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Challenges in fractional dynamics and
control theory

Dumitru Baleanu1,2, Riccardo Caponetto3 and
JA Tenreiro Machado4

Fractional integro-differentiation (or, non-integer order
integro-differentiation) is a mathematical framework
that leads to efficient tools for modeling and control
many of physical systems. Nevertheless, the overall
area is commonly refereed as Fractional Calculus
(FC) and become popular during the last years. In
fact, FC can be used to describe in a solid and compact
form systems characterized by long-range temporal or
spatial dependence phenomena. Furthermore, the
extension of classical and modern control theories to
the new perspective, allows the development of algo-
rithms applicable both integer and non-integer order
systems.

The application of fractional calculus can have a
considerable impact on everyday life namely in technol-
ogy, social and health issues. Therefore, important
challenges are still posed to the scientific community
that motivate researchers to explore new features of
fractional systems.

The special issue Challenges in Fractional Dynamics
and Control Theory includes a selection of nine papers
addressing topics that recently emerged in this area and
is organized as follows.

Lopes and Machado (2015) contribute with the
manuscript entitled State space analysis of forest fires.
Burnt area, precipitation and atmospheric temperatures
are interpreted as state variables of a complex system
and the correlations between them are investigated. The
study sheds light about a complex phenomenon that
needs to be better understood in order to mitigate its
devastating consequences, at both economical and
environmental levels.

Balachandran et al. (2015) present the paper
Controllability of nonlinear implicit neutral fractional
Volterra integrodifferential systems. The control prob-
lem of non-linear neutral fractional Volterra integrodif-
ferential systems with implicit fractional derivative is
established. Sufficient conditions for controllability
are obtained by means of the notions of condensing
map and measure of noncompactness of a set.

Meerschaert, et al. (2015) have the study Anisotropic
fractional diffusion tensor imaging. Traditional diffusion

tensor imaging (DTI) maps brain structure by fitting a
diffusion model to the magnitude of the electrical signal
acquired in magnetic resonance imaging (MRI).
Fractional DTI employs anomalous diffusion models
to obtain a better fit to real MRI data, which can exhi-
bit anomalous diffusion in both time and space. The
paper describes the challenge of developing and
employing anisotropic fractional diffusion models for
DTI.

Pinto and Carvalho (2015) develop the work
Fractional complex-order model for HIV infection with
drug resistance during therapy. They propose a frac-
tional complex-order model for drug resistance in
HIV infection. The fractional complex-order system
reveals rich dynamics and variation of the value of
the complex-order derivative sheds new light on the
modeling of the intracellular delay.

Muresan et al. (2015) contribute with Design and
analysis of a multivariable fractional order controller
for a non-minimum phase system. Two control strategies
for multivariable processes are proposed, based on a
decentralised and a steady state decoupling approach.
The designed controllers are fractional order PIs. The
efficiency and robustness of the fractional algorithms is
tested and validated using a non-minimum phase
process.

Ventura et al. (2015) add the work Fractional direct
and inverse models of the dynamics of a human arm. The
paper presents a comparative study of both direct and
inverse models of the human arm at the elbow joint.
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Models of integer and fractional order are identified
from the experiments. Likewise, for comparison
purposes, neural networks models are also obtained.
It is shown that fractional models are more adequate
to describe human arm behavior, than the integer
counterpart.

Zheng et al. (2015) have the contribution Fractional-
order modeling of permanent magnet synchronous motor
speed servo system. System identification experiments
are performed on the electromagnetic part and the
mechanical part of the permanent magnet synchronous
motor speed servo system, respectively. Experiments in
open-loop and closed-loop are performed and the
advantages of the proposed fractional-order model is
demonstrated.

Jafari, et al. (2015) present On comparison between
iterative methods for solving nonlinear optimal control
problems. In the manuscript are compared the
Adomian decomposition, homotopy perturbation and
modified variational iteration methods, for solving a
type of nonlinear optimal control problem. It is
proved that these methods are equivalent and that
they use the same iterative formula to obtain the
approximate/analytical solution.

Bhrawy (2015) adds A highly accurate collocation
algorithm for 1þ 1 and 2þ 1 fractional percolation equa-
tions. The study addresses two spectral collocation
methods for fractional percolation equations (FPEs).
The proposed collocation scheme, both in temporal
and spatial discretizations, is successfully extended to
the numerical solution of two-dimensional FPEs.
Several numerical examples with comparisons are
reported to highlight the high accuracy of the proposed
method.

The Guest Editors thank the preceding and present
editors-in-chief, Professors Ali H Nayfeh and Mehdi
Ahmadian, for their support in constructing this special
issue with the latest results in the important area of
Fractional Calculus.
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Article

State space analysis of forest fires

António M Lopes1 and José A Tenreiro Machado2

Abstract

This paper studies forest fires from the perspective of dynamical systems. Burnt area, precipitation and atmospheric

temperatures are interpreted as state variables of a complex system and the correlations between them are investigated

by means of different mathematical tools. First, we use mutual information to reveal potential relationships in the data.

Second, we adopt the state space portrait to characterize the system’s behavior. Third, we compare the annual state

space curves and we apply clustering and visualization tools to unveil long-range patterns. We use forest fire data for

Portugal, covering the years 1980–2003. The territory is divided into two regions (North and South), characterized by

different climates and vegetation. The adopted methodology represents a new viewpoint in the context of forest fires,

shedding light on a complex phenomenon that needs to be better understood in order to mitigate its devastating

consequences, at both economical and environmental levels.
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1. Introduction

Forest fires (FFs) have a great impact on the environ-
ment and the economy (Logan et al., 2003; Rittmaster
et al., 2006). Burnt areas correspond directly to flora
and fauna losses, ecosystem damage and soil degrad-
ation (Smith et al., 2000; Certini, 2005). Long-term con-
sequences are the modification of the water cycle,
replacement of autochthonous vegetation by invasive
species (Brooks et al., 2004), increase in carbon dioxide
emissions (Page et al., 2002) and climate change
(Flannigan et al., 2000) (e.g. global warming and
extreme weather events). In fact, wildfires can be
regarded as positive feedback loops acting on the climate
complex system (CS), simultaneously potentiating and
being potentiated by climate changes (Dale et al., 2001;
Kirilenko and Sedjo, 2007).

FF propagation depends on many factors, such as
weather conditions, terrain orography and type of
vegetation. Moreover, the effectiveness of detection
and suppression measures is fundamental in order
to mitigate fire impact (Chandler et al., 1983). Fire
size patterns and spatiotemporal distributions provide
valuable information for deciding about preventive
measures, helping in identifying possible hazards,
and in planning strategies for prevention, detection
and suppression (Tenreiro Machado and Lopes,
2014).

Standard statistical methods have proved to be inad-
equate for analyzing extreme fire events (Holmes et al.,
2008) as they are not capable of capturing all charac-
teristics underneath fire dynamics (Alvarado et al.,
1998). FFs exhibit complex spatiotemporal correl-
ations, characterized by long-range memory and
absence of a characteristic length-scale (Malamud
et al., 1998; Ricotta et al., 1999; Reed and McKelvey,
2002; Telesca et al., 2005; Song et al., 2006). Those
features are explained by the self-organized critical
(SOC) (Bak, 1990) and highly optimized tolerance
(HOT) models, proposed to explain fire behavior
(Grassberger and Kantz, 1991; Drossel and Schwabl,
1992; Carlson and Doyle, 1999; Moritz et al., 2005).

Ricotta et al. (1999) analyzed FF data for the region
of Liguria (Italy), covering the years 1986–1993. They
concluded that there is a power-law (PL) relationship
between the frequency of occurrence of the event and
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the burnt area (size). Malamud et al. (1998) analyzed
FFs in the USA and Australia and showed that FFs
exhibit a PL dependence frequency versus size, over
many orders of magnitude. A simple fire model was
proposed and it was concluded that actual FFs can
be directly associated with the model. Deviations
from PL behavior, observed in certain cases, were
explained by Song et al. (2006). They examined the
SOC and fractal characteristics of FFs in China and
hinted at actual FF protection. Reed and McKelvey
(2002) proposed empirical frequency–size distributions,
derived from real data in six regions in North America,
concluding that a simple PL distribution of sizes may
be too simple to describe the distributions over their full
range. They developed a stochastic model for the
spread and extinguishment of FFs to examine the
necessary conditions for PL behavior. FF time-scaling
was addressed by Telesca et al. (2005), who character-
ized the temporal distribution of fires occurring in
Gargano (Italy), known for its high density of fires.
They concluded that the point process of fire events is
a fractal process with a high degree of time-clusteriza-
tion. Time-scales are of the order of a few days and the
fire process tends to be less time-clustered with an
increase in the burnt area. The time-scaling properties
of yearly FF sequences occurring in the Reggio
Calabria (Italy) region were studied by Lasaponara
et al. (2005). Their results show that FFs exhibit a
strong degree of time-clusterization.

The HOT conceptual framework, as an alternate to
SOC, was used to explain the formation of scale-
invariant patterns in CSs (Carlson and Doyle, 1999). It
emphasizes that PL behavior results from optimization
of tradeoffs between system yield and tolerance to risk,
which drives the system to a specific spatial configur-
ation. Moritz et al. (2005) studied historical fire catalogs
and proposed a detailed fire simulation model. They
concluded that both are in agreement with the HOT
concept. Boer et al. (2008) showed that FF size distribu-
tions are closely related to distributions of weather
events. Zheng et al. (2008) investigated the PL scaling
behavior of FFs and weather parameters by means of a
detrended fluctuation analysis method. They verified
that temperature, relative humidity and precipitation
data reveal characteristics similar to FFs. Their reported
findings were shown to be useful for quantifying the
underlying dynamics of FF and weather parameters,
and for understanding the relationship between them.

In this paper we study FFs from the perspective of
dynamical systems. Burnt area and weather variables,
such as precipitation and atmospheric temperatures, are
interpreted as state variables of a CS and the correl-
ations between them are investigated on an annual
basis using different mathematical tools. First, we pro-
pose the mutual information concept to unveil potential

relationships in the data. Second, we adopt the state
space portrait to characterize the system behavior.
Third, we compare the state space curves and use clus-
tering and visualization tools, namely hierarchical clus-
tering and multidimensional scaling. Several long-range
patterns emerge in FF time-lines. Our study focuses on
data for Portugal (excluding Azores and Madeira), cov-
ering the time period from 1980–2003. We divide the
Portuguese territory into two regions (North and
South), as they present different climates and vegeta-
tion. The adopted methodology and tools represent a
new viewpoint in the context of FF analysis, shedding
light on a complex phenomenon that needs to be better
understood in order to mitigate its severe consequences.
The paper reveals the difficulties in forecasting future
events based on a limited set of variables. However, it
is clear that the emergence of clusters corresponds to
complex dynamical effects. In fact, the emerging pat-
terns resemble those of chaotic systems, leading to
poor predictability. On the other hand, the study dem-
onstrates that the results point towards measuring a
richer set of environmental variables and the recording
of longer time-series in order to establish a solid basis
for computer data analysis systems.

Bearing these ideas in mind, this paper is organized
as follows. Section 2 introduces some fundamental
mathematical concepts. Section 3 describes the experi-
mental dataset and characterizes the data using simple
statistics. Section 4 analyzes the data by means of state
space portrait and compares the state space curves
using clustering and visualization tools. Finally,
Section 5 presents the main conclusions.

2. Mathematical background

This section presents the mathematical tools used to
process the data, namely mutual information (MI),
state space portrait (SSP), hierarchical clustering (HC)
and multidimensional scaling (MDS).

2.1. Mutual information

The MI statistical concept originated from the area of
information theory. MI measures the statistical depend-
ence between two random variables and can be interpreted
as the amount of information that one variable ‘contains’
about the other (Shannon, 2001). Recently, MI has been
used as an approach to analyze different CSs (Fraser and
Swinney, 1986; Matsuda, 2000; Tenreiro Machado
and Lopes, 2013). Mathematically, for two discrete
random variables (X,Y), the MI, I(X,Y) is given by

IðX,YÞ ¼
X
y2Y

X
x2X

pðx, yÞ � log
pðx, yÞ

pðxÞ � pð yÞ

� �
ð1Þ
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where, p(x) and p(y) represent the marginal probability
distribution functions of X and Y, respectively, and
p(x,y), is the joint probability distribution function.
MI is always symmetric and nonnegative, that is,
I(X,Y)¼ I(Y,X)� 0.

2.2. State space portrait

A n-dimensional dynamical system can be represented
by a set of first-order differential equations governing n
state variables, x1ðtÞ, x2ðtÞ, . . . ,xnðtÞ, where t represents
time. Such equations are obtained from the system
input–output functional relationship (i.e. the system
model), for a given set of state variables. Knowing
the state variables at time t¼ t0 and the system inputs
for t� t0, we can determine the system behavior for
t� t0. The state space consists of the set of all possible
states, each one corresponding to a unique point. As t
evolves, we get sequences of points describing trajec-
tories in the state space. The set of trajectories is the
SSP. For first-, second- and third-order systems, the
SSP can be depicted on a map and the system behavior
can be inferred from the corresponding graphical rep-
resentation (Polderman and Willems, 1998).

2.3. Hierarchical clustering

Clustering analysis organizes data into groups (clusters)
such that there is a high/low intra/inter-cluster similar-
ity between objects. Clustering exposes the internal
structures of the data, underlying rules and patterns.
It has been adopted in data mining, machine learning,
pattern recognition, image analysis and bioinformatics,
among others (Hartigan, 1975).

There are two types of clustering: partitional and
hierarchical. In partitional clustering, different parti-
tions are created and then evaluated by means of
some criterion (e.g. k-means (Jain, 2010)). In HC a hier-
archy of object clusters is built. This is typically done by
means of heuristic algorithms. In agglomerative cluster-
ing the algorithm starts with each object in its own
cluster and, at each step, it finds the best (most similar)
pair of clusters to merge into a new cluster. It iterates
until all clusters are merged together. In divisive cluster-
ing the algorithm starts with all items in a single cluster,
at each step, it chooses the best way to split the cluster
into two and, recursively, operates on both new-formed
clusters. The iterations stop when each object is in its
own cluster.

Both in agglomerative and divisive clustering, the
clusters are generated by evaluating the inter-cluster
dissimilarity. A metric (i.e. a measure of the distance
between pairs of objects) and a linkage criterion (i.e. the
definition of the dissimilarity between clusters as a func-
tion of the pairwise distances between objects) are

adopted to quantify the inter-cluster dissimilarity.
Mathematically, for two clusters, U and V, a metric is
used to measure the distance between objects,
d ðxU, xVÞ, xU 2 V and xV 2 V. Based on that metric,
the maximum, minimum, or average, linkage criterion
is adopted, that is, respectively

dmax U,Vð Þ ¼ max
xU2U,xV2V

d xU,xVð Þ ð2Þ

dmin U,Vð Þ ¼ min
xU2U,xV2V

d xU, xVð Þ ð3Þ

dave U,Vð Þ ¼
1

k U kk V k

X
xU2U,xV2V

d xU, xVð Þ ð4Þ

The results of HC are usually presented in a dendro-
gram, where the similarity between two objects is
represented by the height of their lowest common inter-
nal node.

2.4. Multidimensional scaling

MDS is a set of techniques for visualizing similarities/
dissimilarities between objects in a dataset (Cox and
Cox, 2000). MDS generates maps describing the
objects’ locus in the perspective that, if they are per-
ceived to be similar/dissimilar to each other, then they
are placed on the map close/distant to/from each other.
MDS provides an intuitive and useful visual represen-
tation of complex relationships present among objects.
In metric MDS the input is an n� n symmetric matrix,
M, of object pairwise similarities/dissimilarities, where
n denotes the number of objects in the dataset. The
measure for quantifying similarities/dissimilarities
depends of the researcher’s choice and can be selected
based on multiple criteria. MDS assigns a point to each
object, rearranging the object’s coordinates in a
m-dimensional space. Using an optimization algorithm,
it evaluates different configurations and outputs a
coordinate matrix representing the configuration that
best reproduces the observed similarities/dissimilarities.
For m¼ 2 and m¼ 3 the results are easily represented in
a graph, where the orientation of the axes is arbitrary.
The distances between points are always the same, inde-
pendently of any rotation or translation of the MDS
map, and can be chosen in order to get a clearer visu-
alization. Stress and Shepard plots are usually adopted
for accessing MDS results. The stress is a function of
the number of dimensions m. The corresponding dia-
gram is a monotonic decreasing chart, which is useful
to decide the ‘best’ dimension m, as a compromise
between stress reduction and number of dimensions.
The Shepard plot, maps the reproduced versus the
observed similarities/dissimilarities. A narrow scatter
around a 45� line indicates a good fit.

Lopes and Machado 2155



3. Brief description of the dataset

This section describes the dataset used in this study (i.e.
FFs, precipitation and temperature) and complements
the presentation with simple statistics.

We consider the Portuguese continental territory
divided into the North (N) and South (S) regions as
shown in Figure 1. These regions correspond to differ-
ent climate, vegetation and orography conditions,
which influence fire behavior. The time period of ana-
lysis is limited to years 1980–2003, which is imposed by
the data available.

A catalog of FFs is compiled by the Portuguese
Instituto da Conservação da Natureza e das Florestas
(INCF), and is available online at http://www.icnf.pt/
portal/florestas/dfci/inc/estatisticas. Each data record
contains information about the date of the event, time

(with one-minute resolution), geographic location
(expressed in latitude and longitude coordinates) and
size (quantified by the burnt area, expressed in hec-
tares). All occurrences are included, independently of
their cause, namely natural factors, human negligence
and human intent.

The data is pre-processed by calculating the daily
burnt area in each region. Figure 2 shows the burnt
area for regions N and S. We adopt a circular time-
scale to represent the time evolution of fire within the
period 1980–2003. The circular time evolves along an
Archimedean spiral with its origin at the center of the
circumferences defined by

� ¼ 2�
t

T
þ i� 1980ð Þ

h i
, r ¼ pþ q� ð5Þ

where (r,y) denotes the radius and angle coordinates,
respectively, p ¼ q ¼ 1, i ¼ 1980, . . . , 2003 and t and T
represent time and one year. The daily burnt area, B,
expressed in logarithmic units, is related to the color of
the marks. As can be seen, most events are depicted on
the graph in the area corresponding to summer.
Moreover, region N is more prone to fire than region
S, which is justified by the availability of denser areas of
forest and vegetation.

Data on precipitation was collected at the Instituto
Português do Mar e da Atmosfera (IPMA) https://
www.ipma.pt/en/. The database contains information
of daily precipitation for Portugal, in a regular grid
with 0.2� � 0.2� resolution, for the period 1950–2003.
The gridded data was obtained based on records from
806 meteorological stations, interpolating the ori-
ginal data using the Kriging method (Belo-Pereira
et al., 2011).

(a) (b)

Figure 2. Time evolution of the daily burnt area, during the period 1980–2003: (a) region N; (b) region S.

Figure 1. Location of the two Portuguese regions studied.
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We pre-processed the gridded database, calculating
the total daily precipitation for regions N and S in the
period 1980–2003.

The source of temperature data was the National
Aeronautics and Space Administration (NASA) web-
site (http://data.giss.nasa.gov/gistemp/station_data/)
Each data series consists of the average temperatures

per month, expressed in Celsius degrees, of several
worldwide meteorological stations. We use temperature
time-series of Porto and Lisbon to represent the N and
S regions of Portugal, respectively. This option is justi-
fiable by the existence of accurate data for both cities
and because Portugal is a small country, making the
inclusion of other centers unnecessary. Thus, using

(a)

(b)

Figure 3. Evolution of the annual burnt area, mean temperature and precipitation, over the time period 1980–2003: (a) region N;

(b) region S.
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data from one place to characterize each region is a
good approximation. We pre-processed the data, filling
occasional gaps of one month (represented on the ori-
ginal dataset by the value 999.9) by temperature values
calculated using linear interpolation between the two
adjacent points. The distinct number of days of each

month and the leap years were taken into account. The
data was then interpolated linearly in order to get daily
mean temperatures (Tenreiro Machado and Lopes,
2012; Lopes and Tenreiro Machado, 2014).

In Figure 3 we represent the evolution of the
annual total burnt area, mean temperature and

Figure 4. Evolution of the annual MI between burnt area and precipitation, I(B,P), and between burnt area and mean atmospheric

temperature I(B,T), for region N, during the time period 1980–2003.

Figure 5. Evolution of the annual MI between burnt area and precipitation, I(B,P), and between burnt area and mean atmospheric

temperature I(B,T), for region S, during the time period 1980–2003.

2158 Journal of Vibration and Control 22(9)



precipitation, for regions N and S, over the time period
1980–2003. It can be seen that there is a correlation
between burnt area and both mean temperature and
precipitation.

We verify that the previous simple statistics do not
capture all the hidden relationships in the data.
Therefore, in the next section, several complementary
mathematical tools are adopted.

Figure 7. The SSP ~XB
i ðtÞ vs. ~XP

i ðtÞ, for year i¼ 1993 and region N.

Figure 6. Time evolution of the variables ~XB
i ðtÞ,

~XP
i ðtÞ and xT

i ðtÞ, for year i¼ 1993 and region N.
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4. Data analysis and results

In this section, data comprising burnt area, precipitation
and atmospheric temperatures are interpreted as state
variables of a CS and correlations between the variables
are investigated on an annual basis. In subsection 4.1, we
use MI to analyze the relationships in the data. In
Section 4.2, we adopt the SSP to characterize the sys-
tem’s behavior. Finally, in Section 4.3 we compare the
state space curves by means of HC and MDS.

4.1. Mutual information analysis

To calculate the MI, we first generate the annual time-
series of daily values

xWi ðtÞ ¼
XT
k¼1

Wi,k�ðt� ti,kÞ ð6Þ

leading to 24 time-series for each variable, where,
W ¼ fB,P,Tg denotes burnt area (B), precipitation

Figure 8. The SSP ~XB
i ðtÞ vs.xT

i ðtÞ, for year i¼ 1993 and region N.

Figure 9. The SSP ~XB
i ðtÞ vs. ~XP

i ðtÞ vs. xT
i ðtÞ, for year i¼ 1993 and region N.

2160 Journal of Vibration and Control 22(9)



(P) and mean temperature (T), respectively. The vari-
able Wi,k represents daily values, ti,k are time-instants
(i.e. days), T is the total number of days in one year,
and � �ð Þ corresponds to the Dirac delta function.

The annual MI between burnt area and precipita-
tion, I(B,P) and between burnt area and mean atmos-
pheric temperature I(B,T) were calculated, estimating
the probabilities by means of the histograms of relative
frequencies. For constructing the histograms, we adopt
N¼ 200 bins.

Figures 4 and 5 represent the evolution of the
annual MI between burnt area and precipitation,
I(B,P), and between burnt area and mean atmospheric
temperature I(B,T), for regions N and S, respectively.
We can see that, for the two regions, I(B,P) is lower
than I(B,T). For region N, I(B,P) is somewhat ‘noisy’,
but it stays almost constant over the period 1980–
2003, with exception of the years {1990, 2003} and
{1997}, where minimum and maximum values of MI
are registered, respectively. With respect to I(B,T), in
the early years it is almost constant. In year {1988} it
reaches a maximum value and, for more recent years,
its trend is for decreasing. For region S, I(B,P) is also
‘noisy’, but its trend reflects some increasing over
time, except for years {1980, 2003}. The evolution of
I(B,T) shows a trend to increase during the first half
and to decrease for the second half of the period of
analysis.

4.2. State space analysis

To generate the SSP we first compute the annual time-
series of accumulated burnt area, ~XB

i ðtÞ, and accumu-
lated precipitation, ~XP

i ðtÞ, which are given by

~XZ
i ðtÞ ¼

Z t

0

xZi ðuÞdu, Z ¼ fB,Pg ð7Þ

where, 0� t�T and t¼ 0 corresponds to the first day of
each year i ¼ 1980, . . . , 2003.

Second, we analyze the annual SSP generated by the
three ‘state’ variables: accumulated burnt area, ~XB

i ðtÞ,
accumulated precipitation, ~XP

i ðtÞ and mean atmos-
pheric temperature, xTi ðtÞ, leading to 24 three-
dimensional curves.

In this second analysis, to illustrate the method-
ology, we present the results for year 1993, in region
N. Figure 6 depicts the time evolution of the variables,
where we can see that the accumulated burnt area,
~XB
i ðtÞ, reveals five distinct regimes. Period I corresponds

to 1� t� 50 days (i.e. from January up to mid-
February), with negligible fire activity, low tempera-
tures (below 11.7�C) and intermittent periods with

Figure 11. Visualization tree generated by the HC algorithm,

representing similarities between SSP annual curves, for region S.

Figure 10. Visualization tree generated by the HC algorithm,

representing similarities between SSP annual curves, for

region N.
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precipitation. Period II corresponds to 50� t� 74 days
(i.e. from mid-February up to mid-March). Fire activity
increases moderately, temperatures are in the interval
[11.7�C,12.3�C] and precipitation is almost absent. In
period III, 74� t� 181 days, (i.e. from mid-March up
to end of June), fire activity is low, and temperatures
increase up to the interval [12.3�C, 21.3�C] while pre-
cipitation is quite intense. Period IV, 181� t� 250
days, corresponds to the end of June up to the end of
August. Fire activity goes up by a large increment.
Temperatures stay above 16.5�C and precipitation is
negligible. Finally, in period V, 250� t� 365
days (from the end of August up to the end of the
year), fire activity is again negligible, temperatures

decrease continuously and precipitation remains
present.

