass type critical point for $\hat{\varphi}$; cf. [17, Corollary 6.81]. By (A1') one has $\varphi \in C^{2}(X)$ as well as

$$
\begin{equation*}
\left\langle\varphi^{\prime \prime}\left(u_{3}\right) u, v\right\rangle=\int_{\Omega}(\nabla u \cdot \nabla v+a u v) d x+\int_{\partial \Omega} \beta u v d \sigma-\int_{\Omega} f_{t}^{\prime}\left(x, u_{3}\right) u v d x \tag{4.4}
\end{equation*}
$$

for $u, v \in X$. Hence, if the Morse index of u_{3} is zero, then

$$
\begin{equation*}
\|\nabla u\|_{2}^{2}+\int_{\partial \Omega} \beta u^{2} d \sigma \geq \int_{\Omega}\left[f_{t}^{\prime}\left(x, u_{3}\right)-a\right] u^{2} d x \quad \forall u \in X \tag{4.5}
\end{equation*}
$$

Write $\alpha:=\left[f_{t}^{\prime}\left(x, u_{3}\right)-a\right]^{+}$and observe that $\alpha \in L^{s}(\Omega)$. Two situations may occur.
(1) $\alpha=0$. Due to 4.4, for every $u \in \operatorname{ker} \varphi^{\prime \prime}\left(u_{3}\right)$ we get

$$
\|\nabla u\|_{2}^{2}+\int_{\partial \Omega} \beta(x) u(x)^{2} d \sigma \leq 0
$$

which implies u constant.
(2) $\alpha \neq 0$. From 4.5 it follows $\hat{\lambda}_{1}(\alpha) \geq 1$ and by 4.4 the assertion $\operatorname{ker} \varphi^{\prime \prime}\left(u_{3}\right) \neq$
$\{0\}$ forces $\hat{\lambda}_{1}(\alpha)=1$, whence $\operatorname{dim} \operatorname{ker} \varphi^{\prime \prime}\left(u_{3}\right)=1$.
In both cases we arrive at $\operatorname{dim} \operatorname{ker} \varphi^{\prime \prime}\left(u_{3}\right) \leq 1$. So, on account of [17, Proposition 6.101],

$$
\begin{equation*}
C_{k}\left(\varphi, u_{3}\right)=\delta_{k, 1} \mathbb{Z} \quad \forall k \in \mathbb{N}_{0} . \tag{4.6}
\end{equation*}
$$

Next, we define

$$
\varphi_{+}(u):=\frac{1}{2} \mathcal{E}(u)-\int_{\Omega} F_{+}(x, u(x)) d x, \quad u \in X
$$

where $F_{+}(x, \xi):=\int_{0}^{\xi} f(x, t)^{+} d t$. Assumption (A7) easily leads to $\varphi L_{C_{+}}=\varphi_{+}\left\llcorner_{C_{+}}\right.$, which entails

$$
C_{k}\left(\varphi L_{C^{1}(\bar{\Omega})}, u_{1}\right)=C_{k}\left(\varphi_{+} L_{C^{1}(\bar{\Omega})}, u_{1}\right)
$$

because $u_{1} \in \operatorname{int}\left(C_{+}\right)$; see Theorem 3.10. By denseness one has $C_{k}\left(\varphi, u_{1}\right)=$ $C_{k}\left(\varphi_{+}, u_{1}\right)$. Now, observe that $\varphi_{+}=\varphi_{0}+c$, with appropriate $c>0$ and φ_{0} as in (3.8), on a neighbourhood of u_{1}. Consequently, $C_{k}\left(\varphi_{+}, u_{1}\right)=C_{k}\left(\varphi_{0}, u_{1}\right)$. Since u_{1} is a mountain-pass type critical point for φ_{0} (cf. the proof of Theorem 3.10 , the same argument made above gives

$$
\begin{equation*}
C_{k}\left(\varphi, u_{1}\right)=\delta_{k, 1} \mathbb{Z}, \quad k \in \mathbb{N}_{0} \tag{4.7}
\end{equation*}
$$

Gathering Theorem 3.10 and [17, Proposition 6.95], we derive

$$
\begin{equation*}
C_{k}\left(\varphi, u_{0}\right)=\delta_{k, 0} \mathbb{Z} \quad \forall k \in \mathbb{N}_{0} . \tag{4.8}
\end{equation*}
$$

Likewise,

$$
\begin{equation*}
C_{k}\left(\varphi, u_{2}\right)=\delta_{k, 0} \mathbb{Z}, \quad \forall k \in \mathbb{N}_{0} \tag{4.9}
\end{equation*}
$$

while Lemmas 4.14 .2 yield

$$
\begin{equation*}
C_{k}(\varphi, 0)=\delta_{k, d_{m}} \mathbb{Z}, \quad C_{k}(\varphi, \infty)=0 \quad \forall k \in \mathbb{N}_{0} \tag{4.10}
\end{equation*}
$$

Finally, if $K(\varphi)=\left\{0, u_{0}, u_{1}, u_{2}, u_{3}\right\}$ then (2.1), with $t=-1$, and 4.6)-4.10 would imply

$$
(-1)^{d_{m}}+2(-1)^{0}+2(-1)^{1}=0
$$

which is impossible. Thus, there exists $u_{4} \in K(\varphi) \backslash\left\{0, u_{0}, u_{1}, u_{2}, u_{3}\right\}$, i.e., a fifth nontrivial solution to (1.1). Standard regularity results [24] ensure that $u_{4} \in C^{1}(\bar{\Omega})$.