The relationships between ~XB
i ðtÞ,

~XP
i ðtÞ and xTi ðtÞ

(i¼ 1993) are presented in Figures 7, 8 and 9, corres-
ponding to the SSP ~XB

i ðtÞ vs.
~XP
i ðtÞ,

~XB
i ðtÞ vs. x

T
i ðtÞ and

~XB
i ðtÞ vs.

~XP
i ðtÞ vs. x

T
i ðtÞ, respectively.

4.3. Clustering analysis and visualization

In this subsection clustering and visualization algo-
rithm are adopted to compare the annual SSP curves
and to unveil relationships in the data.

To compare all SSPs we calculate a 24� 24
dissimilarity matrix M ¼ ½eij�, based on the Euclidean

Figure 13. The MDS map for k¼ 3, representing similarities between SSP annual curves, for region S.

Figure 12. The MDS map for k¼ 3, representing similarities between SSP annual curves, for region N.
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distance eij ði, j ¼ 1980, . . . , 2003Þ, between the SSP
curves

eij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2

þ yi � yj
� �2

þ zi � zj
� �2q

ð8Þ

where, (xi,yi,zi) and (xj,yj,zj) represent the coordinates
of the SSP curve pairs (i,j), respectively.

Two visualization trees are generated using HC, cor-
responding to regions N and S (Figures 10 and 11,
respectively). The successive (agglomerative) clustering
and average-linkage methods are adopted. The soft-
ware PHYLIP is used for generating the graphs
(http://evolution.genetics.washington.edu/phylip.html).
For region N, we can note the emergence of six clusters:
A¼ {1980, 1981, 1982, 1983, 1984, 1988, 1992, 1993,
1997}, B¼ {1986, 1987, 1989, 1994, 1996, 1999},
C¼ {1991, 1998, 2000, 2002}, D¼ {1985, 1990, 1995},
E ¼ {2003} and F ¼ {2001}. For region S, we identify
four clusters: A¼{1985, 1987, 1988, 1989, 1997, 2001},
B¼ {1980, 1981, 1982, 1983, 1984, 1986, 1990, 1991,
1992, 1993, 1994, 1995, 1998, 1999, 2000, 2002},
C¼ {1996} and D¼ {2003}.

As an alternative to HC and visualization trees we
adopt MDS, feeding the algorithm with matrix M. The
MDS maps for m¼ 3 are depicted in Figures 12 and 13,
corresponding to regions N and S, respectively. As said
previously, a shorter (larger) distance between two
points on a map means that the corresponding objects
are more similar (distinct). The clusters identified pre-
viously are also depicted. We can say that both visual-
ization trees and MDS maps allow good interpretation
of the results. However, MDS maps have an advantage
when dealing with a large number of objects, being
more intuitive.

5. Conclusions

In this paper we proposed analyzing FFs from the per-
spective of dynamical systems. We used daily data for
Portugal (excluding the Atlantic islands Azores and
Madeira), covering the time period from 1980–2003.
In the adopted methodology, burnt area, precipitation
and atmospheric temperatures were interpreted as state
variables of a CS and the correlations between them
were investigated. First, we used the MI concept to
unveil potential relationships in the data. Second, we
considered the SSP to characterize the system’s behav-
ior. Third, we compared the annual state space curves
and adopted HC and MDS techniques to unveil exist-
ing patterns. Both tools identified the same clusters and
exposed similarities between groups of consecutive
years. The proposed analysis and findings can further
contribute to better understand FF behavior and reveal
hidden features not captured by standard tools.
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Article

Controllability of nonlinear implicit
neutral fractional Volterra
integrodifferential systems

K Balachandran1, S Divya1, M Rivero2 and JJ Trujillo3

Abstract

In this paper, the control problem of nonlinear neutral fractional Volterra integrodifferential systems with implicit frac-

tional derivative is established. Such kind of problems involve a number of problems on complex media. Sufficient

conditions for controllability are obtained through the notions of a condensing map and measure of noncompactness

of a set. A example to check the main results included in this paper is included.

Keywords

Controllability, neutral fractional integrodifferential equations, Sadovskii fixed point theorem

1. Introduction

In recent years, fractional differential equations have
been emerging as a new branch of applied mathematics
which have been used to model many practical systems
in science and engineering (Ahmed and Elgazzar, 2007;
Bagley and Torvik, 1983; El-Sayed, 1996; Metzler and
Klafter, 2000).

Indeed fractional differential equations can be con-
sidered as a complementary tool to model classical
linear or nonlinear differential equations of the dynam-
ics of complex processes on complex media. Moreover,
Bonilla et al. (2007) have shown some fractional models
involving Riemann–Liouville fractional derivative can
contain solutions impossible for the classical differen-
tial models. The theory of fractional differential equa-
tions has been investigated extensively by many authors
(see, for example, Hernandez et al., 2010; Kilbas et al.,
2006; Lakshmikantham, 2008; Miller and Ross, 1993;
Oldham and Spanier, 1974; Podlubny, 1999). Various
types of models are reformulated and articulated in
terms of fractional differential equations and so the
physical meaning will be integrated in the mathematical
models more practically.

Controllability, observability and stabilizability are
the qualitative properties on fractional dynamical sys-
tems which are the latest issues that are dealt with by
many researchers. The fractional control theory is a
generalization of the classical control theory.

Any control system is said to be controllable if every
state corresponding to this process can be affected or
controlled in respective time by some control signals.
Controllability results for linear and nonlinear integer
order dynamical systems in finite-dimensional spaces
have been discussed by many authors (Balachandran
and Dauer, 1987; Klamka, 1993, 2008). Recently
Balachandran and Kokila (2012a); Balachandran
et al. (2012c) established the controllability results for
linear and nonlinear fractional dynamical systems using
Schauder’s fixed point theorem and extended the results
for the same systems with multiple time-varying delays
in control as well as distributed delays in control vari-
ables in Balachandran et al. (2012b,d).

It is well known that the neutral differential equation
is a very special class of ordinary differential equation
and it arises in compartmental models in which the
system can be divided into separate compartments,
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marking the pathways of material flow between com-
partments and the possible outflow into the inflow from
the environment of the system (Gyori and Wu, 1991).
These models are frequently used in theoretical epi-
demiology, physiology and population dynamics to
describe the evolution of systems. These equations
can be remodeled as neutral fractional differential equa-
tions or neutral fractional Volterra integrodifferential
equations. The main aim of this present article is to
study the controllability for such fractional systems.

The problem of controllability of linear neutral sys-
tems has been investigated by Banks and Kent (1972)
and Jacobs and Langenhop (1976). The motivation for
neutral systems and their importance in other fields can
be found in Hale (1972). Chukwu (1987) considered the
Euclidean controllability of a neutral system with non-
linear base. Onwuatu (1984) discussed the problem for
nonlinear systems of neutral functional differential
equations with limited controls. Gahl (1978) derived a
set of sufficient conditions for the controllability of
nonlinear neutral systems through a fixed-point
method. Balachandran and Balasubramaniam (1994)
established sufficient conditions for the controllability
of nonlinear neutral Volterra integrodifferential sys-
tems. Anichini et al. (1986) studied the problem
through the notions of condensing map and measure
of non-compactness of a set. They used the fixed-point
theorem due to Sadovskii. Balachandran and Kokila
(2013b) derived a set of sufficient conditions for the
controllability of nonlinear implicit fractional dynam-
ical systems through the notion of measure of non-com-
pactness of a set and Darbo’s fixed point theorem and
extended the results for fractional integrodifferential
systems with prescribed controls (Balachandran and
Kokila, 2013a). In this paper we study the controllabil-
ity of nonlinear neutral fractional Volterra integrodif-
ferential systems with implicit derivative by suitably
adopting the technique of Anichini et al. (1986).

2. Preliminaries

In this section, we present some definitions and prelim-
inary facts that will be used in the paper (Kexue and
Jigen, 2011; Kilbas et al., 2006; Miller and Ross, 1993;
Podlubny, 1999).

Let �, �> 0 with n� 1<�< n, n� 1<�< n and
n2N, D is the usual differential operator. Let Rm be
the m-dimensional Euclidean space, Rþ ¼ ½0,1Þ and
suppose f 2 L1ðRþÞ. The Riemann–Liouville fractional
integral operator is defined by

ðI�0þ f ÞðtÞ ¼
1

�ð�Þ

Z t

0

ðt� sÞ��1f ðsÞds

ðD�
0þf ÞðtÞ ¼ DnðIn��aþ f ÞðtÞ

and the Caputo fractional derivative is defined by

CD�
0þ f ðtÞ ¼ ðIn��0þ Dnf ÞðtÞ, ð05�5 1Þ

and, in particular, I�0þ
CD�

0þ f ðtÞ ¼ f ðtÞ � f ð0Þ.
The following is a well-known relation, for a finite

interval [a, b],

CD�
0þ f ðtÞ ¼ D�

0þ f ðtÞ �
Xn�1
k¼0

tk��

�ðk� �þ 1Þ
f ðkÞð0þÞ,

ðn ¼ <ð�Þ þ 1Þ

The Laplace transform of the Caputo fractional deriva-
tive is

LfCD�
0þ f ðtÞgðsÞ ¼ s�FðsÞ �

Xn�1
k¼0

f kð0þÞs��k�1

The Riemann–Liouville fractional derivatives have sin-
gularity at zero and the fractional differential equations
in the Riemann–Liouville sense require initial condi-
tions of special form lacking physical interpretation.
To overcome this difficulty Caputo introduced a new
definition of fractional derivative but in general,
both the Riemann–Liouville and the Caputo fractional
operators possess neither semigroup nor commutative
properties, which are inherent to the derivatives on inte-
ger order. Due to this fact, the concept of sequential
fractional derivatives are discussed in Kilbas et al.
(2006).

For n 2N the sequential fractional derivative for a
suitable function f is defined by

f ðk�Þ :¼ ðDk�f ÞðtÞ ¼ ðD�Dðk�1Þ�f ÞðtÞ

where k ¼ 1, . . . , n, ðD�f ÞðtÞ ¼ f ðtÞ and D� is any frac-
tional differential operator, here we take it as CD�.

Next we give the definition of Mittag–Leffler func-
tion as E�,�ðzÞ ¼

P1
k¼0

zk

�ð�kþ�Þ , for �,�4 0.
The Laplace transform of E�,�ðzÞ is

Lft��1E�,�ð�at
�ÞgðsÞ ¼ s���

s��a, for ReðsÞ4 jaj
1
� and

Re(�)> 0. In particular, for �¼ 1,

E�,1ðaz
�Þ ¼ E�ðaz

�Þ ¼
X1
k¼0

akz�k

�ð�kþ 1Þ
, a, z 2 C

have the interesting property CD�E�ðaz
�Þ ¼ aE�ðaz

�Þ

and LfE�ð�at
�ÞgðsÞ ¼ s��1

s��a.
For brevity, we take I�0þ as I� and CD�

0þ as CD�. In
the following, we obtain the solution representation of
various forms of integrodifferential equations.
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First, consider the following linear fractional inte-
grodifferential equation

CD�xðtÞ ¼ AxðtÞ þ

Z t

0

Hðt� sÞxðsÞdsþ f ðtÞ,

ð05�5 1Þ, t 2 ½0, t1� :¼ J
xð0Þ ¼ x0

9>>=
>>;
ð1Þ

where the state vector x(t) 2Rn, A is an n� n matrix,
H(t) is an n� n continuous matrix and f(t) is a continu-
ous function. By the Laplace transformation approach,
we have the solution as (Balachandran and Kokila,
2013a; Kexue and Jigen, 2011)

xðtÞ ¼ R�ðtÞ þ

Z t

0

ðt� sÞ��1R�,�ðt� sÞ f ðsÞds

where R�(t) is an n� n matrix satisfying the condition
stated in (Balachandran and Kokila, 2013a) and
R�,�ð�Þ ¼ �

1��DI�R�ð�Þ.
Next consider the linear neutral fractional Volterra

integrodifferential equation of the form

CD� xðtÞ �

Z t

0

Cðt� sÞxðsÞds

� �

¼ AxðtÞ þ

Z t

0

Hðt� sÞxðsÞds

xð0Þ ¼ x0, 05�5 1, t 2 J

9>>>>>=
>>>>>;

where the state vector x(t) 2Rn, A is an n� n matrix,
C(t) and H(t) are continuous n� n matrices. By the
Laplace transformation approach, we have the
solution as

L
�1
fXðsÞgðtÞ ¼ L�1 s��1

ðs�ðI�LðCÞÞ�A�LðHÞÞ

n o
ðtÞx0

xðtÞ ¼ Z�ðtÞx0

)

where Z�(t) is an n� n solution matrix satisfying the
following conditions:

a. Z�ð0Þ ¼ I;
b. CD� Z�ðtÞ �

R t
0 Cðt� sÞZ�ðsÞds

� �
¼ AZ�ðtÞ þ

R t
0 H�

ðt� sÞZ�ðsÞds;
c. LfZ�ðtÞgðsÞ ¼

R t
0 e
�stZ�ðtÞdt :¼ s��1ðs�ðI� LðCÞÞ �

A� LðHÞÞ�1.

For the fractional integrodifferential system

CD� xðtÞ �

Z t

0

Cðt� sÞxðsÞds

� �

¼ AxðtÞ þ
R t
0 Hðt� sÞxðsÞdsþ BuðtÞ

xð0Þ ¼ x0, t 2 J, 05�5 1

9>>>=
>>>;

ð2Þ

the solution is given by

xðtÞ ¼ L�1
s��1

ðs�ðI�CðsÞÞ �A�HðsÞÞ

� �
ðtÞx0

þL
�1 1

ðs�ðI�CðsÞÞ �A�HðsÞÞ

� �
ðtÞL�1fBUðsÞgðtÞ

¼ Z�ðtÞx0þ

Z t

0

ðt� sÞ��1Z�;�ðt� sÞBuðsÞ

where Z�,�ð�Þ ¼ �
1��DI�Z�ð�Þ.

Next we summarize some facts concerning conden-
sing maps; for definitions and results about the measure
of non-compactness and related topics, the reader
can refer to the papers Anichini et al. (1986) and
Sadovskii (1972).

Definition 2.1. Let X be a subset of a Banach space. An
operator T : X ! X is called condensing if, for any
bounded subset E�X with �(E) 6¼ 0, we get
�(T(E))<�(E), where �(E) denotes the measure of
non-compactness of the set E, whose properties are
given in Dacka (1980).

Let Cn(J) denote the Banach space of continuous
R

n� valued functions on the interval J. For x2Cn(J)
and h> 0, let

�ðx, hÞ ¼ supfjxðtÞ � xðsÞj : t, s 2 J and jt� sj � hg ð3Þ

and write �(E, h)¼ supx2E�(x, h) so that �(E, .) is the
modulus of continuity of a bounded set E and let � be
the set of functions ! : Rþ ! R

þthat are right continu-
ous and nondecreasing such that !(r)< r, for r> 0.

Lemma 2.1 (Sadovskii, 1972). Let X�Cn(J) and let �
and � be functions defined on [0, t1] such that
lims!0�(s)¼ lims!0�(s)¼ 0. If a mapping T :X !
Cn(J) exists such that it maps bounded sets into
bounded sets and is such that

�ðTðxÞ, hÞ5!ð�ðx,�ðhÞÞÞ þ �ðhÞ

with ! 2 �, x 2 X and for all h 2 [0, t1], then T is a
condensing mapping.

Lemma 2.2 (Anichini et al., 1986; Sadovskii, 1972). Let
X�Cn(I), I¼ [0, 1] and S�X be a bounded closed
convex set. Let P : I�S! X be a continuous operator
such that, for any l 2 I, the map P(l, .) : S ! X is
condensing. If x 6¼P(l, x) for any l 2 I and any x 2 @S
(the boundary of S), then P(1, .) has a fixed point.

Finally it is possible to show that, for any bounded
and equicontinuous set E in C�nðIÞ, the following rela-
tion holds:

�C�n
ðEÞ 	 �1ðEÞ 	 �ð

CD�EÞ 	 �Cn
ð
CD�EÞ

where CD�E ¼ fCD�x : x 2 Eg.
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3. Controllability results

Similar to the conventional controllability concept we
define the controllability of fractional dynamical sys-
tems as follows.

Definition 3.1. System (2) is said to be controllable on J
if, for every x0, x1 2 R

n, there exists a control u(t) such
that the solution x(t) of the system (2) satisfies the con-
dition x(0)¼x0 and x(t1)¼ x1.

Define the controllability matrix

Gð0, t1Þ ¼

Z t1

0

ðt1 � sÞ��1½Z�,�ðt1 � sÞB�½Z�,�ðt1 � sÞB�
ds

where the star denotes the matrix transpose. It is
proved that the linear system (2) is controllable on J
if and only if the controllability matrix G(0, t1) is posi-
tive definite, for some t1> 0 (Balachandran and Kokila,
2013a).

Consider the nonlinear neutral fractional Volterra
integrodifferential system of the form

CD� xðtÞ �

Z t

0

Cðt� sÞxðsÞds� gðtÞ

� �

¼ AxðtÞ þ

Z t

0

Hðt� sÞxðsÞdsþ BuðtÞ

þf ðt, xðtÞ, CD�xðtÞ, uðtÞÞ

xð0Þ ¼ x0

9>>>>>>>>=
>>>>>>>>;

ð4Þ

where t 2 J, 0<�< 1, x2Rn,A, B are respectively n� n,
n�m matrices and the control function u 2 Rm ; CðtÞ
and H(t) are n� n continuous matrix valued functions;
f and g are respectively continuous and continuously
differentiable n-vector functions.

The solution of (4) is given by (Balachandran and
Kokila, 2013a)

xðtÞ ¼ Z�ðtÞx0 þ

Z t

0

ðt� sÞ��1Z�,�ðt� sÞ½BuðsÞ

þ f ðs, xðsÞ, CD�xðsÞ, uðsÞÞ�dsþ
1

�ð1� �Þ

�

Z t

0

Z s

0

ðt� sÞ��1ðs� �Þ��Z�,�ðt� sÞ g0ð�Þd�ds

ð5Þ

Now we prove the main result of the paper.

Theorem 3.1. Suppose that the following conditions
hold.

(i) The symmetric matrix G(0, t1) is nonsingular for
some t1> 0.

(ii) There exists a continuous nondecreasing function
! : Rþ ! R

þ with !(r)< r such that

j f ðt,x, y, uÞ � f ðt, x, z, uÞj5!ðj y� zjÞ;

8 ðt, x, y, uÞ 2 J� R2n � Rm

(iii) limjxj!1
f ðt, x, y, uÞ
jxj ¼ 0. Then the system (4) is con-

trollable on J.

Proof. Define the nonlinear transformation

T : CmðJÞ � C�nðJÞ ! CmðJÞ � C�nðJÞ

by

Tðu, xÞðtÞ ¼ ðT1 ðu, xÞðtÞ,T2 ðu,xÞðtÞÞ

where the pair of operators T1 and T2 is defined as

T1ðu, xÞðtÞ ¼ B
Z
�,�ðt1 � tÞG�1
�
x1 � Z�ðt1Þx0

�

Z t1

0

ðt1 � sÞ��1Z�,�ðt1 � sÞf ðs, xðsÞ,

CD�xðsÞ, uðsÞÞds

�
1

�ð1� �Þ

Z t1

0

Z s

0

ðt1 � sÞ��1ðs� �Þ��

� Z�,�ðt1 � sÞ g0ð�Þd�ds

�

T2ðu, xÞðtÞ ¼ Z�ðtÞx0 þ

Z t

0

ðt� sÞ��1Z�,�ðt� sÞ

� BT1ðu,xÞðsÞdsþ

Z t

0

ðt� sÞ��1Z�,�ðt� sÞ

� f ðs, xðsÞ, CD�xðsÞ,T1ðu, xÞðsÞÞds

þ
1

�ð1� �Þ

Z t

0

Z s

0

ðt� sÞ��1ðs� �Þ��

� Z�,�ðt� sÞ g0ð�Þd�ds

Since all of the functions involved in the definition of
the operator T are continuous, T is continuous.
�0 ¼ ðu0, x0Þ 2 CmðJÞ � C�nðJÞ and � ¼ ðu, xÞ 2 ½CmðJÞ �
C�nðJÞ�nð0, 0Þ.

Then the equation �0¼ �� lT(�), where l 2 [0, 1],
can be written equivalently as

u ¼ u0 þ lT1ðu, xÞ ð6Þ

x ¼ x0 þ lT2ðu, xÞ ð7Þ
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The condition (iii) says that, for any e> 0, there exists
R> 0 such that if jxj>R then jf(t, x, y, u)j< ejxj.
Then (6) gives

uk k � ju0j þ k1 þ a1a
2
2a3	t

�
1�
�1jxj ð8Þ

and from (7), by applying Gronwall’s inequality, we
have

xk k � ½jx0j þ a4x0 þ a1a2t
�
1�
�1ðk1 þ a1a

2
2a3	jxjt

�
1�
�1

þ a2a5�ð�Þt
�
1Þ� expðt

�
1�
�1a2	Þ ð9Þ

where

a1 ¼ Bk k; a2 ¼ sup Z�,�ðt1 � sÞ
�� ��

a3 ¼ G�1ð0, t1Þ
�� ��; a4 ¼ Z�ðt1Þ

�� ��
a5 ¼ sup g0ðtÞ

�� ��; a6 ¼ jx0 � gð0Þj

a7 ¼ sup gðtÞ
�� ��; a8 ¼ sup kCD�gðtÞk

k1 ¼ a1a2a3 jx1j þ a4x0 þ a2a5�ð�Þt1½ �

Note that

CD� T2ðu, xÞðtÞ �

Z t

0

Cðt� sÞT2ðu, xÞðsÞds� gðtÞ

� �

¼ AT2ðu, xÞðtÞ þ

Z t

0

Hðt� sÞT2ðu, xÞðsÞds

þ BT1ðu, xÞðtÞ þ f ðt, xðtÞ, CD�xðtÞ,T1ðu, xÞðtÞÞ

Applying Gronwall’s inequality, we have

T2ðu, xÞðtÞ
�� ��
� a6 þ a7 þ

a1 T1ðu, xÞðtÞ
�� ��t�1

�ð�þ 1Þ
þ

	jxjt�1
�ð�þ 1Þ

� �
expðA0Þ,

ð10Þ

where

A0 ¼

Z t1

0

				 ðt1 � sÞ��1A

�ð�Þ
þ Cðt1 � sÞ

þ
1

�ð�þ 1Þ

Z t1

0

ðt1 � sÞ�Hð�� sÞd�

				ds
Taking the Caputo derivative with respect to t, we
obtain, from (7),

CD�xðtÞ ¼C D�x0ðtÞ þ lCD�ðT2ðu, xÞðtÞÞ

and using Leibnitz’s rule gives

CD�xðtÞ
		 		 � CD�x0

		 		þ a T2ðu, xÞðtÞ
�� ��þ a1 T1ðu, xÞðtÞ

�� ��
þ 	jxj þ a7

where

a ¼ Ak k þ
sup _CðtÞ

�� ��t2��1

�ð3� �Þ
þ

Cð0Þ
		 		t1��1

�ð2� �Þ
þ sup HðtÞ

�� ��t1
ð11Þ

Thus, from (9), we have

CD�xðtÞ
			 			� jCD�x0jþk2þjxj

�
a21a

2
2a3	t

�
1�
�1ðat�1 expðA0Þ

þ 1Þþ
a	jxjt�1 expðA0Þ

�ð�þ 1Þ
þ 	

�

where

k2 ¼ k1 a1
at�1 expðA0Þ

�ð�þ 1Þ
þ 1


 �
þ aða6þ a7ÞexpðA0Þþ a8

� �

From (8), (9) and (11), we have respectively

uk k � a1a
2
2a3	jxjt

�
1�
�1 � ju0j þ k1

xk k½expð�t�1�
�1a2	Þ � a21a

3
2a3	t

2�
1 �
�2� � k3 þ jx

0j

where

k3 ¼ a4x0 þ a1a2t
�
1�
�1k1 þ a2a5�ð�Þt1

and

CD�xðtÞ
		 		� jxj½a21a22a3	t�1��1ðat�1 expðA0Þ þ 1Þ

þ
1

�ð�þ 1Þ
a	t�1 expðA0Þ þ 	� � k2 þ j

CD�x0j

Taking the sum of all of the above quantities, we have

uk k � k xk k þ CD�xðtÞ
		 		

� ju0j þ jx0j þ jCD�x0j þ k1 þ k2 þ k3

where

k ¼ a1a
2
2	t

�
1�
�1 � expð�a2	t

�
1�
�1Þ þ a21a

2
2a3	t

�
1�
�1

ðat�1 expðA0Þ þ 1Þ þ a21a
3
2a3	t

2�
1 �
�2 þ 	�

Then, for appropriate positive constants, k4, k5 and k6,
we can write

uk k � ½	k4 � expð�	k5Þ� xk k þ CD�xðtÞ
�� ��

� ju0j þ jx0j þ jCD�x0j þ k6
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Now we divide by uk k þ xk k þ CD�xðtÞ
		 		 and by the

arbitrariness of e, we get the existence of a sufficiently
large ball S � CmðJÞ � C�nðJÞ such that

�� lTð�Þ4 0 for � ¼ ðu, xÞ 2 @S

In the next step we want to show that T is a conden-
sing map. To this aim, we note that T1 : Cm(J)! Cm(J)
is a compact operator(from the Ascoli–Arzela theorem)
and then, if E is a bounded set, �(T1(E))¼ 0. Then it
will be enough to show that T2 is a condensing opera-
tor. To do this, we use the modulus of continuity argu-
ment and the fact that

�1ðT2ðEÞÞ ¼ �ð
CD�T2ðEÞÞ ¼

1

2
�0ð

CD�T2ðEÞÞ

We consider the modulus of continuity of
CD�T2(u, x)(.):

jCD�T2ð½u,x�ðtÞÞ �
CD�T2ð½u, x�ðsÞÞj

� jAT2ð½u, x�ÞðtÞ � AT2ð½u, x�ÞðsÞj þ jBT1ð½u, x�ÞðtÞ

� BT1ð½u,x�ÞðsÞj þ

				
Z t

0

Hðt� sÞT2ð½u, x�ð�ÞÞd�

�

Z s

0

Hðs� �ÞT2ð½u, x�ð�ÞÞd�

				þ j f ðt, xðtÞ,
CD�xðtÞ, uðtÞÞ � f ðs,xðsÞ, CD�xðsÞ, uðsÞÞj

þ jCD�gðtÞ �CD�gðsÞj þ

				 1

�ð1� �Þ

Z t

0

ðt� sÞ��

�

Z s

0

_Cðs� �ÞT2½ðu; xÞ�ð�Þ d� ds�
1

�ð1� �Þ

�

Z s

0

ðs� �Þ��
Z �

0

_Cð� � 
ÞT2½ðu; xÞ�ð
Þd
 d�

				
þ jCð0ÞT2½ðu; xÞ�ðtÞ � Cð0ÞT2½ðu; xÞ�ðsÞj ð12Þ

For the first and last three terms of the right-hand side
of (12), we give the upper estimate as �0(jt� sj); and for
fourth term !ðjCD�xðtÞ � CD�xðsÞjÞ þ �1ðjt� sjÞ, with
lim h!0�i(h)¼ 0. Hence,

�ðCD�T2ð½u, x�ðtÞÞ, hÞ � !ð�ð
CD�E, hÞÞ þ �ðhÞ

where �¼ �0þ �1. Therefore, by Lemma 2.1, we get
�0(

CD�T2(E))<�0(
CD�E). Hence, from

2�ðT2ðEÞÞ ¼ 2�ðCD�T2ðEÞÞ ¼ �0ð
CD�T2ðEÞÞ

5 �0ð
CD�EÞ ¼ 2�ðCD�EÞ ¼ 2�1ðEÞ

it follows that �1(T(E))<�1(E). Then the existence of
the fixed point for operator T follows from Lemma 2.2;

that is, there exist functions u 2 Cm(J) and x 2 C�nðJÞ
such that T(u, x)¼ (u, x) that is

uðtÞ ¼ T1ðu, xÞðtÞ, xðtÞ ¼ T2ðu, xÞðtÞ

These functions are the required solutions. Further it is
easy to verify that the function x(.) given above of the
system (4) satisfies x(t1)¼ x1 for every x(0) 2Rn. Hence,
the system (4) is controllable.

4. Example

Consider the nonlinear neutral fractional Volterra inte-
grodifferential system involving the fractional deriva-
tive (4) with �¼ 1/2

xðtÞ ¼

x1ðtÞ

x2ðtÞ

0
B@

1
CA, A¼

1 1

�2 1


 �
, B¼

1 0

1 1


 �
,

gðtÞ ¼
0

tsin t


 �

fðt,xðtÞ,CD1=2xðtÞ,uðtÞÞ¼

0

x2ffiffiffiffiffiffiffiffiffiffiffiffi
1þu2
p þ tan�1½CD1=2xðtÞ�

0
BB@

1
CCA

and

CðtÞ ¼
1ffiffiffi
�
p

4t�1=2 �t�1=2

2t�1=2 3t�1=2

 !
, HðtÞ ¼

1ffiffiffi
�
p

t�1=2 0

0 t�1=2

 !

are defined and continuous on (0, t1].
The initial condition is given by xð0Þ ¼ 0

1

 �
:

For the linear part of the above system the solution
is given by

xðtÞ ¼ Z1=2ðtÞxð0Þ ð13Þ

where

Z1=2ðtÞ ¼

P1ðtÞ 0

0 P2ðtÞ

0
B@

1
CA

with

P1ðtÞ ¼
5þ

ffiffiffiffiffi
29
p

2
ffiffiffiffiffi
29
p E1=2ðð5þ

ffiffiffiffiffi
29
p
Þt1=2Þ

�
5�

ffiffiffiffiffi
29
p

2
ffiffiffiffiffi
29
p E1=2ðð5�

ffiffiffiffiffi
29
p
Þt1=2Þ
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P2ðtÞ ¼
1þ

ffiffiffi
2
p

2
ffiffiffi
2
p E1=2ðð1þ

ffiffiffi
2
p
Þt1=2Þ

�
1�

ffiffiffi
2
p

2
ffiffiffi
2
p E1=2ðð1�

ffiffiffi
2
p
Þt1=2Þ

where Z1/2(t) is the resolvent matrix and satisfies the
conditions (a), (b) and (c) for �¼ 1/2.

The solution of the nonlinear system takes the fol-
lowing form

xðtÞ ¼ Z1=2ðtÞx0 þ

Z t

0

ðt� sÞ�1=2Z1=2,1=2ðt� sÞ

� ½BuðsÞ þ f ðs, xðsÞ, CD1=2xðsÞ, uðsÞÞ�ds

þ
1

�ð1=2Þ

Z t

0

Z s

0

ðt� sÞ
1
2�1ðs� �Þ�1=2

� Z1=2,1=2ðt� sÞ g0ð�Þd�ds ð14Þ

where

Z1=2,1=2ðtÞ ¼

Q1ðtÞ 0

0 Q2ðtÞ

0
B@

1
CA

with

Q1ðtÞ ¼
5þ

ffiffiffiffiffi
29
p

2
ffiffiffiffiffi
29
p E1=2,1=2ðð5þ

ffiffiffiffiffi
29
p
Þt1=2Þ

�

�
5�

ffiffiffiffiffi
29
p

2
ffiffiffiffiffi
29
p E1=2,1=2ðð5�

ffiffiffiffiffi
29
p
Þt1=2Þ

�

Q2ðtÞ ¼
1þ

ffiffiffi
2
p

2
ffiffiffi
2
p E1=2,1=2ðð1þ

ffiffiffi
2
p
Þt1=2Þ

"

�
1�

ffiffiffi
2
p

2
ffiffiffi
2
p E1=2,1=2ðð1�

ffiffiffi
2
p
Þt1=2Þ

#

By simple matrix calculation, we see that the controll-
ability Grammian matrix

G¼

Z t1

0

ðt1� sÞ�1=2½Z1=2,1=2ðt1� sÞB�½Z1=2,1=2ðt1� sÞB�
ds

¼

Z t1

0

ðt1� sÞ�1=2
Q2

1 Q1Q2

Q2Q2 2Q2
2

 !
ds

is positive definite for any t1> 0. Further

j f ðt, x, y, uÞ � f ðt, x, �y, uÞj

¼ tan�1 y� tan�1 �yj

5 tan�1 j y� �yj, if y 6¼ �y

and

lim
jxj!1

j f ðt, x, y, uÞj

jxj
¼ 0

So the hypotheses of Theorem 3.1. are satisfied. Hence,
the system is controllable.
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Article

Anisotropic fractional diffusion tensor
imaging

Mark M Meerschaert1, Richard L Magin2 and Allen Q Ye2

Abstract

Traditional diffusion tensor imaging (DTI) maps brain structure by fitting a diffusion model to the magnitude of the

electrical signal acquired in magnetic resonance imaging (MRI). Fractional DTI employs anomalous diffusion models to

obtain a better fit to real MRI data, which can exhibit anomalous diffusion in both time and space. In this paper, we

describe the challenge of developing and employing anisotropic fractional diffusion models for DTI. Since anisotropy is

clearly present in the three-dimensional MRI signal response, such models hold great promise for improving brain

imaging. We then propose some candidate models, based on stochastic theory.

Keywords

Diffusion tensor imaging, anomalous diffusion, fractional calculus, anisotropy, magnetic resonance imaging

1. Introduction

The structural complexity of the human brain is
manifest at each level of functional organization:
synapses, axons, neurons, cortical layers, fiber
tracts, and cerebral convolutions (gyri and sulci)
(Schaltenbrand and Wahren, 1998). Magnetic reson-
ance imaging (MRI) in general, and diffusion tensor
imaging (DTI) in particular, exhibit contrast that
reflects tissue heterogeneity and anisotropy in both
the white and the gray matter (Mori, 2006). The
overall goal of these imaging modalities is to provide
spatial maps of structural features that correspond
to the specific neural networks that provide the
basis for sensory awareness, memory, cognition and
coordinated movement (Le Bihan, 1995). Disruption
of these neural pathways is a hallmark of trauma,
stroke, tumors and degenerative disease. Although
MRI and DTI are useful clinical tools for diagnosis
and treatment monitoring, their typical voxel reso-
lution (1mm3) is orders of magnitude above that
of a single cell (10 mm3) (Johansen-Berg and
Behrens, 2009). Therefore there is a need to probe
sub-voxel structure to improve both the sensitivity
and the specificity of diagnosis. Since water move-
ment within the voxel leads to MR signal attenu-
ation that reflects collisions with molecules,
membranes, and axonal fibers (Haacke et al., 1999)
we anticipate that stochastic models of diffusion

(isotropic, anisotropic, restricted, hindered,
Gaussian, nonGaussian) can be used to encode
sub-millimeter structure.

2. Fractional DTI

The connection between diffusion and magnetic reson-
ance for water protons is described by the Bloch–
Torrey equation (Torrey, 1956; Haacke et al., 1999;
Callaghan, 2011). Solving the Bloch–Torrey equation
for an anisotropic material, such as brain white
matter (WM), provides the basis for DTI (Le Bihan,
1995). In standard DTI, a pair of trapezoidal gradient
pulses is added to the MR imaging sequence (Mori,
2006). The acquired diffusion-weighted (DW) signal S
decays in a manner dependent upon the diffusion gra-
dient strength, G, gradient duration, �, and the time
interval, �, between gradient pulses. The resultant
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decay can be modeled (Haacke et al., 1999) by the
equation

S ¼ S0 expð�ð�G�Þ
2g � Dg � ð�� �=3ÞÞ ð2:1Þ

where S0 is the initial signal intensity, � is the gyromag-
netic ratio (42.57MHz/T for water protons), D is a
symmetric positive-definite matrix that defines the dif-
fusion tensor, G¼Gg where g is a unit vector that
points in the direction of the applied magnetic field
gradient G. The eigenvector corresponding to the lar-
gest eigenvalue of the matrix D points in the direction
of WM fibers, since the water is maximally dispersed in
this direction. A single parameter b describes the overall
diffusion sensitivity of a sequence, and for a pair of
identical rectangular gradient pulses (height G and
width �) we find b¼ (�G�)2(�� �/3) (Haacke et al.,
1999). Then (2.1) reduces to

Sðb, gÞ ¼ S0 expð�bg �DgÞ ð2:2Þ

If the gradient pulses are of short duration (Callaghan,
2011), one can view (2.2) as the Fourier transform of
the solution to a traditional diffusion equation, and this
observation provides the essential link between
MRI and diffusion: let p(x, t) be the probability density
of a diffusing particle, which solves the diffusion
equation

@tpðx, tÞ ¼ r �Drpðx, tÞ ð2:3Þ

with a point source initial condition p(x, 0)¼ �(x).
Given a suitable function f(x), define its Fourier trans-
form f̂ ðkÞ ¼

R
e�ik�xf ðxÞdx, and recall that ðikÞf̂ ðkÞ is

the Fourier transform of rf(x) (Meerschaert and
Sikorskii, 2012, p. 150). Take Fourier transforms
in (2.3) to get the ordinary differential equation
@tp̂ðk, tÞ ¼ ðikÞ �DðikÞp̂ðk, tÞ with initial condition p̂(k,
0)� 1. Obviously the solution to this simple differential
equation is p̂(k, t)¼ exp(�tk �Dk), which is the same
form as (2.2) with b¼ tkkk2 and g¼ k/kkk.

Since D is symmetric and positive definite, there is an
orthonormal basis of eigenvectors v1, . . . , vd with cor-
responding eigenvalues ai such that Dvi¼ aivi for
1� i� d. For any k2R

d we can write k¼
Pd

j¼1 kjvj
where kj¼ k � vj. Then vi �Dvj¼ 0 if j 6¼ i and vi �Dvi¼
ai. It follows easily that

p̂ðk, tÞ ¼ exp �t
Xd
i¼1

aik
2
i

" #
ð2:4Þ

The level sets of the function k� p̂ðk, tÞ are ellipsoids
a1k

2
1 þ � � � þ adk

2
d ¼ C whose principal axes are the

eigenvectors v1, . . . , vd. The level sets are widest in the

direction of the eigenvector with the smallest eigen-
value. Figure 1 shows the level sets of this function at
time t¼ 1 in the case where

D ¼
1=2 0

0 2

� �
ð2:5Þ

in d¼ 2 dimensions. In this case, the eigenvectors of D
are the coordinate axes, which give the major and
minor axes of the elliptical level sets. As t increases,
the level sets spread out at the rate t1/2, which is the
hallmark of traditional diffusion. This spreading rate
can easily be verified by noting that p̂(k, t)¼ (t1/2k, 1).
This solution exhibits mild isotropy, in which the solu-
tion spreading rate is radially symmetric, but the level
sets are not. For complete details, see Meerschaert and
Sikorskii (2012, Section 6.1).

In many applications (Metzler and Klafter, 2000,
2004; Mainardi, 2010; Meerschaert and Sikorskii,
2012), a diffusing front spreads at a different rate
than the t1/2 predicted by the traditional diffusion equa-
tion. This can be captured by introducing fractional
derivatives into the diffusion model. For simplicity, let
us focus on the isotropic diffusion model where D¼DI

for some positive constant D, and where I is the d� d
identity matrix. Then the diffusion equation (2.3)
reduces to @tp(x, t)¼DDp(x, t), and its point source
solution has Fourier transform (k, t)¼ exp(�Dtkkk2)
where kkk2¼ k � k. The level sets of the solution p(x, t)
are circles in two dimensions, or spheres in three
dimensions.

The fractional Laplacian is an isotropic space-
fractional derivative, defined so that ��/2f(x) has
Fourier transform �kkk�f̂(k) with 0<�< 2.

k1

k2

−1

0

1

−1 0 1

Figure 1. Level sets of the Fourier solution (2.4) to the trad-

itional diffusion equation in d¼ 2 dimensions with diffusion

tensor (2.5) at b¼ 1.
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This reduces to the traditional Laplacian when �¼ 2.
The isotropic space-fractional diffusion equation

@tpðx, tÞ ¼ D��=2pðx, tÞ ð2:6Þ

has Fourier transform @tp̂(k, t)¼�Dkkk
�(k, t), whose

point source solution is p̂(k, t)¼ exp(�Dtkkk�). Since
(k, t)¼ p̂(t1/�k, 1), solutions spread like t1/� in this
model, a phenomenon called superdiffusion. This
model is also isotropic, which follows from the fact
that p̂(k, t) only depends on kkk.

3. Fractional Bloch–Torrey equation

The traditional Bloch–Torrey equation

@tS ¼ �ði� x � GÞSþ r �DrS ð3:1Þ

describes magnetization S(x, t) in a time-varying gradi-
ent G(t). Assume a solution S¼S0Ae

�ix �L where S0> 0
is a constant, and A, L are functions of t with

L :¼ �

Z t

0

Gð�Þd�

Substitute the solution into (3.1) to see that

A0

A
S� ðix � �GÞS ¼ �i�ðx � GÞSþ r �DrS

Compute r �DrS¼L �DLS: then it follows that the
solution with A(0)¼ 1 satisfies

AðtÞ ¼ exp �

Z t

0

Lð�Þ �DLð�Þd�

� �

for any t> 0. For a specified signal, it is then straight-
forward to compute the solution to the Bloch–Torrey
equation (3.1). The Stejskal–Tanner pulse sequence
consists of two rectangular functions of length � sepa-
rated by time �, with amplitude G and direction g.
Then one can easily compute the solution (2.1), which
reduces to (2.2) with b¼ (�G�)2(�� �/3).

The simplest space-fractional Bloch–Torrey equation

@tS ¼ �ði�x � GÞSþD0�
�=2S ð3:2Þ

can be solved by a similar method. Assume the solution
S¼S0Ae

�ix�L as before, and compute

A0

A
S ¼ D0�

�=2S

Next compute the fractional Laplacian of the solution
using Fourier transforms. It follows from the Fourier

inversion formula f(x)¼ (2�)�d
R
eik � x(k)dk that the

function f(x)¼ e�ia�x has the Fourier transform f̂(k)¼
(2�)d�(kþ a) using the Dirac delta function. Then
D0�

�/2S is the inverse Fourier transform of
�D0kkk

�Ŝ(k, t), which is evidently �D0kLk
�S. Hence

we have

AðtÞ ¼ exp �D0

Z t

0

kLð�Þk� d�

� �

in this case. For a Stejskal–Tanner pulse sequence, the
solution reduces to

S ¼ S0 exp �D0ð�G�Þ
� ��

�� 1

�þ 1
�

� �� �
ð3:3Þ

where �> 0 is a constant; see Magin et al. (2008) for
more details. If we take D¼D0��D0(�� 1)�/(�þ 1)
and b¼ �G�, this reduces to the stretched exponential
form

S ¼ S0 expð�b
�DÞ ð3:4Þ

where 0<�< 2.

4. The need for anisotropic fractional
DTI models

In MRI experiments, it is often observed (Bennett et al.,
2003; Hall and Barrick, 2008; Ingo et al., 2014) that the
acquired DW signal S follows the stretched exponential
model (3.4) for high b values. In applications to brain
imaging, it is also found that the parameter � varies
with direction: an indication of anisotropy (Hall and
Barrick, 2012). For example, in one experiment (Ingo
et al., 2014), formalin-fixed brains from normal, adult
rats were soaked in Fluorinert to reduce magnetic sus-
ceptibility and imaged ex vivo in a Bruker 750MHz
spectrometer (17.6 T, 89mm bore). A pulsed gradient
stimulated echo diffusion sequence was used with pulse
repetition time of 2 s, echo time of 28ms, in-plane reso-
lution of 190 mm and slice thickness of 1mm. The signal
S was acquired in six different vector directions
g1¼ (0, 0, 1)T, g2¼ (0.89, 0, 0.45)T, g3¼ (0.28, 0.09,
0.45)T, g4¼ (�0.72, �0.53, 0.45)T, g5¼ (0.28, �0.85,
0.45)T, and g6¼ (�0.72, �0.53, 0.45)T with 10 different
b values ranging up to a maximum value of
26,190 s/mm2. In this experiment, � (17.5ms) and �
(3.5ms) were kept constant and G was scaled to
increase with the b value. Under these conditions, the
short-pulse condition ��� holds.

Next, we validate the stretched exponential model
(3.4) using linear regression. Taking logs in the
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model yields ln(S/S0)¼�Db�, and taking logs again
produces

s :¼ lnð� lnðS=S0ÞÞ ¼ lnDþ � ln b ð4:1Þ

Hence, a plot of s versus ln b should produce a straight
line with slope �. Figure 2 shows this plot for each of
the directions g1, . . . , g6 along with the best-fitting
straight line model, found using simple linear regres-
sion. It is apparent from these graphs that the relation
between the acquired signals S and b follows the
stretched exponential model (3.4).

To illustrate the anisotropic nature of DTI, we com-
pare the slopes � from the straight line fit of s versus ln
b for each direction j¼ 1, 2, . . . , 6. The results are sum-
marized in Table 1. It is clear that the power law slope
depends on direction. For example, the slope for direc-
tion 4 (corresponding to direction vector g4) is
�¼ 0.379 �0.023 which is significantly different from
the �¼ 0.294 value in direction 2. To obtain a formal
confidence interval for these � values, one can use the
standard t-interval from linear regression theory. Since
the sample size is n¼ 7, the 95% confidence interval is
�� 2.571 SE where � is the estimate in the first row of

Table 1, SE is the standard error in the second row of
Table 1, and 2.571 is the 97.5th percentile of the stand-
ard t distribution with n� 2¼ 5 degrees of freedom.
For example, we are 95% confident that the correct �
value for direction 1 lies in the interval (0.300, 0.336).

Previous work has shown � to be a biomarker that
reflects tissue heterogeneity (Bennett et al., 2003;
Ozarslan and Mareci, 2003; Hall and Barrick, 2008;
Magin et al., 2008; Zhou et al., 2010; Palombo et al.,
2011; Ingo et al., 2014; Magin et al., 2014). In particu-
lar, the stretched exponential parameter � exhibits a
lower value in more tortuous porous materials, and
more heterogeneous tissue. Since the heterogeneity par-
ameter � also varies with direction, it would be advan-
tageous to include anisotropy in the fractional DTI
model, to capture this effect.

Figure 2. Plot of s versus ln b in six different directions, to validate the stretched exponential model (4.1).

Table 1. Best-fit � values via linear regression on the data in

Figure 2 for six different directions, demonstrating anisotropy.

Direction 1 2 3 4 5 6

� 0.318 0.294 0.303 0.379 0.305 0.362

Standard error 0.007 0.014 0.022 0.023 0.018 0.018
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5. Anisotropic fractional diffusion
models for DTI

In the previous section, we demonstrated that the
anisotropy parameter � in a DTI model can vary with
direction. An open challenge in MRI theory is to
develop a suitable anisotropic model for fractional dif-
fusion that captures this anisotropy, and can be fit to
data acquired within the constraints of a clinical MR
scan. The scan generates multidimensional data that
must be quickly and accurately presented to the radi-
ologist for analysis. Fractional order models are
attractive because they capture tissue complexity in a
small set of parameters. Within the continuous time
random walk (CTRW) paradigm, for example, the
random motion of water is hindered or restricted by
tissue heterogeneity that alters the waiting times and
jump increments in a manner simply expressed by
power laws (Metzler and Klafter, 2000, 2004;
Meerschaert and Sikorskii, 2012). In the remainder of
this paper, we survey existing anisotropic models for
fractional DTI, and also discuss some potential new
models.

5.1. Anisotropic fractional diffusion

A recent paper of Hanyga and Magin (2014) proposed
a new space-fractional diffusion model that seems well-
suited for applications to DTI. The model is

@tpðx, tÞ ¼ Qpðx, tÞ ð5:1Þ

where the anisotropic fractional derivative operator Q
is defined in terms of Fourier transforms. Define

Q̂ðkÞ ¼ �

Z
y2�

jy � kj�ðyÞm ðdyÞ ð5:2Þ

where �¼ {y2R
d : kyk¼ 1} is the unit sphere in d-

dimensional Euclidean space, m(dy) is a finite Borel
measure on the sphere, and �(y) is a symmetric function
�(y)¼ �(�y) on the sphere that takes values in the
interval (0, 2). Then one definesQf(x) to be the function
with Fourier transform Q̂(k)f̂(k). Hanyga and Magin
(2014) continue to prove that solutions to (5.1)
remain nonnegative for a nonnegative initial condition
p(x, 0)¼ f(x)	 0. Next we provide an alternative proof
of this fact, by showing that the solutions to (5.1) are
the probability densities of a Lévy process (Sato, 1999;
Meerschaert and Sikorskii, 2012, Section 4.3).

Proposition 5.1. There exists a Lévy process X(t) that
satisfies

p̂ðk, tÞ ¼ E½e�ik�XðtÞ
 ¼ etQ̂ðkÞ ð5:3Þ

for all k2R
d and all t	 0, for any symmetric index

function �: �! (0, 2) and any finite Borel measure
m(dy) on the unit sphere.