Acknowledgements. This research was done under the auspices of GNAMPA of INDAM and within the 2016-2018 Research Plan - Intervention Line 2: 'Variational methods and differential equations'.

References

[1] S. Aizicovici, N. S. Papageorgiou, V. Staicu; Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints, Mem. Amer. Math. Soc., 196 (2008).
[2] S. Aizicovici, N. S. Papageorgiou, V. Staicu; Existence of multiple solutions with precise sign information for superlinear Neumann problems, Ann. Mat. Pura Appl., 188 (2009), 679-710.
[3] D. Arcoya and D. Ruiz; The Ambrosetti-Prodi problem for the p-Laplace operator, Comm. Partial Differential Equations, 31 (2006), 849-865.
[4] D. Averna, N. S. Papageorgiou, E. Tornatore; Positive solutions for nonlinear Robin problems, Electron. J. Differential Equations, 2017, Paper No. 204, 25 pp.
[5] J.-N. Corvellec, A. Hantoute; Homotopical stability of isolated critical points of continuous functionals, Set-Valued Anal., 10 (2002), 143-164.
[6] G. D'aguì, S. A. Marano, N. S. Papageorgiou; Multiple soutions to a Robin problem with indefinite weight and asymmetric reaction, J. Math. Anal. Appl., 433 (2016), 1821-1845.
[7] J. I. Diaz, J. E. Saa; Existence et unicité de solutions positives pour certaines equations elliptiques quasilineaires, C. R. Math. Acad. Sci., Paris 305 (1987), 521-524.
[8] M. Filippakis, N. S. Papageorgiou; Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian, J. Differential Equations, 245 (2008), 1883-1922.
[9] G. Fragnelli, D. Mugnai, N. S. Papageorgiou; Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential, Discrete Contin. Dyn. Syst., 36 (2016), 6133-6166.
[10] L. Gasiński, N. S. Papageorgiou; Nonlinear Analysis, Ser. Math. Anal. Appl., 9, Chapman and Hall/CRC Press, Boca Raton, 2006.
[11] G. Li, C. Yang; The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.
[12] S. A. Marano, S. J. N. Mosconi, N. S. Papageorgiou; Multiple solutions to (p, q)-Laplacian problems with resonant concave nonlinearity, Adv. Nonlinear Stud., 16 (2016), 51-65.
[13] S. A. Marano, N. S. Papageorgiou; Constant-sign and nodal solutions to a Dirichlet problem with p-Laplacian and nonlinearity depending on a parameter, Proc. Edinburgh Math. Soc., 57 (2014), 521-532.
[14] S. A. Marano, N. S. Papageorgiou; On a Robin problem with indefinite weight and asymmetric reaction superlinear at $+\infty$, J. Math. Anal. Appl., 443 (2016), 123-145.
[15] S. A. Marano, N. S. Papageorgiou; On a Robin problem with p-Laplacian and reaction bounded only from above, Monatsh. Math., 180 (2016), 317-336.
[16] D. Motreanu, V. V. Motreanu, N. S. Papageorgiou; On p-Laplace equations with concave terms and asymmetric perturbations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 171192.
[17] D. Motreanu, V. V. Motreanu, N. S. Papageorgiou; Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2013.
[18] D. Mugnai, N. S. Papageorgiou; Resonant nonlinear Neumann problems with an indefinite weight, Ann. Sc. Norm. Super. Pisa Cl. Sci., (5) 11 (2012), 729-788.
[19] N. S. Papageorgiou, V. D. Radulescu; Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479.
[20] N. S. Papageorgiou, V. D. Radulescu; Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud., 16 (2016), 737-764.
[21] N. S. Papageorgiou, P. Winkert; Nonlinear Robin problems with reaction of arbitrary growth, Ann. Mat. Pura Appl., 195 (2016), 1207-1235.
[22] P. Pucci, J. Serrin; The Maximum Principle, Birkhäuser, Basel, 2007.
[23] J. L. Vázquez; A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.
[24] X.-J. Wang; Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, 93 (1991), 283-310.

Salvatore A. Marano (Corresponding author)
Department of Mathematics and Computer Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

E-mail address: marano@dmi.unict.it
Nikolaos S. Papageorgiou
Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece

E-mail address: npapg@math.ntua.gr

[^0]: 2010 Mathematics Subject Classification. 35J20, 35J60, 58E05.
 Key words and phrases. Robin boundary condition; p-Laplacian; indefinite potential;
 asymmetric reaction; superlinear at $+\infty$; resonance; multiple solutions.
 © 2018 Texas State University.
 Submitted June 2, 2018. Published June 18, 2018.