Proof. Any Lévy process {X(t) : t	 0} is determined by
the distribution of X:¼X(1), which can be specified
using the Lévy representation (Meerschaert and
Scheffler, 2001, Theorem 3.1.11): a random vector X

on R
d is infinitely divisible if and only if we can write

E[e�ik �X]¼ exp(Q̂(k)), where

Q̂ðkÞ ¼ �ia � kþ
1

2
k � Ak

�

Z
x 6¼0

eik�x � 1�
ik � x

1þ kxk2

� �
� ðdxÞ ð5:4Þ

for a2R
d, A a nonnegative definite d� d matrix, and �

a �-finite Borel measure on R
d\{0} such that

Z
x 6¼0

minf1, kxk2g� ðdxÞ51 ð5:5Þ

The triple [a,A,�] is unique. Next we note that, in the
one-dimensional case d¼ 1, there exists an infinitely div-
isible random variable X such that E[e�ikX]¼ exp(�jkj�)
for any 0<�< 2, and in this case, it follows from
Meerschaert and Scheffler (2001, Lemma 7.3.10) (for
0<�< 1), Meerschaert and Scheffler (2001, Lemma
7.3.11) (for 1<�< 2), and Meerschaert and Scheffler
(2001, Lemma 7.3.12) (for �¼ 1) that this random vari-
able has Lévy representation [0, 0, ��] where

��ðdxÞ ¼
C�
2
�jxj���1dx ð5:6Þ

with

C� ¼
1� �

�ð2� �Þ cosð��=2Þ
for 05�5 1 or 15�5 2

ð5:7Þ

and C1¼ 2/�. Then we have

jkj� ¼

Z
x 6¼0

eikx � 1�
ikx

1þ x2

� �
�� ðdxÞ ð5:8Þ

for each 0<�< 2. Next, define an infinitely divisible
random vector X on R

d (e.g. let d¼ 3) by specifying
its Lévy representation [0, 0, �] where x¼ ry in polar
coordinates r> 0 and kyk¼ 1, and

�ðdxÞ ¼ �ðdr, dyÞ ¼ C�ðyÞ�ðyÞr
��ðyÞ�1dr �mðdyÞ ð5:9Þ

where m(dy)¼ [m(dy)þm(�dy)]/2 is the symmetrized
version of the measure m(dy). Then the random
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vector X has Lévy representation E[e�ik �X]¼ exp(Q̂(k)),
where

�Q̂ðkÞ ¼

Z
y2�

Z 1
0

eirk�y � 1�
irk � y

1þ r2ðk � yÞ2

� �

� C�ðyÞ�ðyÞr
��ðyÞ�1 dr �mðdyÞ

¼

Z
y2�

Z 1
0

eirk�y � 1�
irk � y

1þ r2ðk � yÞ2

� �

�
C�ðyÞ

2
�ðyÞr��ðyÞ�1 dr mðdyÞ

þ

Z
y2�

Z 1
0

eirk�y � 1�
irk � y

1þ r2ðk � yÞ2

� �

�
C�ðyÞ

2
�ðyÞr��ðyÞ�1 dr mð�dyÞ

¼

Z
y2�

Z 1
0

eirk�y � 1�
irk � y

1þ r2ðk � yÞ2

� �

�
C�ðyÞ
2

�ðyÞr��ðyÞ�1 dr mðdyÞ

þ

Z
y2�

Z 1
0

e�irk�y � 1�
�irk � y

1þ r2ðk � yÞ2

� �

�
C�ðyÞ

2
�ðyÞr��ðyÞ�1 dr mðdyÞ

¼

Z
y2�

Z 1
0

eirk�y � 1�
irk � y

1þ r2ðk � yÞ2

� �

�
C�ðyÞ

2
�ðyÞr��ðyÞ�1 dr mðdyÞ

þ

Z
y2�

Z 0

�1

eirk�y � 1�
irk � y

1þ r2ðk � yÞ2

� �

�
C�ðyÞ

2
�ðyÞjrj��ðyÞ�1 dr mðdyÞ

¼

Z
y2�

Z
r6¼0

eirðk�yÞ � 1�
irðk � yÞ

1þ r2

� �

�
C�ðyÞ

2
�ðyÞjrj��ðyÞ�1 dr mðdyÞ

þ

Z
y2�

Z
r6¼0

irðk � yÞ

1þ r2
�

irðk � yÞ

1þ r2ðk � yÞ2

� �

�
C�ðyÞ
2

�ðyÞjrj��ðyÞ�1 dr mðdyÞ

¼

Z
y2�

jk � yj�ðyÞ mðdyÞ

ð5:10Þ

in view of (5.8), since the integral in the next to last line
equals zero by symmetry. This shows that (5.3) holds.
Since C� is a bounded continuous function on the inter-
val 0<�< 2, it follows easily that (5.5) holds, so (5.9) is
a Lévy measure. «

We say that a random vector X is full if it is not
supported on a lower-dimensional hyperplane, that is,

if there is no unit vector y2� such that X � y¼ 0 with
probability one.

Proposition 5.2. If
R
y2�jy �wj

�(y)m(dy)> 0 for every
w2�, and �(y)	�0> 0 for all y2�, then the infinitely
divisible random variable X(t) in Proposition 5.1 is full,
and has a density p(x, t) with respect to Lebesgue meas-
ure for any t> 0.

Proof. Define p̂ðk; tÞ ¼ etQ̂ðkÞ for all k2R
d and all t	 0.

The Fourier inversion theorem (Meerschaert and
Scheffler, 2001, Theorem 1.3.7) implies that

pðx, tÞ ¼ ð2�Þ�d
Z

eik�xp̂ðk, tÞ dk ð5:11Þ

is the function with Fourier transform p̂(k, t), so long as
the integral

R
jp̂(k, t)jdk<1. Since Q̂(k)� 0 for any

k2R
d, it follows that 0� p̂(k, t)� 1 for all k2R

d

and all t	 0. Hence it suffices to check thatR
kkk	 1jp̂(k, t)jdk<1. Adopt the polar coordinates

k¼ 	w where 	> 0 and kwk¼ 1. Since �(y)	�0> 0
for all y2�, we have

�Q̂ðkÞ ¼

Z
y2�

	�ðyÞjy �wj�ðyÞmðdyÞ 	 	�0
Z
y2�

jy �wj�ðyÞmðdyÞ

for all kkk	 1. It follows from the Dominated
Convergence Theorem (Rudin, 1976, Theorem 11.32)
that g(w) :¼

R
y2�jy �wj

�(y)m(dy) is a continuous func-
tion on the compact set �, and since g(w)> 0 by
assumption, it follows that g(w)	 g0> 0 for all w2�.
Then �Q̂ðkÞ 	 g0	

�0 for all kkk	 1. Then we have

Z
kkk	1

jp̂ðk, tÞj dk �

Z
w2�

Z 1
0

e�g0	
�0
d	 mðdwÞ � C0mð�Þ

where C0 ¼
R1
0 e�g0	

�0 d	51. This shows that (5.11)
holds. If X(t) were not full, then we would have
X(t) �w¼ 0 for some unit vector w, and then we
would have E(e�iw �X(t))¼ etQ̂(w)

¼ 1, hence Q̂(w)¼ 0.
But this contradicts �Q̂(k)	 g0	

�0, and so X(t) is full
for every t> 0. «

Remark 5.3. Since p(x, t) is a probability density for
any t> 0, it follows that p(x, t)	 0 for all x2R

d and
all t> 0. With some additional work, it should be pos-
sible to show that p(x, t)> 0 for all x2R

d and all t> 0.

Remark 5.4. It should not be hard to extend these
arguments to the asymmetric case

Q̂ðkÞ ¼

Z
y2�

ðy � ikÞ�ðyÞmðdyÞ ð5:12Þ
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which reduces to the case (5.2) if the measure m(dy) is
symmetric, that is, m(dy)¼m(�dy). One just has to be a
bit careful about the centering constants.

Remark 5.5. A variety of stable-like processes have been
considered in the literature, but the process constructed
in Proposition 5.1 seems new. Bass (1988) considers a
stable-like process in one dimension with jump intensity

�ðx, dyÞ ¼
C�ðxÞ

2
�j yj��ðxÞ�1dy

which behaves locally like an �-stable process whose
index varies in space. Bass and Tang (2009) consider
a d-dimensional stable-like process with jump
intensity �(x, dy)¼A(x,y)kyk���ddy where A(x,y)> 0
is bounded away from zero and infinity. That model
exhibits mild anisotropy, as opposed to the strong
anisotropy in the Hanyga model. It would certainly
be interesting to explore the mathematical properties
of the Lévy process in Proposition 5.1 in more detail.

5.2. Anisotropic fractional Bloch–Torrey equation

Here we propose a new anisotropic fractional Bloch–
Torrey equation

@tS ¼ �ði�x � GÞSþD0QS ð5:13Þ

which can be solved by the method introduced
in Section 3. Assume the same solution form
S¼S0Ae

�ix �L as before, and compute

A0

A
S ¼ D0Q

Next compute Q̂S using Fourier transforms. Recall that
the function f(x)¼ e�ia � x has Fourier transform f̂ ðkÞ ¼
(2�)d�(kþ a). Then note that D0Q̂S has Fourier
transform

D0Q̂ðkÞŜðk, tÞ ¼ �D0

Z
y2�

jy � kj�ðyÞmðdyÞ Ŝðk, tÞ

Inverting as in Section 3, it follows that

AðtÞ ¼ exp �D0

Z t

0

Z
y2�

jy � Lð�Þj�ðyÞmðdyÞ d�

� �

in this case. For a Stejskal–Tanner pulse sequence, the
solution reduces to

S ¼ S0 exp �D0

Z
y2�

j�G� � yj�ðyÞ ��
�ðyÞ � 1

�ðyÞ þ 1
�

� �
mðdyÞ

�

ð5:14Þ

If the mixing measure m(dy) is concentrated on d point
masses on an arbitrary set of coordinate axes v1, . . . , vd
which need not be orthogonal, this reduces to a model
recently proposed and tested by GadElkarim et al.
(2013). That model has the solution

S ¼ S0 exp �
Xd
j¼1

Dj j�G� � vj j
�j ��

�j � 1

�j þ 1
�

� �" #

ð5:15Þ

where Dj¼D0m(vj), which agrees with GadElkarim
et al. (2013, equation (20)) up to an obvious change
in notation.

Remark 5.6. In practical applications, an open chal-
lenge is to fit the model (5.14) to MRI data as in
Figure 2. The statistical problem is under-specified,
since there are an infinite number of choices for �(y)
and m(dy)¼M(y)dy that will agree with any finite data
set. One reasonable approach is to fit the simplest func-
tions �(y) and M(y) using spherical harmonics in d¼ 3
dimensions. For example, the data in Figure 2 can be fit
using six spherical harmonics. The resulting functions
�(y) and M(y) will agree exactly with the measured
values of �(y) and the corresponding weights M(y)
obtained from the regression lines in Figure 2, and
smoothly interpolate in between.

6. Time-fractional models for DTI

Here we explore the challenge of developing effective
time-fractional models for DTI. These models can be
useful if the data exhibit a power law decay in S as a
function of b.

Anomalous subdiffusion can be modeled using a
fractional derivative in time. Given a function f(t)
with Laplace transform ~f ðsÞ ¼

R1
0 e�stf ðtÞdt, recall

that s~f (s)� f(0) is the Laplace transform of the first
derivative f0(s). The Caputo fractional derivative
@t

f(t) is defined for 0<
< 1 as the function with

Laplace transform s
(s)� s
�1f(0), extending the trad-
itional form. Take Fourier and then Laplace trans-
forms in the space-time fractional diffusion equation

@
t pðx, tÞ ¼ D��=2pðx, tÞ ð6:1Þ

with point source initial condition p̂(k, t)� 0 to get
s
 �p(k, s)� s
�1¼�Dkkk� �p(k, s), where �p(k, s) is the
Laplace transform of p̂(k, t). Solve to obtain

�pðk, sÞ ¼
s
�1

s
 þDkkk�
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and then use the fact that ~g(s):¼ s
� 1/(s
þ c) is the
Laplace transform of g(t)¼E
(�ct


), where the
Mittag-Leffler function

E
ðxÞ :¼
X1
n¼0

xn

�ð1þ 
nÞ

for 
> 0 (Mainardi, 2010, p. 223). It follows that
p̂(k, t)¼E
(�t


Dkkk�) is the Fourier transform of the
solution to the isotropic time-fractional diffusion equa-
tion (6.1). Since p̂(k, t)¼ p̂(t
/�k, 1), solutions spread at
the subdiffusive rate t
/2 in this model when �¼ 2. This
model is isotropic, since p̂(k, t) only depends on kkk.
Recalling the asymptotic property

E
ðxÞ �
x�1

�ð1� 
Þ
as x!1 ð6:2Þ

(Mainardi, 2010, p. 215) we can see that p̂(k, t) then
falls off like t�
 for large values of t.

Figure 3 shows a log–log plot of S versus b for the
data from Figure 2, for all six directions. The straight
line behavior in Figure 3 shows that a time-fractional
model is a reasonable alternative to the stretched expo-
nential, since a power law S&Cb�
 also gives a good
fit to the data. This is indicated by a straight line on the
log–log plot with slope �
, since ln S& lnC�
 ln b.

The 
 estimates and standard errors are listed in
Table 2.

Again, it is clear that the data exhibit significant
anisotropy, since the 
 values vary significantly with
direction. For example, the value for direction 1 (cor-
responding to direction vector g1) is 
¼ 0.494� 0.006
which is significantly different from the 
¼ 0.571 value
in direction 2. Since the sample size is n¼ 9, the 95%
confidence interval is 
� 2.365 SE using the 97.5th per-
centile of the standard t distribution with n� 2¼ 7
degrees of freedom. For example, we are 95% confident
that the correct 
 value for direction 1 lies in the inter-
val (0.480, 0.508).

6.1. Time-fractional Hanyga diffusion

The paper of Hanyga and Magin (2014) also proposed
a time-fractional version of their anisotropic fractional
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Figure 3. Plot of ln S versus ln b in six different directions, to validate the power law model S& Cb�
.

Table 2. Best-fit 
 values via linear regression on the data in

Figure 3 for six different directions, demonstrating anisotropy.

Direction 1 2 3 4 5 6


 0.494 0.571 0.599 0.676 0.605 0.661

Standard error 0.006 0.017 0.020 0.014 0.018 0.014
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diffusion model. Define the pseudo-differential operator
Q on the space C0(R

d) of smooth functions with com-
pact support (i.e. f(x)¼ 0 for all kxk	M for some
M> 0) such that Qf(x) has Fourier transform
Q̂(k)f̂(k), where Q̂ðkÞ is defined by (5.2). This operator
can then be extended to larger spaces of functions, or
even distributions (i.e. generalized functions). Since
p̂ðk; tÞ ¼ etQ̂ðkÞ, it is obvious that this Fourier transform
solves the ordinary differential equation

d

dt
p̂ðk, tÞ ¼ Q̂ðkÞp̂ðk, tÞ; p̂ðk, 0Þ � 1 ð6:3Þ

Inverting the Fourier transform shows that the probabil-
ity densities p(x, t) of the stochastic process X(t) from
Proposition 5.1 solve the pseudo-differential equation

@

@t
pðx, tÞ ¼ Qpðx, tÞ; pðx, 0Þ ¼ �ðxÞ ð6:4Þ

The equation (6.4) is also called a Cauchy problem
(Arendt et al., 2001). In fact, if we define the semigroup

Ttf ðxÞ ¼

Z
f ðx� yÞ pðy, tÞ dy

on the space L1(Rd) of integrable functions f: R
d
!R,

then Q̂ is the generator of that semigroup (Baeumer and
Meerschaert, 2001, Theorem 2.2), and Tt f(x) solves the
Cauchy problem

@tpðx, tÞ ¼ Qpðx, tÞ; pðx, 0Þ ¼ f ðxÞ ð6:5Þ

for any f2Dom(Q̂), the domain of the generator. It
follows from Baeumer and Meerschaert (2001,
Proposition 2.1) that this semigroup Tt is strongly con-
tinuous and uniformly bounded, and that we can write
the generator explicitly in the form

Qf ðxÞ ¼

Z
y6¼0

f ðx� yÞ � f ðxÞ þ
y � rf ðxÞ

1þ kyk2

� �
�ðdyÞ

for any f2W2,1(Rd), the Sobolev space of functions in
L1(Rd) whose first and second partial derivatives are all
in L1(Rd).

Given any 0<
< 1, define the Riemann–Liouville
fractional derivative

D


t gðtÞ ¼

1

�ð1� 
Þ

d

dt

Z 1
0

gðt� sÞs�
ds

Then it follows from Baeumer and Meerschaert (2001,
Theorem 3.1) that the function

qðx, tÞ ¼

Z 1
0

pðx, ðt=uÞ
Þ g
ðuÞ du ð6:6Þ

solves the fractional Cauchy problem

D


t qðx, tÞ ¼ Qqðx, tÞ þ

t�


�ð1� 
Þ
f ðxÞ ð6:7Þ

whenever p(x, t) solves the Cauchy problem (6.5). Here
g
(u) is the probability density function of the standard

-stable subordinator, most simply characterized in
terms of its Laplace transform

Z 1
0

e�stg
ðtÞ dt ¼ e�s



ð6:8Þ

for all s> 0, for any 0<
< 1. A simple change of vari-
able in the formula (6.6) reveals that

qðx, tÞ ¼

Z 1
0

pðx, uÞhðu, tÞ du ð6:9Þ

where

hðu, tÞ ¼
t



u�1�1=
g
ðtu

�1=
Þ ð6:10Þ

and this leads to a stochastic solution: let D(t) be the
standard 
-stable subordinator, a strictly increasing
infinitely divisible Lévy process such that D¼D(1)
has the probability density function g
(t). Define the
inverse stable process (first passage time)

Et ¼ inffu4 0 : DðuÞ4 tg ð6:11Þ

and apply Corollary 3.1 from Meerschaert and
Scheffler (2004) to see that the function h(u,t) in
(6.10) is the probability density function of the sto-
chastic process Et for each t> 0. Then it follows by
a standard conditioning argument that the solution
q(x, t) to the fractional Cauchy problem (6.7) with
the point source initial condition f(x)¼ �(x) is also
the probability density function of the time-changed
process X(Et), where Et is independent from X(t).
For a general initial condition f(x) that is a probability
density function, the solution q(x, t) to the fractional
Cauchy problem (6.7) with initial condition f(x) is the
probability density function of X0þX(Et), where the
initial particle location X0 has probability density
function f(x). See Meerschaert and Scheffler (2008,
Theorem 4.1 and Remark 4.6) for more details and
extensions. Freely available R code to compute the
function h(u,t) is available (Meerschaert and
Sikorskii, 2012, Example 5.13) so that the solution
(6.9) to the fractional Cauchy problem can be expli-
citly computed by numerically integrating the formula
(6.9), once the probability density function p(x, t) has
been computed.
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The Caputo and Riemann–Liouville fractional
derivatives are related by

@
t gðtÞ ¼ D


t gðtÞ �

t�


�ð1� 
Þ
gð0Þ

Then clearly one can also write the fractional Cauchy
problem in a more compact form:

@
t qðx, tÞ ¼ Qqðx, tÞ ð6:12Þ

This extends the results of Hanyga (2002) for the case
where 
(y) is a constant.

6.2. Time-fractional Bloch–Torrey equation

Let Q̂ be the generator of some C0 semigroup (Arendt
et al., 2001). The time-fractional Bloch–Torrey equa-
tion has been written in the literature as

@
t S ¼ �ði�x � GÞSþD0QS ð6:13Þ

but this form is not dimensionally correct, since the
time units of @t


S are different to the units of the
term @tS and, more importantly, the reaction term
�(i�x �G)S.

Using an idea from Baeumer et al. (2005), we can
write a dimensionally correct version of the time-frac-
tional Bloch–Torrey equation as

@tS ¼ �ði� x � GÞSþ r �Dr@1�
t S

Equivalently, we can write

@
t S ¼ �i� x � I1�
t ½GS
 þ r �DrS

where I
1�
 is the Riemann–Liouville fractional integral

defined by

I
�gðtÞ :¼

1

�ð�Þ

Z 1
0

gðt� uÞu��1du

An alternative form is proposed by Haynga and
Seredyńska (2012, equation (17)). An open challenge
in the theory of DTI is to derive an analytical solution
for a physically correct time-fractional Bloch–Torrey
equation, suitable for clinical applications.

7. Space-variable fractional DTI models

In clinical practice, the parameters of the (fractional)
Bloch–Torrey equation vary with location. Indeed,
three-dimensional maps of the parameters are an
important outcome of fractional DTI modeling; see
for example GadElkarim et al. (2013). An open

challenge is to develop the mathematical foundations
of space-variable fractional DTI models. One promis-
ing approach is to use the theory of pseudo-differential
operators (Schilling, 1998; Jacob, 2001). We can con-
sider the Cauchy problem

@

@t
pðx, tÞ ¼ Qpðx, tÞ; pðx, 0Þ ¼ p0ðxÞ ð7:1Þ

where the pseudo-differential operator Q is defined in
terms of the equation

Qf ðxÞ ¼

Z
y6¼0

f ðx� yÞ � f ðxÞ þ
y � rf ðxÞ

1þ kyk2

� �
�ðx, dyÞ

Here the Lévy measure is generalized to a jump inten-
sity �(x, dy) that varies in space. Then, for example, one
can consider the Hanyga diffusion model where (5.2) is
replaced by

Q̂ðx,kÞ ¼ �

Z
y2�

jy � kj�ðx, yÞmðx, dyÞ ð7:2Þ

The extension to time-fractional forms follows along
the same lines as in Section 6, using the general
theory of time-fractional Cauchy problems.
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Article

Fractional complex-order model for
HIV infection with drug resistance
during therapy

Carla MA Pinto1,2 and Ana RM Carvalho3

Abstract

We propose a fractional complex-order model for drug resistance in HIV infection. We consider three distinct growth

rates for the CD4þ T helper cells. We simulate the model for different values of the fractional derivative of complex

order D��|�, where �,�2Rþ, and for distinct growth rates. The fractional derivative of complex order is a generalization

of the integer-order derivative where �¼ 1 and �¼ 0. The fractional complex-order system reveals rich dynamics and

variation of the value of the complex-order derivative sheds new light on the modeling of the intracellular delay.

Additionally, fractional patterns are characterized by time responses with faster transients and slower evolutions

towards the steady state.

Keywords

HIV, integer-order model, fractional-order model, drug resistance, growth rates

1. Introduction

The human immunodeficiency virus (HIV) is a retrovirus
that impairs the immune response system. It targets the
CD4þ helper T cells by, for example, the gp120 binding
to CD4 and CXCR4 receptors. This ability of the HIV
virus results in its vast replication during the acute phase.
The next typical stage of the HIV infection is the chronic
phase, where the viral load lowers and approaches a
quasi-steady state. This is mainly due to the balance
between virus production and clearance rates (Wei
et al., 1995). The AIDS phase follows the chronic
phase, where the number of CD4þ T cells declines stead-
ily and the viral load increases (Ho et al., 1995).

The treatment for HIV/AIDS relies on antiretroviral
drugs that suppress the HIV viral load below the limit of
detection. The major five drug classes to fight HIV/
AIDS are the reverse transcriptase inhibitors (RTI),
the protease inhibitors (PI), the fusion/entry inhibitors
(FEI), the integrase inhibitors (II), and the multidrug
inhibitors (MI). The RTI interfere with the reverse tran-
scription, preventing the HIV enzyme reverse transcript-
ase from converting HIV RNA into HIV DNA. The PI
prevent the production of infectious viral particles by the
HIV protease enzyme. The FEI interfere with the ability
of the virus to bond to the cell membrane. The II block
the introduction of virus genetic material into the host
cell. Finally, the MI combine distinct drugs of the above

classes in order to avoid virus strains becoming resistant
to specific antiretroviral drugs. The latter is known as
highly antiretroviral therapy (HAART).

Antiretroviral therapy (ART) (and HAART) may
not be effective for certain patients. There is evidence
of virus persistence during treatment, and of viral load
rebounds shortly after ART interruption (Montaner
et al., 1998; Harrigan et al., 1999). The existent virus
reservoirs, in the form of latently infected CD4þ T cells,
and infected macrophages and dendritic cells, are
responsible for this phenomenon and make the eradi-
cation of the virus extremely complex. The effectiveness
of ART may also be reduced by the appearance of drug
resistance. Drug resistance is associated with high virus
replication and mutation rates, poor adherence to ther-
apy, and poor absorption and pharmacokinetics (Wahl
and Nowak, 2000).
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In the last two or three decades there has been a
major breakthrough in the modeling of HIV epidemics
(Pinto and Carvalho, 2014) and the efficiency of ART
regimens. Ouifki and Witten (2009) proposed a model
for HIV-1 infection that included RTI and three intra-
cellular delays. Authors observed that introducing
delays promoted the appearance of Hopf bifurcations,
translated in the model as periodic orbits around the
endemic equilibrium. These solutions were consistent
with the viral blips seen in HIV patient data. In
Pitchaimani et al. (2013), the authors studied a model
for HIV-1 infection with PI therapy and three delays.
They showed that the delays reduced the number of
infected cells and viruses at the HIV endemic equilib-
rium, thus lowering the critical efficacy of the PI regi-
men. Wang et al. (2014) proposed a model for drug
resistance that includes intracellular delay and a general
form of target cell density, during ART. The authors
obtained sustained oscillations, promoted by variation
of the T cells’ growth rate, in a biologically reasonable
parameter space. This finding suggested the viral strains
rapidly turn over and any successful ART regimen
should take this into consideration.

In this paper, we propose a fractional complex-order
model for drug resistance in HIV infection. We consider
three distinct growth rates of the CD4þ T helper cells.

We numerically simulate the model for different values
of the order of the fractional complex derivative D��|�.
Bearing these ideas in mind, the paper is organized as
follows. In Section 2, we describe the fractional model.

Figure 1. Schematic diagram of model (4).

Table 1. Parameters used in the numerical simulations of

model (4).

Parameter Value Reference

� 75 Luo et al. (2012)

d 0.1 Althaus and Boer (2011)

r 0.03 Wang et al. (2014)

Tmax 1500 Wang et al. (2014)

ks 2.4� 10�5 Luo et al. (2012)

kr 2� 10�5 Luo et al. (2012)

u 3� 10�5 Sanjuán et al. (2010),

Wang et al. (2014)

� 1 Althaus and Boer (2011)

Ns 4800 Luo et al. (2012)

Nr 4000 Luo et al. (2012)

c 23 Althaus and Boer (2011)

ns
rt 0.4 Wang et al. (2014)

nr
rt 0.2 Wang et al. (2014)

ns
p 0.1 Wang et al. (2014)

nr
p 0.1 Wang et al. (2014)
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In Section 3, we analyze several simulations of the
model, for distinct values of the order of the fractional
derivative, and for distinct growth rates. We discuss
implications of the results. Finally, we state the main
conclusions and highlight future research.

1.1. Fractional calculus: brief summary

In the last few decades, fractional calculus, that is, non-
integer-order calculus, has been widely studied by

mathematicians and engineers (Oldham and Spanier,
1974; Miller and Ross, 1993; Samko et al., 1993;
Tarasov, 2010). The fractional-order derivative is a gen-
eralization of the integer-order derivative. The models
including fractional derivatives have been applied in a
variety of research areas, such as in fluid mechanics
(Momani and Odibat, 2006), electrochemistry
(Oldham, 2010), engineering (Makris and
Constantinou, 1993; Mainardi, 1996; Pinto and
Machado, 2001; Baleanu, 2009; Machado, 2009; Pinto
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Figure 2. Disease-free equilibrium of the model (4) for the parameter values of Table 1 except for ks¼ 2.4� 10�6, kr¼ 2.0� 10�6,

given initial conditions, and growth rate f1(t).
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andMachado, 2012; Golmankhaneh et al., 2013), phys-
ics (Caputo and Mainardi, 1971; Nigmatullin and
Baleanu, 2010).

There are three important and well-studied defin-
itions for a fractional-order derivative, namely, the
Riemann–Liouville, the Grünwald–Letnikov (GL),
and the Caputo formulas (Oldham and Spanier, 1974;

Miller and Ross, 1993). In our work, we consider the
GL derivative, given by equation (1):

GL
a D�

t f ðtÞ ¼ lim
h!0

1

h�

Xt�ah½ �
k¼0

�1ð Þk
�

k

� �
f t� khð Þ,

t4 a,�4 0 ð1Þ
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Figure 3. Drug-sensitive endemic equilibrium of the model (4) for the parameter values given in Table 1, except for u¼ 3� 10�8 and

Nr¼ 2300, given initial conditions, and growth rate f1(t).
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where [x] means the integer part of x, and h represents
the time step increment.

The fractional derivatives capture the history of the
variable, or, in other words, have memory, contrary to
integer-order derivatives, which are local operators.
This characteristic makes them an important tool in
the modeling of memory-intense and delay systems.

The most often adopted generalization of the frac-
tional derivative operator consists in �2R.

The fractional derivative of complex order ��|�2C,
when applied to a system of equations, results in com-
plex-valued outcomes. The latter restricts a practical
application. In order to overcome this difficulty,
Hartley et al. (2005) and Barbosa et al. (2008)
proposed the association of two complex-order
derivatives. One of these associations is the sum of
two complex conjugate derivatives D��|�, given in
equation (2). Other combinations and approximation
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Figure 4. Drug resistance endemic equilibrium of the model (4) for the parameter values given in Table 1, except Ns¼ 4000 and

Nr¼ 4800, given initial conditions, and growth rate f1(t).
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methods are possible. In this paper, we will use
expression (2):

Z
1

2
D��|�xðtÞþD�þ|�xðtÞ
� �� �

�
1

T�
sin �ln

1

T

� �� 	
�z�1þ

1

2
�ð1�2�Þz�2þ���

�� 	

þcos �ln
1

T

� �� 	
�1þ�z�1�

1

2
�ð�2����2þ���Þ

� 	�
XðzÞ

ð2Þ

2. Description of model

The model describes the dynamics of the populations of
uninfected CD4þ T cells T, drug-sensitive infected
CD4þ T cells Ts, drug-resistant infected CD4þ T cells
Tr, drug-sensitive infectious viruses Vs, and drug-resis-
tant infectious viruses Vr.

The epidemiology of the disease is as follows. The
uninfected CD4þ T cells, T, are produced at a rate l
and die at a rate d. These cells, when in contact with
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Figure 5. Endemic equilibrium of the model (4) for given parameter values in Table 1, given initial conditions, and growth rate f1(t).
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HIV, get infected, at a rate ks, by drug-sensitive viruses
and move to the Ts class. Moreover, T cells may be
infected, at a rate kr, by drug-resistant viruses and
move to the Tr class.

The proportions of Ts and Tr cells that, after contact
with the virus, are not eliminated by RTI are 1� nsrt
and 1� nrrt, respectively. Parameters nsrt and nrrt repre-
sent the efficacy rates of RTI for wild type and mutants,
respectively.

Throughout the infection, a proportion u, 0< u< 1,
of Ts cells can become resistant to the antiretroviral
drugs and move to the class Tr.

The infected CD4þ T cells die at a rate � and the
viruses are cleared at a rate c. The Vs and Vr particles
are produced by the corresponding infected CD4þ T
cell populations, with bursting sizes of drug-sensitive
strain, Ns, and of drug-resistant strain, Nr. The propor-
tions of virus particles that are not eliminated by PI are
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Figure 6. Disease-free equilibrium of the model (4) for the parameter values of Table 1, except ks¼ 2.4� 10�6 and kr¼ 2.0� 10�6,

given initial conditions, and the growth rate f2(t).
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Figure 7. Drug-sensitive endemic equilibrium of the model (4) for the parameter values given in Table 1, except u¼ 3� 10�8, and

Nr¼ 2300, given initial conditions, and growth rate f2(t).

Pinto and Carvalho 2229



1� nsp and 1� nrp, where n
s
p is the efficacy of PI for wild-

type strain, and nrp is the efficacy of PI for mutants.
We will consider three distinct growth rates for the

uninfected target cells T, namely (Xiao et al., 2013)

f ðTÞ ¼

f1ðTÞ ¼ l� dTþ r 1�
T

Tmax

� �

f2ðTÞ ¼ l� dTþ r 1�
Tþ Ts þ Tr

Tmax

� �

f3ðTÞ ¼ l� dT

8>>>><
>>>>:

ð3Þ

where l and d are as above. When f¼ f1, the healthy T
cells are assumed to proliferate exponentially at a rate r
until they reach the carrying capacity Tmax, in the
absence of the virus or infected T cells.

The following nonlinear system of ordinary differen-
tial equations describes the dynamics of the fractional
model of complex order:

The schematic diagram of the proposed model can
be seen in Figure 1.

3. Numerical results

In this section we present the numerical results for
model (4). The parameters used in the simulations are
given in Table 1 and the initial conditions are set to
T(0)¼ 1000, Ts(0)¼ 1 and Vs(0)¼Tr(0)¼Vr(0)¼ 0.01.

We simulate the model (4) for different values of the
complex-order fractional derivative D��|�. We fix
�¼ 0.8 and vary �2 f0.4,0,5,0.6,0.7,0.8,0.9,1.0}. We
also distinguish the three functions f(T) for the
growth rate of the uninfected CD4þ helper T cells.

We adopt the Power Series Expansion (PSE) method
for the approximation of the complex-order derivative in
the discrete-time numerical integration. Several experi-
ments demonstrated that a slight adaption to the stand-
ard approach based on a simple truncation of the series is
required. The latter corresponds to a diminishing of the
gain (Machado, 2009) and, consequently, leads to diffi-
culties in the promotion of periodic orbits. Therefore, in
order to overcome this limitation, we decided to include
a gain adjustment factor corresponding to the sum of the
missing truncated series coefficients.

3.1. Growth rate f1

We consider f ðTÞ ¼ l� dTþ pTð1� T
Tmax
Þ, fix �¼ 0.8

and vary �2 f0.4,0.5,0.6,0.7,0.8,0.9,1.0}.

In Figure 2, we observe that the model (4) asymp-
totically approaches the disease-free equilibrium for
growth rate f1(t).

In Figure 3, the dynamics of the variables of system
(4) for the drug-sensitive endemic equilibrium for
growth rate f1(t) is shown.

The dynamics corresponding to the drug-resistant
endemic equilibrium of system (4) for growth rate
f1(t) can be seen in Figure 4.

Figure 5 depicts the dynamics of the endemic equi-
librium of the model (4) for the growth rate f1(t).

3.2. Growth rate f2

In this section we simulate the model for the growth
rate f2ðtÞ ¼ l� dTþ p 1� TþTsþTr

Tmax


 �
, fix �¼ 0.8 and

�2 f0.4,0.5,0.6,0.7,0.8,0.9,1.0}.
In Figure 6, we observe that the model (4) asymp-

totically approaches the disease-free equilibrium, for
the growth rate f2(t).

In Figure 7, the dynamics of the variables of system
(4) for the drug-sensitive endemic equilibrium, for the
growth rate f2(t), is shown.

The dynamics corresponding to the drug-resistant
endemic equilibrium of system (4) can be seen in
Figure 8, for the growth rate f2(t).

Figure 9 depicts the dynamics of the endemic equi-
librium of the model (4), for the growth rate f2(t).

3.3. Growth rate f3

In this section we simulate the model (4) for
f(t)¼ f3(t)¼ l� dT, fix �¼ 0.8 and vary
�2 f0.4,0.5,0.6,0.7,0.8,0.9,1.0}.

In Figure 10, we observe that the model (4) asymp-
totically approaches the disease-free equilibrium, for
the growth rate f3(t).

In Figure 11, the dynamics of the variables of system
(4) for the drug-sensitive endemic equilibrium is shown.
The growth rate of the helper T cells is f3(t).

The dynamics corresponding to the drug-resistant
endemic equilibrium of system (4) can be seen in
Figure 12, for the growth rate f3(t).

Figure 13 depicts the dynamics of the endemic equi-
librium of the model (4), for the growth rate f3(t).

1
2 D�þ|� þD��|�
� 

TðtÞ ¼ f ðTÞ � ksð1� nsrtÞVsðtÞTðtÞ � krð1� nrrtÞVrðtÞTðtÞ
1
2 D�þ|� þD��|�
� 

TsðtÞ ¼ ð1� uÞksð1� nsrtÞVsðtÞTðtÞ � �TsðtÞ
1
2 D�þ|� þD��|�
� 

VsðtÞ ¼ Ns�ð1� nspÞTsðtÞ � cVsðtÞ
1
2 D�þ|� þD��|�
� 

TrðtÞ ¼ uksð1� nsrtÞVsðtÞTðtÞ þ krð1� nrrtÞVrðtÞTðtÞ � �TrðtÞ
1
2 D�þ|� þD��|�
� 

VrðtÞ ¼ Nr�ð1� nrpÞTrðtÞ � cVrðrÞ

ð4Þ
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Figure 8. Drug resistance endemic equilibrium of the model (4) for the parameter values given in Table 1, except for Ns¼ 4000 and

Nr¼ 4800, given initial conditions, and growth rate f2(t).
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Figure 9. Endemic equilibrium of the model (4) for given parameter values in Table 1, given initial conditions, and growth rate f2(t).

2232 Journal of Vibration and Control 22(9)



0 20 40 60 80 100
750

800

850

900

950

1000

Time

C
el

ls
 T

 

 
α=0.4
α=0.5
α=0.6
α=0.7
α=0.8
α=0.9
α=1

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
el

ls
 T

s

 

 
α=0.4
α=0.5
α=0.6
α=0.7
α=0.8
α=0.9
α=1

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

Time

C
el

ls
 V

s

 

 
α=0.4
α=0.5
α=0.6
α=0.7
α=0.8
α=0.9
α=1

0 20 40 60 80 100
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Time

C
el

ls
 T

r

 

 
α=0.4
α=0.5
α=0.6
α=0.7
α=0.8
α=0.9
α=1

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

C
el

ls
 V

r

 

 
α=0.4
α=0.5
α=0.6
α=0.7
α=0.8
α=0.9
α=1

Figure 10. Disease-free equilibrium of the model (4) for parameter values of Table 1 except ks¼ 2.4� 10�6 and kr¼ 2.0� 10�6,

given initial conditions, and the growth rate f3(t).
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Figure 11. Drug-sensitive endemic equilibrium of the model (4) for the parameter values given in Table 1, except for u¼ 3� 10�8

and Nr¼ 2300, given initial conditions, and growth rate f3(t).
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Figure 12. Drug resistance endemic equilibrium of the model (4) for the parameter values given in Table 1, except for Ns¼ 4000 and

Nr¼ 4800, given initial conditions, for the growth rate f3(t).
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Figure 13. Endemic equilibrium of the model (4) for the given parameter values in Table 1, given initial conditions, for the growth

rate f3(t).
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In all figures, we observe faster transients for
decreasing values of �. Moreover, we verify that for
�¼ 1.0 we have the slowest evolution to the steady
state, while �¼ 0.4 yields the fastest transient. This
property of complex-order fractional systems is similar
to the patterns seen for distinct values of the delays in
integer-order models (Wang et al., 2014). Those pat-
terns reveal that the delay prolongs the time to peak
for every oscillation and decreases the amplitude of the
oscillations (Wang et al., 2014). We conjecture that
varying � may thus promote patterns similar to varying
the delay in integer-order systems.

3.4. Variation of the proliferation rate r

In this section we vary the proliferation rate r for the
growth functions fi(t), i¼ 1,2,3. We fix �¼ 0.8 and vary

�2 f0.4,0.7,1.0}. We observe that increasing the prolif-
eration rate r affects the stability of the dynamical pat-
terns of the model. Moreover, we observe that
increasing r leads to an endemic state (see Figures 14
and 15). Thus, the stability of the endemic equilibrium
depends on the target cell density, leading to sustained
oscillations, the so-called blips, as r increases (Wang
et al., 2014) (Figure 15). We only show the figures con-
cerning �¼ 1 and f(t)¼ f1(t) since analogous behavior is
seen for �¼ 0.4 and �¼ 0.7, and for the other growth
rates.

4. Conclusions

In this paper we propose a fractional complex-order
model for drug resistance during HIV therapy, that
includes three distinct growth rates for the CD4þ
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Figure 15. Dynamics of variables of model (4) for variation of the proliferation rate r, �¼ 1.0, given the parameter values in Table 1,

except �¼ 10, ns
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Figure 14. Dynamics of variables of model (4) for variation of the proliferation rate r, �¼ 1.0, given the parameter values in Table 1

and initial conditions, for the growth rate f1(t).
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T cells. We simulate the model for different values of
the fractional complex-order derivative and for dis-
tinct rates. We observe that the variation of the com-
plex-order fractional derivative may be compared to
the variation of the delay in integer-order systems, in
biologically meaning intervals. This happens for all
growth rates. We also observe the appearance of sus-
tained oscillations (blips) as the proliferation rate
increases. Future work will focus on the inclusion of
cytotoxic T lymphocytes (CTLs) cells in the model,
since it is believed that they play a major role in the
prevention of HIV virus replication. CTLs are acti-
vated by the HIV virus and kill infected (virus-specific
and nonspecific) CD4þ T cells. Additionally, we will
include a term concerning cell-to-cell transmission of
the virus. It is known that HIV infects not only CD4þ

T cells but also monocytes/macrophages. These cells
travel throughout the host circulatory and lymphatic
systems. T cells and macrophages interaction may help
the HIV to spread from cell to cell. We will study the
effect of this on the dynamics of the model.
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Article

Design and analysis of a multivariable
fractional order controller for a
non-minimum phase system

Cristina I Muresan1, Eva H Dulf1, Cosmin Copot2,
Robin De Keyser2 and Clara Ionescu1

Abstract

Two control strategies for multivariable processes are proposed that are based on a decentralised and a steady state

decoupling approach. The designed controllers are fractional order PIs. The efficiency and robustness of the proposed

strategies is tested and validated using a non-minimum phase process. Previous research for the same non-minimum

phase process has proven that simple decentralised or decoupling techniques do not yield satisfactorily results and a

multivariable IMC controller has been proposed as an alternative solution. The simulation results presented in this paper,

as well as the experimental results, show that the proposed fractional order multivariable control strategies ensure an

improved closed loop performance and disturbance rejection, as well as increased robustness to modelling uncertainties,

as compared to traditional multivariable IMC controllers.

Keywords

Fractional order control, non-minimum phase system, water tanks, decentralized control, decoupling control, internal

model control

1. Introduction

The large majority of chemical processes are multivari-
able in nature, exhibiting some strong couplings and
occasionally a non-minimum phase character that
makes the control design problem a challenging task
(Bequette, 2003; Kantera et al., 2002). In general, for
such chemical processes, the objective of a control
system is to maintain several controlled variables at
independent set points. Despite the coupling problems
associated with multivariable systems, a non-minimum
phase system is even more difficult to control. None of
the techniques that are based upon model inversion can
be used since such an inversion leads to an unstable
closed loop system. Multivariable controllers have
been previously designed for such systems. However,
centralized controller design for multiple-input-
multiple-output (MIMO) systems is associated with
possible problems concerning the complex computa-
tions, maintenance due to the size and a high risk of
failure even though it provides better performance.
Simplified algorithms are generally preferred as an
alternative solution. In contrast to the centralised

multivariable control, decentralised control is widely
preferred in practice and industrial applications espe-
cially because of its main advantage that allows for an
easy implementation and tuning, if a sufficient number
of sensors and actuators exist. It is also highly reliable
and flexible. If properly tuned, it can lead to excellent
closed loop results.

Nevertheless, for highly interacting processes, a
decoupling control is usually preferred instead of a
decentralized algorithm. Decoupling is a procedure
that reduces multivariable interactions (Astrom et al.,
2002) and sets the premises for an improved design of
the decentralized control. The mathematical procedure
to decouple a MIMO system consists in a
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transformation of the original transfer function matrix
of the process into a diagonal one. This is achieved by
using an additional controller, also called a decoupler,
which is designed in order to compensate for process
interactions. Then, for the resulting pseudo-plant, con-
sisting of the original model of the multivariable pro-
cess and the decoupler, single-input-single-output
(SISO) techniques can directly be used in designing
the controllers.

The quadruple tank process is the case study con-
sidered in this paper. These particular processes have
been the focus of numerous papers, since they exhibit
elegantly complex dynamics of interest in both control
and research education. They have been widely used in
chemical engineering laboratories to illustrate the per-
formance limitations for multivariable systems due to
strong interactions, right-half plane transmission zeros
and model uncertainties (Suja and Thyagarajan, 2008).
The most extensively employed method for controlling
the quadruple tank system has been the classical PID
(Proportional plus Integral plus Derivative), either in a
decentralised or a decoupling approach (Ramadevi and
Vijayan, 2014). The choice for traditional PID control-
lers has been based upon their general acceptance in
both academic and industrial domains, with more
than 95% of the control loops in process control indus-
try being of PI/PID type. For example, a recent paper
compares the decentralised and decoupling techniques,
while the tuning of the PI controllers is performed in
several ways, ranging from direct synthesis, sequential
relay with ZN settings, to more advanced methods such
as the Internal Model Control (IMC) (Ramadevi and
Vijayan, 2014). A robust decentralized PID controller is
also the selected option for dealing with nonlinearities,
non-minimum phase characteristics and modeling
uncertainties (Rosinov and Markech, 2008). The prop-
erties and control have been analysed in a decentralised
approach for similar quadruple tank processes that
exhibit also multiple dead times, with the experimental
results portraying some of the control difficulties
related to the presence of non-minimum phase zeros
(Shneiderman and Palmor, 2010). The performance of
PID controllers, in various control configurations,
has been analysed over a quadruple tank process, con-
sidering the shifting of the system configuration from
minimum to non-minimum phase (Govinda Kumar
et al., 2014).

To enhance the closed loop performance and to
reduce the interaction effects, a partial decoupling
method for MIMO systems has also been proposed
and implemented for the non-minimum phase quadru-
ple tank system (Garelli et al., 2006a, 2006b). For
example, an approach to design auto tuned

decentralized PI controller using ideal decouplers and
adaptive techniques have been developed (Vijula
and Devarajan, 2014). The initial multivariable non-
minimum phase quadruple tank system is transformed
into two single-input-single-output systems, while the
controller’s parameters are adjusted using the Model
Reference Adaptive reference Control. The proposed
controller can adjust the controller parameters in
response to changes in plant uncertainties and disturb-
ances based on the specified reference model and pre-
vent the system from interaction between process
variables.

Other more advanced methods have also been
employed for the quadruple tank process, such as
fuzzy control algorithms implemented in a decentra-
lised version (Suja and Thyagarajan, 2008). The results
obtained prove that the closed loop performance is
improved when compared to the traditional decentra-
lised PI control. Fuzzy logic has also been used to tune
a combined state-feedback sliding-mode controller for
quadruple tank system (Mirakhorli and Farrokhi,
2011). The simulation results showed that the proposed
version achieved better closed loop performance than
the stand alone versions of state-feedback controller or
sliding-mode controller. Sliding mode control has been
designed and tested on an experimental setup, provid-
ing increased robustness and excellent set point track-
ing (Pani Biswas et al., 2009). Neural networks have
also been used to effectively tackle the problems con-
cerned with multivariable non-minimum phase systems,
such as the neural network based disturbance observer,
proposed as a solution to overcome the limitations of
traditional disturbance observers (Li et al., 2014).

For the particular setup considered in this paper, the
quadruple tank system from Quanser, decentralised,
decoupling and multivariable IMC strategies have
been previously proposed (Maxim et al., 2013).
However, the experimental results obtained showed
the necessity of more complex control algorithms,
when stringent performance is envisaged and coupling,
as well as RHP zeros need to be tackled efficiently. For
this particular process, both decentralized and decou-
pling controls achieved poor performance for disturb-
ance rejection tests, which motivated the application of
the more advanced IMC control and even a possible
future work regarding model predictive control.

The purpose of this paper is to design a simple con-
trol algorithm that is based on combining fractional
order controllers with a decentralised as well as decou-
pling approach that allow for a SISO interpretation of
the controller tuning, but that can also achieve
improved performance compared to the multivariable
IMC control (MIMO IMC). The fractional order PID
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(FOPID) controller was proposed as a generalization of
the traditional integer order PID controller. The use of
fractional order controllers is expected to enhance the
performance of the closed loop system and increase the
robustness of the system (Podlubny, 1999; Oustaloup,
1991; Li et al., 2010), being used in a wide area of
applications (Gutiérrez et al., 2010). Several fractional
order techniques have been proposed in literature for
controlling multivariable processes, such as the exten-
sion of the CRONE algorithm (Gruel et al., 2009),
MIMO-QFT robust synthesis methodology combined
with CRONE control (Yousfi et al., 2012), sliding mode
control based on the selection of a special fractional-
order sliding variable (Pisano et al., 2010). Different
methods for tuning multivariable fractional PID have
been developed, such as an approach to consider the
tuning formulated as an H1 problem with a controller
structure constraint (Chenikher et al., 2012), the Linear
Matrix Inequalities (LMI) approach (Song et al., 2011),
as well as a genetic algorithm for determining the gains
and orders of the fractional order PID controllers
(Moradi, 2014). Contrary to these multivariable frac-
tional order control algorithms, the present paper pro-
poses simpler approaches, also based on robust
fractional order control algorithms that enable the use
of SISO control techniques for multivariable processes.
Thus, the main contribution of the paper resides in the
tuning of simple fractional order controllers, in both
decentralised and decoupling approach, for a specific
non-minimum phase system, the quadruple tank
system, as well as the implementation, the experimental
testing and analysis of the final control algorithms.

The paper is structured as follows. The first section
contains the alternative designs of the multivariable
fractional order controllers, including a decentralised
as well as a decoupling approach. Then, the controller
designs are applied to the specific case study, the non-
minimum phase water tanks system. The third section
presents the experimental results, while the main con-
clusions are stated in the final section of the paper.

2. Alternative designs of a fractional
order controller for multivariable
processes

The two alternative designs for the fractional order
controller proposed in this paper consist in a decentra-
lised, as well as a steady state decoupling approach.

2.1. Decentralised approach

The decentralised approach in controlling MIMO sys-
tems consists in a proper selection of the input-output

pairings, with the purpose of dividing the initial control
problem into several SISO control loops, while aiming
to reduce the amount of interaction. The first step in the
decentralised approach consists in a Relative Gain
Array (RGA) analysis of the multivariable process
that allows for a proper pairing of the input-output
signals (Bristol, 1966; Moaveni and Khaki-Sedigh,
2007). The next step consists in the design of the indi-
vidual fractional order PI controllers for each input-
output pairing by neglecting the effect of the interaction
loop. The transfer function of the fractional order PI
controller, proposed in this paper, is given as

HFO�PIðsÞ ¼ kp 1þ
ki
s�

� �
ð1Þ

with � the fractional order. To tune the fractional order
PI controller, three performance specifications are
imposed: a) a certain gain crossover frequency – !gc,
b) a phase margin – ’m – of the open loop system,
denoted Hd(s) and c) a robustness condition to gain
variations. Considering that the open loop transfer
function is written as

Hd ðsÞ ¼ HFO�PIðsÞHPðsÞ ð2Þ

where Hp(s) is the process transfer function, the tuning
of the controller is done based on the following set of
equations (Muresan et al., 2013; Monje et al., 2010;
Muresan, 2014)

1

Kþ jL

����
����
!gc

kp 1þ ki!
��
gc cos

��

2
� j sin

��

2

� �h i��� ��� ¼ 1 ð3Þ

ki sin
���
2

� �
!�gc þ ki cos

���
2

� � ¼ tg �� ’m � a tan
L

K

� �� �
ð4Þ

�ki!
���1
gc sin ��2

1þ 2ki!
��
gc cos ��2 þ k2i !

�2�
gc

�
_LK� L _K

L2 þ K2
¼ 0 ð5Þ

where K is the real part and L is its imaginary part of
the process HP(j!gc). To simplify the computation of
the fractional order PI controller parameters, the values
for ki and � are determined graphically using equations
(4) and (5) (Muresan et al., 2013; Monje et al., 2010;
Muresan, 2014), while kp is then computed using equa-
tion (3).

2.2. Decoupling approach

In case of a highly coupled MIMO system, the decen-
tralised approach may result in poor closed loop

Muresan et al. 2189



performance due to the multiple input-output inter-
actions. A decoupling solution could then be used
instead. In this paper, a steady state decoupling is
employed. Given the n� n MIMO system

GpðsÞ ¼

Hp11ðsÞ Hp12ðsÞ . . . Hp1nðsÞ

Hp21ðsÞ Hp22ðsÞ . . . Hp2nðsÞ

. . . . . . . . . . . .

Hpn1ðsÞ Hpn2ðsÞ . . . HpnnðsÞ

0
BBBBB@

1
CCCCCA

ð6Þ

the steady state decoupler is the inverse of the process
transfer function gain matrix in equation (6), denoted
as G#

m. The steady state decoupled process is then com-
puted as

GDðsÞ ¼ G#
m

Hp11ðsÞ Hp12ðsÞ . . . Hp1nðsÞ

Hp21ðsÞ Hp22ðsÞ . . . Hp2nðsÞ

. . . . . . . . . . . .

Hpn1ðsÞ Hpn2ðsÞ . . . HpnnðsÞ

0
BBBBB@

1
CCCCCA
ð7Þ

The tuning of the fractional order PI controllers is then
performed for each diagonal element in the decoupled
process GD(s) using the same tuning procedure based

on equations (3)–(5). The final multivariable FO-PI
controller is computed as

GCðsÞ ¼G#
m

HFO�PI1 ðsÞ 0 . . . 0

0 HFO�PI2 ðsÞ . . . 0

. . . . . . . . . 0

0 0 . . . HFO�PInðsÞ

0
BBB@

1
CCCA

ð8Þ

3. Case study. control strategies for
non-minimum phase quadruple
tank system

The schematic representation of the quadruple water
tanks system is given in Figure 1. The system is a multi-
variable one, with two inputs, the voltages applied to
the two pumps, denoted as Vp1(t) and Vp2(t), and two
outputs, the water levels of the lower tanks, Tank2 and
Tank4, denoted as L2(t) and L4(t), respectively. There is
a strong coupling effect between the inputs and the out-
puts. Such a coupling may be observed in Tank2 which
has two inputs: the flow from Pump1 (Vp1(t)) through
Out2, marked with dashed red line, and the flow from
Pump2 (Vp2(t)) through Out1, denoted with green con-
tinuous line, that is the output flow from Tank1).

Figure 1. Schematic diagram of the quadruple water tanks system.
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Hence, the controlled level in Tank2 (L2) is influenced
by the two inputs.

By a simple adjustment of the percentage of water
flow from each input, one can change the system for
having minimum phase or non-minimum phase dynam-
ics (Maxim et al., 2013). The configuration used in this
paper and indicated in Figure 1 is a non-minimum
phase one, with a greater flow coming from Pump2,
via Tank1, into Tank2, in comparison with the flow
coming directly from Pump1. This is due to the fact
that the outlet diameter Out1 is bigger than the diam-
eter Out2, while the outgoing orifices from each tank
Do1, Do2, Do3 and Do4 have the same diameter. A
similar situation occurs in the case of Tank4. Then, the
dominant flow in Tank2 and Tank4 comes from the
manner in which the physical coupling is implemented
via the choice of the setup (Johansson, 2000; Johansson
et al., 1999).

The model transfer function matrix has been previ-
ously determined experimentally to be (Maxim et al.,
2013)

GðsÞ ¼

1:64

18:43sþ 1

2:49

178:8s2 þ 26:74sþ 1

2:56

172:2s2 þ 27:6sþ 1

1:28

15:92sþ 1

2
664

3
775

ð9Þ

The transmission zeros for the quadruple water tanks
system are: z1¼�0.26; z2¼ 0.07; z3¼�0.06;
z4¼�0.05. Due to the positive zero z2¼ 0.07, the
system is non-minimum phase.

A simple RGA analysis shows that for the configur-
ation previously described the following RGA values
are obtained (Maxim et al., 2013)

� ¼
�0:49 1:49

1:49 �0:49

" #
ð10Þ

According to equation (10), 1-2/2-1 pairing is selected
and two FO-PI controllers are then computed. The fol-
lowing performance specifications are imposed for the
two loops: !gc1 ¼ 0:03, ’m1 ¼ 70� and !gc2 ¼ 0:03,
’m2 ¼ 70�. The resulting fractional order PI controllers,
to be used in the decentralised approach are

HFO�PI1ðsÞ ¼ 0:3 1þ
0:024

s1:16

� �

HFO�PI2ðsÞ ¼ 0:29 1þ
0:025

s1:16

� �
8>>><
>>>:

ð11Þ

To tune the fractional order controllers for the decou-
pling control strategy, the decoupler was first

computed as

G#
m ¼

�0:3 0:58
0:6 �0:38

� �
ð12Þ

Similar performance specifications were imposed to
design the fractional order controllers for the decou-
pling strategy, !gc1 ¼ 0:02, ’m1 ¼ 70� and !gc2 ¼ 0:02,
’m2 ¼ 70�, in order to obtain similar closed loop per-
formance in terms of overshoot and settling time. The
two fractional order controllers are

HFO�PI1 ðsÞ ¼ 0:53 1þ
0:022

s1:16

� �
ð13Þ

HFO�PI2 ðsÞ ¼ 0:6 1þ
0:018

s1:17

� �
ð14Þ

with the final multivariable FO-PI controller deter-
mined using equation (8).

To compare the results, a multivariable IMC strat-
egy has been designed according to (Maxim et al.,
2013), to yield similar closed loop performance in
terms of settling time, as compared to the decentralised
and decoupling fractional order control algorithms
given by equations (11) and (13)–(14), respectively.
The closed loop simulation results, considering step
changes in the reference signals for the levels L2 and
L4, are given in Figures 2 and 3.

Since the simplified model in equation (9) was
obtained by linearizing a nonlinear model around the
operating point of 10 cm (Maxim et al., 2013), the
results in Figures 2 and 3 are regarded as nominal
operating conditions. The decentralised and decoupling
fractional order control strategies ensure no overshoot
and 150 seconds settling time. The 150 seconds settling
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Figure 2. Comparative nominal closed loop simulation results

considering a step change in the reference signal for L2.
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time will be further considered as a performance cri-
teria. The MIMO IMC algorithm ensures the same set-
tling time, but with an overshoot of 25%. It must be
noted here that zero overshoot for the MIMO IMC
strategy is possible to be obtained at the expense of a
major increase in the settling time. In terms of inter-
action, the MIMO IMC offers the best results, however
this is valid under the assumption of a perfect model.
Among the fractional order control strategies, the
decoupling approach provides better interaction
responses than the decentralised control algorithm.

To test the robustness of the designed controller,
similar step changes in the reference signals were con-
sidered, but with a variation of 30% of the gains and
time constants of the process in equation (9)

GðsÞ ¼

2:14

23:96sþ 1

3:24

232s2þ 26:74sþ 1
3:33

230s2þ 27:6sþ 1

1:66

21sþ 1

2
664

3
775 ð15Þ

The closed loop comparative robustness simulation
results are indicated in Figures 4 and 5. As noted
from the two figures, for the fractional order control
strategies, the 30% change in the modeling parameters
do not affect significantly the closed loop performance
results, with no overshoot and a smaller settling time
below 120 seconds for both outputs.

Considering the performance criteria of 150 seconds
maximum settling time, both the decentralised and the
decoupling FO controllers meet this requirement. The
robustness of the decentralized and decoupling control
strategies are almost identical in terms of reference
tracking. On the other hand, the MIMO IMC results
show a degradation of the closed loop performance,
with a slight increase in the settling time of 170 seconds,
but a significant increase of the overshoot accounting to
50%. The maximum amplitudes of the interaction
responses show that the MIMO IMC and the decou-
pling FO controllers have similar performance, with the
decentralised FO controllers behaving the poorest. The
settling time is however 50% larger with the MIMO
IMC (150 seconds) compared to the decentralised and
decoupling FO controllers. Overall, the proposed frac-
tional order decentralised and decoupling strategies
offer an increased robustness as compared to the previ-
ously proposed MIMO IMC algorithm.

Previous results (Maxim et al., 2013) showed that
poor disturbance rejection performance was achieved
when using classical integer order PID controllers in a
decentralised or decoupling approach, which justified
the application of the more advanced MIMO IMC con-
trol. Figures 6 and 7 present the disturbance rejection
tests, considering the nominal conditions, while
Figures 8 and 9 present the same disturbance rejection
tests in the case of the modeling errors in equation (15).
The simulation results show that the MIMO IMC and
the decoupling fractional order controller are
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Figure 3. Comparative nominal closed loop simulation results

considering a step change in the reference signal for L4.
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Figure 4. Comparative robust closed loop simulation results

considering a step change in the reference signal for L2.
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Figure 5. Comparative robust closed loop simulation results

considering a step change in the reference signal for L4.
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outperformed in terms of settling times by the decen-
tralised fractional order controller. Also, the MIMO
IMC is more oscillating with increased amplitudes com-
pared to the decoupling fractional order controller.

To evaluate the disturbance rejection tests, the fol-
lowing performance index was used

J ¼
X1
t¼0

riðtÞ � yiðtÞð Þ
2, with i ¼ 1, 2 ð16Þ

where ri is the setpoint for the corresponding output
signal yi (either tank levels L2 or L4).

The computed values are given in Table 1 and show
that the proposed fractional order control strategies
outperform the MIMO IMC in terms of disturbance
rejection, both under nominal as well as modelling
errors.

4. Experimental results

The two fractional order control strategies described
above have been tested on the coupled tanks system
by Quanser. Figures 10 and 11 show the comparative
closed loop tests for both the decentralised and the
decoupling fractional order control strategies. The
case study considered here consists in a step change
for the L2 reference from 9 cm to 11 cm, thus near the
linearization point. The L4 reference signal is kept at
10 cm.

In terms of interaction, the decoupling fractional
order control strategy performs better than the decen-
tralised fractional order control algorithm. Using the
same performance index as in equation (16) for the
interaction responses yields a value of J¼ 9.14 for
the decoupled version, while for the decentralised con-
trol strategy, J¼ 21.26. This suggests that the
decoupled control algorithm ensures a 50% reduction
of the interaction responses.
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Figure 6. Comparative disturbance rejection tests considering

nominal conditions and a step change in the reference signal

for L2.
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Figure 7. Comparative disturbance rejection tests considering

nominal conditions and a step change in the reference signal

for L4.
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Figure 8. Comparative disturbance rejection tests considering

modelling errors and a step change in the reference signal for L2.
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In terms of reference tracking, the experimental
results in Figure 10 show that the two fractional
order control strategies achieve similar performance.
The settling time in both cases is 150 seconds, as
obtained in the simulation results presented in the

previous section, with a slight increase in the overshoot
of 2%.

5. Conclusions

This paper presented two alternative solutions for con-
trolling non-minimum phase systems and significant
coupling. The previous traditional decentralised and
decoupling strategies applied for the presented case
study, the quadruple tank system, have shown the
necessity for an advanced control solution, such as
the MIMO IMC. The alternative solutions proposed
in this paper consist in decentralised and decoupling
fractional order control strategies. The simulation
results prove that the proposed multivariable fractional
order control algorithms outperform the MIMO IMC
solution previously proposed, in terms of closed loop
performance, disturbance rejection, both under nom-
inal conditions, as well as modelling errors.

The experimental results considering the decoupled
and decentralised fractional order control strategies are
in good agreement with the closed loop simulation
results. The settling time and the overshoot obtained
on the experimental quadruple tank system meet the
performance criteria specified for the simulated closed
loop system. The decoupled fractional order control
algorithm achieves similar performance in terms of ref-
erence tracking when compared to the decentralised
fractional order control strategy. The most important
contribution of the decoupled fractional order control
algorithm is the 50% reduction in the interaction
response, compared to the decentralised approach.

Further research includes the design of advanced
fractional order controllers, based on combining
advanced control algorithms with fractional calculus,
implementation and testing of the new solutions com-
pared to the decentralised and decoupling fractional
order controllers presented in this paper.
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Table 1. Performance index for the disturbance rejection tests.

Control strategy

Output y1 Output y2

Nominal Modelling errors Nominal Modelling errors

Decentralised fractional order control J¼ 10.35 J¼ 9.37 J¼ 11.35 J¼ 10.03

Decoupling fractional order control J¼ 23.6 J¼ 19.57 J¼ 23.6 J¼ 19.3

MIMO IMC J¼ 34.23 J¼ 43.72 J¼ 34.22 J¼ 43.31
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Figure 10. Comparative closed loop experimental results for

reference tracking.
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Article

Fractional direct and inverse models of
the dynamics of a human arm

André Ventura1, Inés Tejado2, Duarte Valério1 and
Jorge Martins1

Abstract

When developing control architectures for physical human–robot interaction, it is often necessary to use a model of the

human operator. This paper presents a comparative study of both direct and inverse models of the human arm at the

elbow joint, relating the force at the hand with the arm angle and vice versa. Specifically, models of integer and fractional

(commensurable and non-commensurable) nature are identified from the experiments. Likewise, for comparison pur-

poses, neural networks models are also obtained. Taking into account their parameter variability, it is shown that

fractional models are more adequate to describe human arm behaviour; they are simpler, more exact and with less

parameter uncertainty.

Keywords

Human arm, modelling, fractional derivative, neural networks

1. Introduction

Controlling a robotic arm so that it will behave as much
as possible as a human arm seems to be a good solution
for surgical robots (Garbey et al., 2014; Park et al.,
2006). If properly designed, such robots can achieve per-
formances with an accuracy that represent a valuable
assistance even to the most seasoned surgeons.
However, to attain this goal, the surgeon has to be com-
fortable working with the robot and, consequently,
dynamic models for the human arm are needed to repli-
cate its behaviour (Fu and Cavusoglu, 2012; Potkonjak
et al., 2001; Taı̈x et al., 2013). A robot that feels more like
another person’s arm has shown to be a better compan-
ion than a robot with some other type of behaviour.

In the literature, third-order linear models are a
usual proposal for this system (see e.g. Fu and
Cavusoglu, 2012), whose structure is shown in
Figure 1. Experimental data can be reasonably fitted,
and there is furthermore a very reasonable rationale
argument in its favour. More accurate results can be
obtained with more complicated identification tech-
niques and structures (Adewusi et al., 2012; Mobasser
and Hashtrudi-Zaad, 2006; Nagarsheth et al., 2008;
Venture et al., 2006). Whether this pays off or whether
the simpler linear option is better because it is good
enough depends, of course, on the intended use.

In a previous paper (Tejado et al., 2013), we found
fractional order linear models for the human arm,
obtained from experimental data with the measured
force at the hand as model input and the measured
arm angle as output, and compared them with the
above mentioned third-order models. There are several
reasons to expect this type of non-integer models,
because the dynamics of muscles of several animal spe-
cies (including humans) have been modelled using frac-
tional derivatives (Djordjevic et al., 2003; Sommacal
et al., 2007b,a, 2008), and because muscles show visco-
elastic behaviour, that can also be modelled using frac-
tional derivatives (Magin, 2004; Mainardi, 2010). In
their turn, fractional derivatives are expectable here
given the fractal nature of muscular tissue.

In the current paper, we present both direct and
inverse (i.e. using now the measured arm angle as
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model input and the measured force at the hand as
output) models for the human arm, using the same
data from Tejado et al. (2013), comparing fractional
and third-order (integer) linear models with neural net-
works (NNs). NNs provide nonlinear models that often
obtain excellent performances (Haykin, 1999; Jang
et al., 1997; Nørgaard et al., 2003) and have been
used to model different kinds of muscles (see e.g.
Bhowmick et al., 2013; Cheron et al., 2003; Jailani
et al., 2012; Rosen et al., 1999; Simunic, 2003). Hence
the pertinency of the comparison with fractional
models, to see whether they can stand the test.
Parameter variability is checked and held as an import-
ant indicator of model suitability. Preliminary results of
this work can be found in Ventura et al. (2015).

The contents of the paper are as follows. In Section 2,
the types of models considered for the human arm are
described. Section 3 briefly explains how data was
obtained. Then, Section 4 presents a comparative study
of the obtained models based on parameter variability.
Lastly, Section 5 offers comments and conclusions.

2. Types of models

This section describes which models, of a different
nature, were used to find the transfer functions

Garm, directðsÞ ¼
�ðsÞ

FmeasuredðsÞ
ð1Þ

Garm, inverseðsÞ ¼
FmeasuredðsÞ

�ðsÞ
ð2Þ

where � and Fmeasured are the measured arm angle and
force at the hand, respectively.

2.1. Third-order integer linear models

These have already been mentioned above, together
with the reasoning behind their choice in Figure 1.

The identification methods were the same described
below for fractional transfer functions, restricting dif-
ferentiation orders to natural numbers.

2.2. Fractional linear models

From the definition of derivative

df ðtÞ

dt
¼ lim

h!0

f ðtÞ � f ðt� hÞ

h
ð3Þ

it can be shown, by mathematical induction, that

dnf ðtÞ

dtn
¼ lim

h!0

Pn
k¼0 ð�1Þ

k n
k

� �
f ðt� khÞ

hn
ð4Þ

By allowing combinations of a things, b at a time,
defined for a, b 2 N as a

b

� �
¼ a!

b!ða�bÞ!, to be generalized
to a, b 2 C using function Gamma as

a

b

� �

¼

�ðaþ1Þ
�ðbþ1Þ�ða�bþ1Þ , if a,b,a� b=2Z

�

ð�1Þb�ðb�aÞ
�ðbþ1Þ�ð�aÞ , if a 2Z

�
^ b 2Z

þ
0

0,
if ½ðb 2Z

�
_ b� a 2NÞ ^ a=2Z

�
�

_ða,b 2Z
�
^ jaj4 jbjÞ

8>>>>><
>>>>>:

ð5Þ

expression (4) can be used to define derivatives of an
arbitrary order � 2 C, usually denoted as D�:

cD
�
t f ðtÞ ¼ lim

h!0þ

P t�c
hb c

k¼0 ð�1Þ
k �

k

� �
f ðt� khÞ

h�
ð6Þ

The upper limit of the summation was chosen so that,
when � ¼ �1,�2,�3, . . . , equation (6) reduces to a

force applied by motor

position measured by motor encoder
(analogous with motor angle)

mass–spring–damper
model of the arm

spring–damper model
of the hand elasticity

(mass neglectable)

position analogous
with elbow angle

Figure 1. Third-order translation analog to elbow dynamics.
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Riemann integral calculated from c to t. Actually ter-
minals c and t are needed for all orders � save the usual
integer derivatives, � ¼ 1, 2, 3, . . .

Definition (6) above, the Grünwald–Letnikoff defin-
ition of fractional derivatives, is one of the several pos-
sible. Whatever the case, however, if initial conditions
are zero, L 0D

�
t f ðtÞ

� �
¼ s�FðsÞ, and that is how, from a

differential equation with fractional derivatives, frac-
tional transfer functions arise. Those in which all
orders share a least common multiple (the commensur-
ability order) are called commensurate. Commensurate
transfer functions with a commensurability order of 1
are integer transfer functions.

The sketch above of how fractional derivatives can
be introduced is developed, for interested readers, in
several books and papers, among which we mention
Valério and Sá da Costa (2012), Valério and Sá da
Costa (2011), Podlubny (1999), Miller and Ross
(1993), Samko et al. (1993), Magin (2004), and
Baleanu et al. (2012).

To identify a fractional transfer function from the
measured data, rather than using a method to do this
directly from a time response (Malti et al., 2008;
Valério and Sá da Costa, 2012), a frequency response
was estimated first (using Welch’s method on the fil-
tered output), and then Levy’s method was applied,
as this leads to less noisy results. Levy’s method fits
to frequency response Gð j!pÞ, p ¼ 1, . . . , f a commen-
surable fractional model with a frequency response
given by

Ĝð j!pÞ ¼

Pm
k¼0 bkð j!pÞ

k�

1þ
Pn

k¼1 akð j!pÞ
k�
¼

Nð j!pÞ

Dð j!pÞ
ð7Þ

minimizing Gð j!ÞDð j!Þ �Nð j!Þð Þ
2 (which is easier

than the more obvious alternative of minimizing
jGð j!Þ � Nð j!Þ

Dð j!Þj
2, which leads to a nonlinear problem).

Commensurable orders of fractional models were
found sweeping the � 2 ½0, 2� range (outside which no
transfer function is stable) with a 0.1 step, and keeping
the � for which results are better, using a heuristic
which is better described below in Section 4 after per-
formance indexes are introduced. For more details on
identification procedures of transfer functions for
this plant, see Tejado et al. (2013). Levy’s method
for fractional transfer functions is covered in Valério
et al. (2008).

The rationale for the use of these models was given
in Section 1. Fractional models can often describe com-
plex dynamic behaviours with fewer parameters than
an integer order model (Magin, 2004; Podlubny, 1999;
Valério and Sá da Costa, 2012), as a fractional deriva-
tive can more easily be fitted to data. While fractional
models can be simulated using a variety of numerical
schemes (see e.g. Bhrawry et al., 2014; Bhrawy et al.,

2015; Diethelm et al., 2006), integer order transfer func-
tions providing an approximated dynamical behaviour
are often employed (Valério and Sá da Costa, 2011,
2012). Such approximations of fractional models may
have a larger number of zeros and poles than the inte-
ger models that could also be used, but in any case
fractional derivatives are instrumental in providing
the way to actually place zeros and poles in the
desired locus.

2.3. Neural networks

A NN is a nonlinear modelling tool inspired on the way
human brain processes information. The human brain
is composed by a network of neurons interconnected by
dendrites that communicate with each other using elec-
trochemical signals at synapses. These connections are
strengthened or weakened depending on their activa-
tion frequency. Likewise, an artificial NN is composed
by neurons and weighted connections.

There are many kinds of NN configurations, the
major distinction being between feedforward and feed-
back or recursive configurations. In both, neurons are
arranged in layers (the last one being the output layer,
and all others the hidden layers), that feed one another;
but whereas in feedforward networks information flows
always from left to right, in feedback networks infor-
mation is fed back from one or more layers through
which it had already passed. Figure 2 shows a particu-
lar architecture of a feedback NN called neural network
auto-regressive with exogenous inputs (NNARX)
model. Notice how the model dynamics appears
through the delay operator z�1 to make use of past
values of both the input and the output of the system.
Maximum input and output delays, denoted as m and
n, respectively, determine the memory the model has of
the input and output signals. In particular, n defines the
model order, which, for a linear system, would coincide
with the number of model poles, which, together with
their location on the complex plane, strongly affect the
model’s behaviour. Even though a NN is not linear, a
number of poles very different from the real memory of
the physical system to be identified will likewise result
in a weak model.

As input, each neuron i in layer n receives a signal
yn,i that is a linear combination of every output signal
of the neurons in the previous layer n� 1

yn,i ¼ bn,i þ
XNn�1

i¼1

wn�1,ixn�1,i ð8Þ

where xn�1,i is the ith input of the neuron coming from
the previous layer, wn�1,i is a weight associated with
that input, Nn�1 is the number of such inputs, and bn,i
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is a bias. Obviously, layer number 0 (which does not
exist) corresponds to the NN’s inputs themselves. The
neuron’s output xn,i is determined by its transfer func-
tion fn,i, usually known as an activation function.
Activation functions may be transfer functions, but if
the NN already includes a dynamic elsewhere activa-
tion functions will probably be static; the hyperbolic
tangent sigmoid function is commonly used:

xn,i ¼ fn,i yn,i
� �

¼
1� e�yn, i

1þ e�yn, i
ð9Þ

NNs employed below use the activation function
xn,i ¼ fn,i yn,i

� �
¼ yn,i in the output layer; in other

words, their output is a biased linear combination of
all of the inputs. For more details on NN architecture,
see the references in Section 1.

In order to have a NN as a satisfactory nonlinear
mapping between input and output data, optimal
weights must be assigned to the synapses, or connec-
tions, through the training process. Offline training of a
NN is, in fact, an optimization process in which the
weights wn,i and bias factors bn,i are iteratively updated
in order to minimize the mean squared error (MSE)
between the model output signals and the output
data. Instead of using data batches to train the NN,
online training updates the network parameters recur-
sively using online measured data. In any case, the
result of this optimization, or training, process is a
NN that is a black box model of the plant under
study. Numbers of delays m and n are to be identified
along with the weights and bias of the NN.

For the system at stake, NNARX models were
trained using the Levenberg–Marquardt backpropaga-
tion algorithm, chosen for speed and accuracy. It is,
actually, a local minimization method, therefore it is
not guaranteed that a global optimal set of networks
parameters is achieved. Because of this and the fact that

the algorithm initialization has a random basis, the
probability of two networks having equal final weights
and biases is very low, even when trained with the same
data. The data, after being resampled at 500Hz (the
robot’s communication frequency), was then actually
split into three parts: 60% for training, 20% for valid-
ation, and 20% for testing. The best results were con-
sistently obtained for NNs with four input delays, two
output delays and a single neuron in the hidden layer:
this was thus the configuration chosen. Indeed, archi-
tectures with more than one neuron in the hidden layer
were tested, showing insignificantly better or weaker
overall results, depending on the number of input and
output delays. As to the number of input and output
delays, it was determined as discussed in Section 4.
That is why only networks with a single neuron in the
hidden layer are considered in this work. More details
on NN training can be found in Mandic and Chambers
(2001) and Marquardt (1963).

3. Experiments

As mentioned previously, the experimental data used in
this paper is that of Tejado et al. (2013); refer to this
paper for further details.

Nine female and nine male volunteers, with ages ran-
ging from 25 to 66, without any knownmusculo-skeletal
injuries of the higher limbs, kneeled or sat holding a
horizontal robotic arm and tried to keep it steady,
while it moved randomly. The robotic arm was moved
by a Kollmorgen direct drive D061M-23-1310 motor,
able to produce 5.3N �m continuous torque and
16.9N �m peak torque, in current control mode. The
rotation range was limited to �0.9 rad for safety rea-
sons. The measured angle was obtained from an encoder
with a resolution of 65,535 pulses/revolution. At the
end of the aluminium horizontal robotic arm there
was a handle for the volunteers to grab, a JR3

Figure 2. Neural network auto-regressive with exogenous inputs (NNARX) models. Left: Direct model, with one input and one

output, one hidden layer, n¼ 6 output delays and m¼ 1 input delays. Right: inverse model, with one input and one output, one hidden

layer, n¼ 2 output delays and m¼ 4 input delays.
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12-degree-of-freedom DSP-based force sensor, and a
laser pointer which should be kept inside a target.
Data was recorded with a 2 kHz sampling frequency.
A picture of the experimental set-up is shown in
Figure 3.

Experiments, which lasted 40 s to avoid fatigue, are
grouped into three types.

. Type I. Oscillations in both directions around the
zero-point.

. Type II. Oscillations only in the positive side of the
zero-point (flexion of the elbow).

. Type III. Oscillations only in the negative side of the
zero-point (extension of the elbow).

The oscillations were random to avoid anticipatory
reflexes, which would interfere with the modelling of
the arm dynamics. So the forces generated by the
motor were a sum of sinusoids with frequencies in the
½0:12, 15� Hz range (chosen because the bandwidth for
the human arm is approximated to 10Hz), limited to
not exceed 4N. Eight volunteers of either sex per-
formed two experiments of type I, one experiment of
type II, and one experiment of type III (68 data sets in
total). The two other volunteers performed 16 add-
itional experiments: six of type I, seven of type II,
and seven of type III. The force measured by the men-
tioned sensor was practically identical to the force
input.

4. Results

Results were assessed with the following four perform-
ance indexes: MSE, mean absolute deviation (MAD),
maximum deviation (MD) and variance accounted for
(VAF), defined as

MSE ¼

PN
j¼1 yj � ŷj
� �2
N

ð10Þ

MAD ¼

PN
j¼1 yj � ŷj
�� ��
N

ð11Þ

MD ¼ max
N

yj � ŷj
�� �� ð12Þ

VAF ¼ 1�
�2 y� ŷð Þ

�2ðyÞ
ð13Þ

The meaning of the variables for frequency and time
responses is given in Table 1. With three series to com-
pare (gain, phase, time response) and four indexes,
there are in all 12 values to assess a model’s
performance.

4.1. Direct models

In Tejado et al. (2013), we have shown that fractional
models are better than integer order models, inasmuch
as they achieve a performance which is similar or even
slightly better, with one parameter less, and with clearly
less parameter uncertainty. For this paper, NN models
were further obtained. Model parameters are given in
Tables 2–4 and their performances are shown in Table 5
(best results are shown in bold).

4.2. Inverse models

Since integer direct models have two zeros and three
poles, inverse models with three poles and three zeros
were considered, as they ought to be causal.

In the case of fractional order models, the same prin-
ciple as above was applied. Since in Tejado et al. (2013)
fractional order direct models have one zero and two
poles, causal inverse models with two zeros and two
poles were considered. But this time there is the com-
mensurability factor. So, in a first stage, the best com-
mensurable order was found sweeping this factor in the
[0.1,1.9] range with a 0.1 step, keeping the model’s
dynamical structure (two zeros and two poles).

Figure 3. Picture of the robotic arm used to obtain experimental data of human arm dynamics.

2244 Journal of Vibration and Control 22(9)



The output of this process is a set of 19 models to
compare using the 12 aforementioned performance
indexes. The following heuristic, essentially a multi-cri-
teria optimization algorithm, was used to choose the
commensurate order.

1. Initialize P¼ 12 lists with a length L¼ 1.

2. Select the best L models according to each perform-
ance index.

3. Model by model, check for its presence in any of the
P lists with length L and compute a histogram that
shows the number of presences of every model in all
of the lists.

4. If one model is found to be present in every single
list, that is the best choice and the heuristic stops.

Table 2. Parameters for integer order direct models of the human arm (three poles, one zero).

Input

Zeros

Polei

Poles2,3

GainRe Im Re Im

All Nominal �21.28 �111.38 �128.63 �15.11 �30.79 0.1

Min �30.8 90.8 �1684.2 �25 �21.9 �0.6

Max �4.66 112.04 512.44 �6.27 43.09 1.52

Mean �16.79 99.64 �189.9 �14.1 31.60 0.16

Std 8.54 6.36 411.81 4.99 5.11 0.39

Type I Nominal �19.1034 �96.96 �76.59 �16.43 �35.13 0.08

Min �34.87 89.37 �268.32 �23.33 25.24 0.04

Max �6.48 107.86 �30.37 �7.47 53.57 0.28

Mean �19.30 95.78 �98.28 �15.06 36.83 0.1

Std 8.83 5.8 76.63 4.09 6.91 0.06

Type II Nominal �17.16 �101.91 �170.71 �12.6 �27.61 0.13

Min �35.36 82.09 �645.08 �20.56 22.22 �13.15

Max �2.5 123.7 7653.4 �6 45.2 0.4

Mean �18.71 100.87 355.36 �11.6 29.75 �0.67

Std 11.0 12.6 1850.2 4.1 6 3.1

Type III Nominal �10.61 �103.19 �455.59 �11.16 �28.42 0.323

Min �33.81 90.6 �887.12 �22.77 21.27 �0.477

Max 27.16 164.08 393.36 �4.36 37.03 0.574

Mean �13.62 104.35 �152.8 �11.02 29.77 0.102

Std 14.35 16.5 247.21 4.79 4.27 0.207

Table 1. Variables in equations (10)–(13).

Frequency response

Variables Gain Phase Time response

y Gain curve estimated from mea-

sured data for a certain fre-

quency vector

Phase curve estimated from

measured data for a certain

frequency vector

Time series of measured input data

ŷ Gain curve estimated from mea-

sured input and identified

inverse model for the same

frequency vector of y

Phase curve estimated from

measured input and identified

inverse model for the same

frequency vector of y

Time series of inverse model output

N Length of the frequency vector, that must be the same for y and ŷ Length of the time series
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Table 3. Parameters for fractional order direct models of the human arm (two poles, one zero).

Input Zero

Poles

Gain aRe Im

All Nominal �525.73 �164.45,�143.08 0 0.32 1.4

Min �521.50 �159.01 0 0.13 1.3

Max �360.51 �74.39 93.42 0.34 1.4

Mean �451.9 �121.82 52.29 0.24 1.37

Std 49.19 22.67 22.11 0.07 0.05

Type I Nominal �502.75 �149.75 �48.24 0.27 1.4

Min �555.85 �168.87 19.69 0.07 1.2

Max �374.90 �60.87 101.95 0.34 1.4

Mean �474.40 �119.07 60.98 0.22 1.36

Std 55.50 31.73 21.85 0.08 0.06

Type II Nominal �432.93 �127.45 �35.21 0.29 1.4

Min �528.22 �269.18 0 0.12 1.3

Max �290.58 �51.58 96.82 0.55 1.4

Mean �432.52 �118.67 45.13 0.26 1.37

Std 63.07 46.43 28.04 0.1 0.05

Type III Nominal �418.47 �124.64 �52.1 0.29 1.4

Min �516.15 �216.62 0 0.06 1.2

Max �240.87 �33.18 94.75 0.37 1.4

Mean �417.47 �114.14 53.88 0.25 1.37

Std 82.02 48.02 26.26 0.09 0.06

Table 4. Parameters for neural network direct models of the human arm.

Input w1 w2 w3 w4 w5 w6 w7 w0 b1 b0

All Nominal �0.0018 6.286 �0.299 �4.298 �4.977 �3.721 0.522 �0.149 0.013 0.002

Min �0.194 �17.830 �14.502 �13.374 �14.321 �12.572 �5.281 �0.940 �1.037 �0.623

Max 0.498 112.829 95.083 77.390 58.761 40.518 23.497 1.043 0.685 0.281

Mean 0.006 1.107 0.864 0.626 0.478 0.185 0.044 �0.103 �0.019 �0.0001

Std 0.077 13.483 11.195 9.264 7.235 5.130 2.812 0.517 0.288 0.123

Type I Nominal 0.0008 �1.821 �0.192 0.977 1.342 2.399 0.495 0.304 �0.045 0.014

Min �0.037 �8.957 �7.390 �13.374 �13.760 �10.783 �1.180 �0.940 �0.382 �0.258

Max 0.031 9.450 4.653 3.6262 2.901 1.909 1.044 0.928 0.397 0.140

Mean �0.002 0.092 �0.409 �0.545 �0.585 �0.538 �0.258 �0.230 �0.001 0.009

Std 0.010 2.697 1.870 2.822 2.857 2.124 0.592 0.537 0.154 0.073

Type II Nominal �0.0002 1.020 �0.262 �0.752 �0.146 �0.517 �0.654 �0.749 �0.019 �0.014

Min 0.498 112.830 95.083 77.390 58.761 40.518 23.497 1.043 0.685 0.281

Max �0.058 �2.721 �8.449 �13.241 �14.321 �12.572 �5.281 �0.711 �1.037 �0.623

Mean 0.035 5.269 4.037 2.947 920 1.050 1.050 �0.051 0.013 0.013

Std 0.121 22.394 18.839 15.403 831 8.281 4.798 0.526 0.361 0.164

Type III Nominal 0.0002 �0.628 �0.279 0.257 311 0.142 0.318 0.886 �0.135 0.119

Min 0.052 0.671 3.179 8.683 277 10.053 2.025 0.768 0.463 0.189

Max �0.194 �17.830 �14.502 �10.377 �7.519 �5.328 �2.768 �0.780 �0.849 �0.849

Mean �0.017 �2.368 �1.089 �0.471 0.263 0.177 �0.127 0.014 �0.082 �0.029

Std 0.055 5.570 4.282 3.812 3.396 2.793 0.971 0.458 0.334 0.125
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5. Otherwise, increment the value of L by one and
repeat from step 2.

It may happen that more than one model comes to
appear in all P lists at the same time. In that case,
either may be selected as convenient. With this heuristic
a good value for the commensurability order may be
obtained, but a 0.1 step may be a little too rough, so a
second stage search was performed. In this stage, the
best model was found by sweeping the commensurable
order, with a 0.01 step, in a range defined by a neigh-
bourhood, with a 0.1 radius, centred on the best com-
mensurability value (or values) obtained on the first
stage. From this sweeping process, another set of
models arises and is, consequently, compared, again,
using the same heuristic. Therefore, this second stage
is basically a refined search around the best solution (or
solutions) of the first stage.

In the case of NNARX models, training algorithms
are rather blind when it comes to the best values of m
and n. Models with an unrealistically large (and
unnecessary) number of input and output delays may
still provide good results. So we might assume, initially,
an unrealistically large number of input and output
delays and analyze the corresponding weights, compar-
ing them to decide whether m and n should be decre-
mented, until none of the weights is lower than a certain
threshold value. But in this case it is possible to use
prior knowledge of the system to be identified,
assume a maximum value for the number of input
and output delays and try every dynamical structural

combination within that maximum number of delays;
from this process, results a set of models that should be
compared, keeping the best one. It was shown that
linear inverse models are of second or third order, so
a maximum of six input and output delays was con-
sidered, to give some margin for possible additional
nonlinear dynamics to be identified in measured data.
With this maximum value, one obtains a set of 36 NNs
to compare and a heuristic similar to the one described
above for fractional plants was employed. The only
difference here is that, as mentioned previously, very
complex networks can have slightly better results, but
at the cost of a lower computational efficiency.
Therefore, to the 12 values of performance indexes
mentioned above, two more were added: m and n them-
selves, thus providing for a NN which is a compromise
between model performance and model complexity.

Model parameters are given in Tables 6–9 and their
performances are shown in Table 10 (again, best results
are in bold). This time, models with fixed commensur-
able orders were obtained, to ascertain that parameter
uncertainty does not get unacceptable in that case.

5. Discussion and conclusions

Performance results for direct models show that while
NNs outperform both integer and fractional models in
what time responses are concerned, they do so at the
expense of a poorer fit to frequency data and more
parameters. Performance results for inverse models
show that integer models often get better results in

Table 5. Performance comparison between identified direct models of the human arm in Tables 2, 3 and 4 (best results are shown in

bold).

Model

Frequency response

Time responseMagnitude (dB) Phase (�)

MSE MAS MD VAF MSE MAS MD VAF MSE MAS MD VAF

All Int. 13.78 2.78 7.76 92.73 273.25 11.11 38.03 94.31 6.38 4.73 13.8 49.58

Frac. 15.13 2.98 7.61 92.20 260.77 10.84 37.17 94.63 6.21 4.64 13.8 49.86

NN 32.95 4.41 21.63 80.32 754.47 21.41 93.67 87.52 1.74 2.96 1.51 52.19

Type I Int. 9.38 2.29 6.94 92.91 225.37 10.18 35.30 95.405 7.22 5.31 13.8 58.03

Frac. 9.66 2.35 6.61 93.04 220.53 9.67 34.46 95.401 7.15 5.25 13.8 53.74

NN 32.13 4.37 18.63 78.82 771.37 23.09 74.69 87.65 2.58 3.71 1.88 58.35

Type II Int. 11.32 2.61 8.48 91.08 332.83 12.13 45.60 93.46 5.23 4.01 12.00 46.62

Frac. 11.27 2.62 7.80 92.18 313.96 10.81 45.40 93.75 5.14 3.82 12.10 46.96

NN 30.09 4.04 25.24 83.55 732.83 17.80 115.69 87.03 1.35 2.58 1.41 48.61

Type III Int. 10.42 2.64 7.27 92.36 252.75 12.55 32.77 95.04 5.13 3.85 13.60 47.18

Frac. 9.61 2.53 5.97 94.26 232.37 10.89 32.29 95.26 5.11 3.84 13.60 45.66

NN 32.35 4.46 20.68 81.19 669.88 20.71 94.00 87.34 0.96 2.31 1.10 48.49

Ventura et al. 2247



Table 7. Parameters for fractional order inverse models of the human arm (two poles, two zeros).

Zero 1 Zero 2 Pole 1 Pole 2

Input Re Im Re Im Re Im Re Im Gain a

All Nominal �61.66 0 �605.19 0 �936.36 596.35 �936.36 �596.35 1550.49 1.52

Min �326.45 0 �1198.46 �79.61 �1487.65 0 �6879.69 �400.75 913.90 0.75

Max 1.09 79.61 1.09 0 15.52 400.75 15.52 0 19017.54 1.76

Mean �58.54 27.27 �172.15 �27.27 �333.26 122.29 �1202.18 �122.29 4020.08 1.21

Std 68.18 19.53 327.16 19.53 404.38 119.72 2072.98 119.72 3164.83 0.29

Type I Nominal �82.77 0 �525.77 0 �841.90 585.45 �841.90 �585.45 1586.60 1.50

Min �326.45 0 �1198.46 �79.61 �1487.65 0 �5956.06 �400.75 932.94 0.89

Max �3.17 79.61 �3.17 0 13.57 400.75 13.57 0 10984.09 1.75

Mean �66.89 35.18 �142.20 �35.18 �335.79 173.16 �955.22 �173.16 3764.06 1.22

Std 83.04 19.68 317.58 19.68 411.73 122.19 1876.72 122.19 2695.34 0.24

Type II Nominal �75.48 0 �936.27 0 �1509.90 563.76 �1509.90 �563.76 1800.96 1.60

Min �260.51 0 �1162.86 �45.60 �1386.18 0 �6660.02 �372.50 964.40 0.83

Max �0.10 45.60 �0.10 0 13.89 372.50 13.89 0 19017.54 1.76

Mean �63.43 17.53 �264.01 �17.53 �402.17 78.78 �1686.46 �78.78 4042.19 1.24

Std 74.06 15.20 414.17 15.20 482.59 100.34 2535.12 100.34 3676.66 0.33

(continued)

Table 6. Parameters for integer order inverse models of the human arm (three poles, three zeros).

Input Zero 1

Zeros 2 and 3

Pole 1

Poles 2 and 3

GainRe Im Re Im

All Nominal �10.23 �46.01 �50.80 290.76 �10.62 �91.88 �1987.74

Min �195.80 �21.93 19.40 �5492.62 �68.51 68.35 �548521.81

Max �13.59 �4.58 52.08 3610.01 �12.03 141.33 167096.50

Mean �40.12 �14.62 34.69 31297.12 �38.96 88.41 �68294.69

Std 33.07 3.95 8.10 11.02 11.49 606890.65

Type I Nominal �19.41 �45.03 �44.93 285.29 �10.71 �92.69 �1918.72

Min �85.48 �20.64 22.48 �5283.10 �64.53 71.33 �5485421.81

Max �16.63 �6.81 52.08 28320.12 �16.99 141.33 136220.47

Mean �31.84 �14.66 37.78 8801.50 �39.92 90.80 �168159.62

Std 17.92 3.49 7.36 50096.81 11.65 13.7 971051.06

Type II Nominal �5.98 �47.20 �51.68 281.92 �11.52 �91.71 �2086.99

Min �89.23 �21.93 19.40 �5492.62 �53.64 68.35 �140316.66

Max �13.59 �5.93 50.97 5941.93 �14.55 118.41 167096.50

Mean �39.11 �14.93 32.71 239.05 �38.60 86.26 �3261.17

Std 25.27 4.36 8.91 2026.21 9.27 9.76 52659.83

Type III Nominal �6.86 �45.92 �53.78 307.94 �9.84 �91.26 �1957.36

Min �195.80 �21.70 21.87 �1625.27 �68.51 70.37 �28421.13

Max �16.38 �4.58 45.95 1924.50 �12.03 107.97 39359.73

Mean �52.83 �14.20 32.72 344.26 �38.03 87.61 �5695.89

Std 50.50 4.19 6.98 919.21 12.32 9.71 17730.88
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what the gain of the transfer function is concerned, but
not the phase, or above all the time response; NN
models, even though nonlinear, do not consistently per-
form better, and, when they do, only slightly.

Since we are dealing with different performance
indexes, it is necessary to try to make a global compari-
son. For this purpose all indexes have been normalized
between 0 (attributed to the poorest value) and 1
(attributed to the best value). Results were then aver-
aged. This composite index is shown in Table 11. It can
be seen that fractional models achieve, globally

speaking, the best performance, both for direct and
inverse models. NNs are a close runner up for inverse
models, but fractional models are linear and continu-
ous, which NNs are not. This last characteristic means
that fractional models will work for any sampling time
(while NNs will not). Linear models are a close runner
up for direct models, but fractional models use one
parameter less, and are thus the simplest possible.

Finally, there is no clear interpretation of what a
fractional derivative means, geometrically, physically
or statistically, although attempts at that have been

Table 8. Parameters for fractional order inverse models of the human arm with a fixed commensurable order (two poles, two

zeros).

Input

Zero 1 Zero 2 Pole 1 Pole 2

Gain aRe Im Re Im Re Im Re Im

All Nominal �61.66 0 �605.19 0 �936.36 596.35 �936.36 �596.35 1550.49 1.52

Min �217.88 0 �595.98 0 �1534.79 0 �16268.49 �496.61 926.97

Max �61.81 0 �214.40 0 �548.98 496.61 �898.58 0 24899.36

Mean �129.15 0 �396.41 0 �812.03 42.51 �3619.24 �42.51 7060.07

Std 33.94 0 82.49 0 200.36 124.14 1918.81 124.14 3503.82

Type I Nominal �82.77 0 �525.77 0 �841.90 585.45 �841.90 �585.45 1586.60 1.50

Min �231.73 0 �527.07 �25.46 �1375.17 0 �4315.26 �520.87 1399.31

Max �72.91 25.46 �214.43 0 �568.47 520.87 �955.78 0 12031.24

Mean �146.47 1.17 �350.22 �1.17 �828.92 51.95 �2730.80 �51.95 6091.86

Std 38.70 4.91 79.68 4.91 188.65 141.46 1001.68 141.46 2415.18

Type II Nominal �75.48 0 �936.27 0 �1509.90 563.76 �1509.90 �563.76 1800.96 1.60

Min �201.48 0 �932.18 0 �1504.23 0 �8588.36 �275.20 1347.41

Max �77.91 0 �429.35 0 �710.95 275.20 �1486.08 0 13369.12

Mean �138.33 0 �633.01 0 �975.81 10.19 �5197.77 �10.19 6760.52

Std 34.41 0 123.87 0 220.37 52.96 1542.85 52.96 2612.39

Type III Nominal �85.15 0 �961.72 0 �1419.68 638.44 �1419.68 �638.44 1433.38 1.60

Min �197.11 0 �890.80 0 �1579.94 0 �18499.77 �454.14 917.06

Max �104.83 0 �425.34 0 �703.79 454.14 �1361.17 0 18691.05

Mean �150.72 0 �629.74 0 �990.39 19.75 �5515.16 �19.75 6467.75

Std 29.20 0 121.94 0 228.89 94.70 3291.45 94.70 9914.50

Table 7. Continued

Zero 1 Zero 2 Pole 1 Pole 2

Input Re Im Re Im Re Im Re Im Gain a

Type III Nominal �85.15 0 �961.72 0 �1419.68 638.44 �1419.68 �638.44 1433.38 1.60

Min �164.54 0 �955.11 �62.12 �1115.75 0 �6879.69 �352.91 913.90 0.75

Max 1.09 62.12 1.09 0 15.52 352.91 15.52 0 14211.15 1.74

Mean �49.13 26.51 �122.28 �26.51 �277.93 109.15 �1053.38 �109.15 4079.69 1.17

Std 49.27 19.29 238.80 19.29 315.93 118.80 1827.26 118.80 3287.26 0.28
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Table 9. Parameters for neural network inverse models of the human arm.

Input w1 w2 w3 w4 w5 w6 w0 b1 b1

All Nominal 417.700 �1191.466 1136.109 �362.158 �0.083 0.167 11.471 �0.015 0.170

Min �527.180 �262.133 �1490.932 �390.051 �1.106 �2.639 �172.050 �1.847 �11.301

Max 469.371 1534.079 361.952 483.919 2.355 1.420 123.258 0.991 11.051

Mean �5.227 23.800 �20.645 3.023 0.037 �0.029 0.923 �0.048 �0.273

Std 123.701 187.432 183.509 106.781 0.463 0.482 33.056 0.381 2.716

Type I Nominal �146.102 421.829 �407.494 131.713 0.028 �0.056 �33.879 �0.021 �0.710

Min �527.180 �142.773 �1490.932 �98.539 �0.448 �0.380 �172.050 �0.244 �4.726

Max 164.011 1534.079 167.815 483.919 0.677 1.168 123.258 0.344 4.317

Mean �15.094 48.261 �60.754 25.110 0.053 0.001 �0.318 0.006 �0.572

Std 124.270 277.454 268.187 105.808 0.233 0.272 49.704 0.121 1.763

Type II Nominal 1694.113 �4923.864 4780.281 �1550.272 �0.226 0.469 4.013 �0.374 1.541

Min �400.669 �101.294 �96.134 �351.761 �0.859 �0.646 �30.484 �0.761 �6.142

Max 85.682 388.599 361.952 144.209 0.700 0.563 45.276 0.682 4.273

Mean �12.376 7.666 0.119 5.344 0.014 0.006 4.509 �0.021 0.996

Std 100.264 90.42 86.57 88.64 0.328 0.268 15.331 0.327 1.776

Type III Nominal 43.708 �107.075 84.611 �21.186 �0.031 0.061 91.667 0.044 �1.455

Min �242.838 �262.133 �272.991 �390.051 �1.105 �2.639 �35.145 �1.847 �11.301

Max 469.371 232.262 249.388 259.889 2.355 1.420 33.354 0.991 11.051

Mean 16.893 8.709 10.786 �30.432 0.043 �0.110 �1.560 �0.154 �1.348

Std 148.262 98.906 99.409 122.611 0.766 0.810 15.486 0.609 3.968

Table 10. Performance comparison between identified inverse models of the human arm in Tables 6, 7 and 9 (best results are shown

in bold).

Frequency response

Model

Magnitude (dB) Phase (�) Time response

MSE MAS MD VAF MSE MAS MD VAF MSE MAS MD VAF

All Int. 15.410 2.903 11.994 92.545 1007.274 28.486 69.760 74.125 0.272 0.371 1.819 41.508

Frac. 21.632 3.455 14.352 88.903 628.689 18.032 58.400 86.449 0.266 0.354 1.658 47.888

NN 23.028 3.807 18.378 90.812 559.089 16.279 101.135 87.496 1.616 1.096 2.335 57.827

Type I Int. 12.294 2.587 11.398 92.703 764.852 24.454 62.375 82.033 0.421 0.490 2.440 51.515

Frac. 18.769 3.274 12.803 89.150 404.851 14.437 42.690 90.971 0.423 0.477 2.284 55.144

NN 25.354 4.094 14.948 90.574 467.089 16.026 76.924 88.489 0.286 0.415 2.001 63.803

Type II Int. 15.315 2.842 12.230 93.656 1146.667 30.209 69.054 68.563 0.143 0.280 1.408 39.239

Frac. 23.264 3.483 17.098 88.926 624.472 17.813 59.324 85.727 0.136 0.269 1.267 45.956

NN 22.443 3.908 14.337 93.456 920.851 17.971 157.716 81.771 0.086 0.227 1.086 57.492

Type III Int. 16.032 3.089 10.971 93.165 1318.925 31.813 80.725 65.715 0.126 0.271 1.363 31.355

Frac. 21.802 3.507 14.387 89.999 687.664 19.075 67.334 84.818 0.096 0.239 1.143 45.007

NN 24.498 4.129 12.308 93.450 647.907 17.872 128.764 84.132 0.098 0.250 1.041 54.529
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Figure 4. Part of the responses of the several models, compared with experimental data: top, direct models; bottom, inverse

models.

Table 11. Performance indexes of Tables 5 and 10, normalized between 0 and 1, and averaged (best results are shown in bold).

Type or domain

Direct models Inverse models

Integer Fractional Neural network Integer Fractional Neural network

All types 0.657 0.663 0.333 0.622 0.685 0.377

Type I 0.736 0.668 0.333 0.370 0.538 0.566

Type II 0.630 0.693 0.333 0.408 0.462 0.651

Type III 0.663 0.668 0.333 0.392 0.671 0.682

Gain 0.966 0.982 0 0.995 0.261 0.260

Phase 0.956 0.999 0 0.178 0.967 0.659

Time response 0.092 0.038 1 0.172 0.601 0.788

Global 0.671 0.673 0.333 0.448 0.598 0.569
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Figure 5. Frequency responses of the inverse linear models, compared with experimental data; from top to bottom: all types of

inputs, inputs of type I, inputs of type II, and inputs of type III.
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published (see e.g. Machado (2003), Podlubny (2002),
and a short review by Valério and Sá da Costa (2012)).
But still the fractional model is not the worst off: NNs
too lack a clear interpretation, and the integer model
includes a third-order derivative, which, unlike first-
and second-order ones, also lacks a clear interpretation.

So again we conclude that the dynamic behaviour we
are dealing with is best described by fractional transfer
functions (just as was seen in Tejado et al. (2013) for
direct models only). Figure 4 shows some seconds of
the responses obtained with the different models, com-
pared with experimental data, for both the direct and
the inverse plant. Figure 5 shows the same for the fre-
quency responses of inverse linear models; a similar
figure for direct models is found in Tejado et al. (2013).
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Tejado I, Valério D, Pires P and Martins J (2013) Fractional

order human arm dynamics with variability analyses.

Mechatronics 23: 805–812.
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Article

Fractional-order modeling of
permanent magnet synchronous
motor speed servo system

WeiJia Zheng1, Ying Luo2, YangQuan Chen3 and YouGuo Pi1

Abstract

A fractional-order modeling approach for a permanent magnet synchronous motor speed servo system is proposed

applying a method combining electromagnetic part modeling and mechanical part modeling. Based on the proposed

fractional-order model and system identification scheme, system identification experiments are performed on the

electromagnetic part and the mechanical part of the permanent magnet synchronous motor speed servo system,

respectively. The fractional-order model parameters of these two parts are identified with these experimental results,

and the fractional-order model of the permanent magnet synchronous motor speed servo system is integrated from

these two parts. Simulations and experiments in open-loop and closed-loop are performed based on the obtained

fractional-order model and integer-order model. The advantage of the proposed fractional-order model for the per-

manent magnet synchronous motor speed servo system is demonstrated by the simulation and experimental results.

Keywords

Fractional-order, PMSM, servo system, modeling, PI controller

1. Introduction

Fractional calculus has been widely studied and applied
in recent years (Kilbas et al., 2006). More and more
real-world systems can be precisely modeled using frac-
tional differential equations, such as some batteries
(Sabatier et al., 2006), thermal systems (Gabano and
Poinot, 2011) and induction machines (Petras et al.,
2009). Stability analysis of fractional systems is
proposed in some literatures (Li et al., 2010; Aguila-
Camacho et al., 2014), while fractional-order control-
lers have been designed to control real world systems
(Podlubny, 1999a; Ladaci et al., 2008; Zamani et al.,
2009; Luo et al., 2011; Hajiloo et al., 2012). Fractional-
order system identification based on continuous-order
distributions is proposed by Hartley and Lorenzo
(2003), fractional-order system modeling methods for
thermal system are proposed in Poinot and
Trigeassou (2004) and Gabano and Poinot (2011),
and a fractional-order modeling method for permanent
magnet synchronous motor (PMSM) velocity servo
system is studied by Yu et al. (2013). In Yu et al.
(2013), the overall PMSM velocity system model is dir-
ectly assumed to be a fractional-order model which is

identified using a digital simulation method. However,
without full consideration of the inherent characteris-
tics of different component mechanisms of PMSM, it is
rough to identify the PMSM model as a whole.

In this paper, a fractional-order modeling approach,
integrating electromagnetic part modeling and mechan-
ical part modeling, is proposed for the PMSM speed
servo system. The approach is based on the fact that the
PMSM speed servo system can be divided into two
parts, the electromagnetic part converting armature
voltage into electromagnetic torque, and the mechan-
ical part generating rotor rotation under the effect of
electromagnetic torque. Equation (1) can be used to
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describe the electromagnetic part and equation (2) can
be used to describe the mechanical part

U� E ¼ U� Cen ¼ Riþ L
d#i

dt#
ð1Þ

T� TL ¼ Cmði� iLÞ ¼
GD2

375

d�n

dt�
ð2Þ

In equation (1), the U is armature voltage, E is back
electromotive force, the Ce is induced electromotive
force coefficient, the n is motor speed, the R is armature
resistance, the i is armature current and the L is arma-
ture inductance. In equation (2), the T is electromagnetic
torque, the TL is the equivalent torque of load, the Cm is
torque coefficient, the iL is equivalent current of load and
the GD2 is flywheel inertia.

The parameters of these two parts are identified
respectively and then the fractional-order mathematical
model is obtained. Open-loop simulations and
experiments are performed and the frequency response
of the proposed models and the actual PMSM are
obtained and compared. According to the obtained
integer-order model and fractional-order model, three
groups of PI controllers are designed for the PMSM
speed servo system. PMSM speed-tracking simulations
and experiments are performed using these PI control-
lers and the control performances are compared.

In this paper, firstly, fractional-order model structure
combining an electromagnetic part and a mechanical
part of a PMSM speed servo system is proposed.
Secondly, a digital simulation method is applied to iden-
tify the parameters of these two parts, and the fractional-
order model of PMSM speed servo system is integrated.
Finally, the obtained fractional-order model is verified
by open-loop frequency response tests and closed-loop
speed-tracking simulations and experiments, using the PI
controllers designed according to the traditional integer-
order model and the proposed fractional-order model.

The rest of this paper is organized as follows, frac-
tional-order model structure of PMSM is discussed in
Section 2, time-domain identification method of
fractional-order system modeling is presented in
Section 3, system identification experiments are per-
formed and the parameters of the electromagnetic
part and mechanical part are identified in Section 4,
open-loop simulations and experiments are performed
and the frequency response of the proposed models and
the actual PMSM are compared in Section 5. Three
groups of PI speed controllers are designed for a
PMSM speed servo system according to the integer-
order model and the fractional-order model obtained
in this paper. Motor speed-tracking simulations and
experiments are performed using these controllers,
and the deviations between the simulation results and

experimental results of these control systems are com-
pared respectively. The conclusion is given in Section 6.

2. Fractional-order model of the PMSM
speed servo system

Based on the motor unified theory, a three-phase static
coordinate system can be transmitted into a two-phase
rotary coordinate system after the space vector trans-
formation. Therefore, a three-phase AC motor can be
equivalent to aDCmotor. Suppose that the d-axis and q-
axis represent the axes in a two-phase rotary coordinate
system. The direction of the d-axis is set to be the direc-
tion of the rotor flux vector and the q-axis is set to point
in the vertical direction of the d-axis. Thus, the three-
phase stator current of a motor can be decoupled into
two DC current components, the excitation component
id and the torque component iq. For a PMSM, whose
rotor flux is generated by a permanent magnet, the exci-
tation component id is set to be zero and the torque com-
ponent iq is equivalent to the armature current of a DC
motor. Then, the mathematical model of the PMSM is
described by equation (3) and (4) (Chen, 2003)

uq � E ¼ uq � Cen ¼ Riq þ L
diq

dt
ð3Þ

T� TL ¼ Cmðiq � iLÞ ¼
GD2

375

dn

dt
ð4Þ

The real objects are generally fractional (Nakagava
and Sorimachi, 1992; Podlubny, 1999b). The real
inductor behavior can be better described by a frac-
tional-order model (Petras et al., 2009; Valsa, 2012).
Since inductors are the essential components of the
electromagnetic part, the model of the electromagnetic
part should also be fractional. Thus, the electromag-
netic part can be described as shown in equation (5),
where the range of fractional order # is (0, 2)

uq � E ¼ uq � Cen ¼ Riq þ L
d#iq

dt#
ð5Þ

The mechanical equation of the motor in equation (4)
(Chen, 2003) is generated with the assumption that the
moment of inertia is homogeneously distributed and
physical material is an ideal block. In reality, no phys-
ical component perfectly satisfies this assumption.
Thus, the mechanical part of the PMSM may also be
fractional, as shown in equation (6), where the range of
fractional order � is (0, 2)

T� TL ¼ Cmðiq � iLÞ ¼
GD2

375

d�n

dt�
ð6Þ
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Under zero initial conditions, the transfer functions of
two parts are shown in equation (7) and (8)

G1ðsÞ ¼
iqðsÞ

uqðsÞ � EðsÞ
¼

1=L

s# þ R=L
ð7Þ

G2ðsÞ ¼
nðsÞ

iqðsÞ � iLðsÞ
¼

375

GD2

Cm

s�
ð8Þ

Then, the fractional-order mathematical model of
the PMSM is obtained as shown in Figure 1.

3. Time-domain identification for the
fractional-order system

Theoretically, the fractional-order system is infinite-
dimensional, so it is necessary to apply some special
ways to study it. One of the major methods is to con-
vert the fractional-order transfer function into an inte-
ger-order rational function using an approximation or
discretization method. The integer-order approxima-
tion method is applied to approach the fractional-
order system in this paper.

3.1. Approximation of fractional-order integrator

The fractional-order integrator 1=s� can be approached
by connecting an integer-order integrator and a frac-
tional-order differentiator approximated by an
Oustaloup filter (Oustaloup, 1995; Oustaloup et al.,
2000) in series (Poinot and Trigeassou, 2004).
Suppose that the frequency band in which the differen-
tiator needs to be approximated is (!L, !H) and the
order of the fractional-order integrator is �¼ 1� �,
where � is the order of the differentiator. The approxi-
mated fractional-order integrator can be described by
equation (9)

I�� ðsÞ ¼
1

s�
¼

1

s
� s� �

1

s
� !1��

H

Y2Nþ1
t¼1

1þ s=w,
t

1þ s=wt

Y2Nþ1
t¼1

w,
t

wt
ð9Þ

where

w,
t ¼ !L

!H

!L

� �tþ1
2
��1

2Nþ1

ð10Þ

wt ¼ !L
!H

!L

� � t�1
2
�

2Nþ1

ð11Þ

2Nþ 1 is the order of the filter (N is a positive integer).
Introduce two variables G� and C� as described by

equation (12). The values of G� and C� guarantee that
the mode of the fractional-order integrator is 1 when
the angular frequency is 1 rad/s

G� ¼ !
1��
H ,C� ¼

Y2Nþ1
t¼1

w,
t

wt
ð12Þ

Thus, the fractional-order integrator can be described
by equation (13)

I�� ðsÞ ¼
G�C�
s

Y2Nþ1
t¼1

1þ s=w,
t

1þ s=wt
ð13Þ

Introducing 2Nþ 2 states, the block diagram of the
fractional-order integrator is shown in Figure 2.

Introduce a variable � described by equation (14)
(Poinot and Trigeassou, 2004)

� ¼
wt

w,
t

¼
!H

!L

� � 1��
2Nþ1

ð14Þ

Then based on Figure 2 and equation (14), the frac-
tional-order integrator can be approximated by a
state equation as in equation (15) (Poinot and
Trigeassou, 2004)

MI _xI ¼ AIxI þ BIuI

yI ¼ CIxI
ð15Þ

Figure 1. Fractional-order mathematical model of the PMSM.

Figure 2. Block diagram of the approximated fractional-order

integrator.
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where MI, AI, BI and CI are described by equation (16)
and (17)

MI ¼

1 0 � � � � � � 0

�� 1 ..
.

0 �� 1 ..
.

..

. . .
. . .

.
0

0 � � � 0 �� 1

2
666666664

3
777777775
, BI ¼

G�

0

..

.

..

.

0

2
66666664

3
77777775
,

CI ¼

0

..

.

..

.

0

C�

2
66666664

3
77777775

T

ð16Þ

AI ¼

1 0 � � � � � � 0

w1 �w1
..
.

0 w2 �w2
..
.

..

. . .
. . .

.
0

0 � � � 0 w2Nþ1 �w2Nþ1

2
666666664

3
777777775
,

xI ¼

x1

x2

..

.

..

.

x2Nþ2

2
66666664

3
77777775

ð17Þ

The state equation can also be converted into the
following form

_xI ¼ A�I xI þ B�I uI

yI ¼ CIxI
ð18Þ

where

A�I ¼M�1I AI

B�I ¼M�1I BI

ð19Þ

Thus, the approximated system of the fractional-order
integrator, I�� ðsÞ, can be represented as a state space
form shown in Figure 3.

3.2. Approximation of the fractional-order system

Considering the following fractional-order model

d�yðtÞ

dt�
þ ayðtÞ ¼ buðtÞ ð20Þ

the transfer function can be obtained after a Laplace
transform on both sides

GðsÞ ¼
b

s� þ a
ð21Þ

Introduce state x(t), satisfying

XðsÞ ¼
1

s� þ a
UðsÞ ð22Þ

Then the fractional-order model shown in equation (20)
can be described as the following state equation

d�xðtÞ

dt�
¼ �axðtÞ þ uðtÞ

yðtÞ ¼ bxðtÞ,

ð23Þ

with X(0)¼ 0 and U(0)¼ 0. The corresponding system
structure is shown in Figure 4.

Taking the state equation of the approximated
system in equation (23) into the representation of a
fractional-order integrator in equation (18), yields

_xI ¼ A�I xI þ B�I uI ¼ A�I xI þ B�I ðu� ayIÞ

yI ¼ byI ¼ bCIxI
ð24Þ

Then the integer-order state equation of the approxi-
mated system can be obtained

_xI ¼ ðA
�
I � B�ICIaÞxI þ B�I u

y ¼ bCIxI
ð25Þ

Figure 4. Structure of the fractional-order model.

s

1
IB IC

IA

Ix
Iu Iy

Figure 3. State space representation of the fractional-order

integrator.
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Since the order of the fractional-order integrator I�� ðsÞ is
determined by variable �, all the characteristics of the
system model shown in equation (25) are determined by
�, a and b.

3.3. Identification of the fractional-order model

Suppose that the fractional-order system to be identi-
fied is described by equation (26)

GðsÞ ¼
b

s� þ a
ð26Þ

Known from the previous section, the system above
can be approximated by the following state equation

_x ¼ Að�Þxþ Bð�Þu

y ¼ Cð�Þx
ð27Þ

where �T ¼ � a b
� �

, Að�Þ ¼ A�I � B�ICIa, Bð�Þ ¼ B�I
and Cð�Þ ¼ bCI:

The key issue of identification is the estimation
of the fractional order � in equation (26). A nonlinear
identification method (Poinot and Trigeassou, 2004)
is applied in this paper. Suppose that K pairs
of input-output sampled data (uk,yk) have been
obtained with t as the measuring time, Te as the
sampling period (t¼KTe) and y�k as the output
measurement.

Define � as the estimation of the model parameter
vector. Then based on the parameter estimation � and
input signal uk, the output estimation ŷk can be
obtained from equation (27) by software simulation.
The deviation between the estimated output and
actual output at each sampling point can be calculated
by equation (28)

"k ¼ y�k � ŷkðu, �Þ ð28Þ

where k ¼ 1, 2, . . . ,K. The sum of square deviations can
be obtained as an optimizing index with the data from
all the sampling points

Jð�Þ ¼
XK
k¼1

"2k ð29Þ

The optimal value of system parameters �opt can be
obtained by minimizing the index J. For this purpose,
Marquardt’s algorithm (Marquardt, 1963) is applied
for iterative calculation to get the optimized param-
eters. This algorithm ensures robust convergence,
even with a bad initialization of �, in the vicinity of
the global optimum (Poinot and Trigeassou, 2004).

Marquardt’s algorithm estimates the parameters itera-
tively by

�iþ1 ¼ �i þ ðJ,,�i þ lIÞ�1J,�i ð30Þ

where �i and �iþ 1 represent the parameter vectors
obtained after i and iþ 1 iterative calculations, l is a
positive damping factor determining the step size of the
iterative algorithm, I is a unit matrix, J,�i and J,,�i are
described as,

J,�i ¼
XK
k¼1

"k�yk,�i ð31Þ

J,,�i ¼
XK
k¼1

�yk,�i�
T
yk,�i

ð32Þ

where �yk,�i is the output sensitivity function defined as
(Poinot and Trigeassou, 2004)

�yk,�i ¼
@ŷk
@�

����
�¼�i

, k ¼ 1, 2, . . . ,K ð33Þ

Introduce the state sensitivity function defined as
(Poinot and Trigeassou, 2004)

�xk,�i ¼
@xk
@�

����
�¼�i

, k ¼ 1, 2, . . . ,K ð34Þ

Assume that there are m parameters in �, taking the
derivative of equation (27) with respect to �l, where �l
represents the l – th parameter in �, yields

@ _x

@�l
¼ _�x,�l ¼ Að�Þ�x,�l þ

@Að�Þ

@�l
xþ

@Bð�Þ

@�l
u

@y

@�l
¼ �y,�l ¼ Cð�Þ�x,�l þ

@Cð�Þ

@�l
x

ð35Þ

where l ¼ 1, 2, . . . ,m. Taking the state x and input u as
inputs in equation (27), �x,�l as system states and �y,�l as
outputs, the state equations of �x,�l can be obtained

_�x,�l ¼ Að�Þ�x,�l þ
@Að�Þ

@�l

@Bð�Þ

@�l

� �
�

x

u

� �

�y,�l ¼ Cð�Þ�x,�l þ
@Cð�Þ

@�l
0

� �
�

x

u

� � ð36Þ

where l ¼ 1, 2, . . . ,m. The state sensitivity function and
output sensitivity function at each sampling point can
be calculated by solving the state equation of each �x,�l
using the lsim function in MATLAB.

Based on the principle mentioned above, the proced-
ure of the algorithm is summarized as follows:

1. Select a group of parameters as the estimated ones, �.
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2. Calculate the system states x and outputs ŷ(u,�)
based on the sampled input uk and estimated param-
eters using the lsim function in MATLAB.

3. Calculate the sum of square deviations J and judge
whether the termination requirement is satisfied. If
the variation of J is smaller than a pre-set threshold,
terminate the iterative calculation and then go to
Step 6. Otherwise, go to step 4.

4. Calculate the output sensitivity function at each
sampling point by solving the state equations (See
equation (36)) of its elements using the lsim function
in MATLAB.

5. Calculate the new parameters using equation (30)
and take them as the current estimated ones. Go
back to step 2.

6. Present the parameters obtained in the last loop and
end the process.

The initialization of parameters is crucial for the
algorithm to allow the convergence to the global
optimum. In order to avoid convergence to the
local optimum, a variety of initial values of param-
eters should be tried and checked to see whether the
algorithm could give better results. Each initial value
is selected from the feasible region of each param-
eter vector, based on the expected value range of
each parameter.

Suppose that the parameter vector to be identified is
�¼ (a,b), for instance, where amin� a� amax and
bmin� b� bmax. The value ranges of a and b can be
plotted as a feasible region of � in two-dimensional
space as shown in Figure 5.

The feasible region of � is divided into several sub-
regions. Assume that there is no more than one local
optimum in each sub-region, the initial parameter vec-
tors � are selected from each sub-region (located at the
median point of the sub-region). Then the identification
algorithm calculates the optimal parameter vectors
from each initial parameter vector and the best one
will be selected as the global optimum.

4. Fractional-order model identification
of the PMSM speed servo system

Using a method combining mechanical modeling and
numerical modeling, based on the fractional-order
model of the PMSM obtained in Section 2, the identi-
fication method proposed in Section 3 is applied to a
numerical approximation for the system parameters.
The model of the PMSM is divided into two parts,
the electromagnetic part and the mechanical part.
Identification experiments of these two parts are per-
formed respectively and the fractional-order model is
obtained by combining the parameters obtained in each
experiment.

4.1. PMSM speed servo system platform
introduction

The PMSM speed servo system platform is shown in
Figure 6, where ASR is the speed controller and ACR is
the current controller. Speed reference setting, speed
control, current control, motor speed/angle calculation
and space vector pulse width modulation (SVPWM)
are all implemented in TMS320F2812 TI-digital signal
processor (DSP). The details of this SVPWM control
algorithm can be found in Luo et al. (2008).

The motor used in this platform is Sanyo-
P10B18200BXS PMSM. The related parameters of
this PMSM are listed in Table 1.

The equivalent DC motor control system of the
PMSM is shown in Figure 7, where Cv(s) is the speed
controller, Ci(s) is the current controller, K0 is the
voltage conversion factor, K1 is the current conversion
factor, K2 is the speed conversion factor, R is the resist-
ance, L is the inductor, Cm is the torque coefficient, GD2

is the flywheel inertia and Ce is the induced electromo-
tive force coefficient.

4.2. System identification excitation signal

The selection of input signal is one of the key issues
affecting the identification result. Pseudo-random
binary sequence (PRBS) is the most widely used as a
system identification excitation signal because it can
persistently excite the system to be identified with
adjustable amplitude and period (Li, 1987). Besides,
the PRBS can be generated simply and will not be dis-
turbed by environmental changes. PRBS is selected to

maxamina

minb

maxb

a

b ),( 11 ba ),( 22 ba

Figure 5. Selection of the initial parameters.
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be the input signal of the system identification in this
paper.

4.3. Fractional-order model identification of the
electromagnetic part

4.3.1. Model identification setup. If the motor speed n in
equation (5) is zero during the sampling process, the
back electromotive force will also be zero and the volt-
age equation can be described by equation (37)

uq ¼ Riq þ L
d#iq

dt#
ð37Þ

In this way, the parameters of the electromagnetic part
can be identified based on the sampled q-axis voltage
and current. Therefore, the motor must be stationary

during the sampling process, which can be achieved by
the magnetic positioning technique (Li and Pi, 2010).

The mathematical model of PMSM in a two-phase
rotary coordinate (d – q coordinate) is described as
follows.

The flux equation

’d ¼ Ldid þ ’p

’q ¼ Lqiq
ð38Þ

the torque equation

Te ¼ 1:5np ’piq þ ðLd � LqÞidiq
	 


ð39Þ

and the mechanical equation

Te ¼ J
d!

dt
þ TL ð40Þ

where ’p is the flux of permanent magnet, id and iq are an
stator current components on the d- and q-axis respect-
ively, Ld and Lq are the inductance of the PMSM on the
d- and q-axis respectively, np is the number of pole pairs,
J is the moment of inertia and TL is the equivalent
torque of the load. For a surface mounted PMSM,
Lq¼Ld, so the torque equation becomes

Te ¼ 1:5np’piq ð41Þ

Based on the principle of SVPWM control (Luo
et al., 2008), the direction of the d-axis is set to be the
direction of the rotor flux vector and the q-axis is set at
the vertical direction of the d-axis. During the rotation

Figure 6. Space vector control system of the PMSM.

Table 1. Motor parameters.

Parameters Symbol Unit V alue

Rated power PR kW 2.0

Rated speed NR min�1 2000

Rated torque TR Nm 9.3

Rated current IR A 9.5

Torque coefficient Cm Nm/A 1.32

Induced voltage coefficient Ce mV/min�1 46.0

Phase resistance R � 0.5

Electrical time constant te ms 7.5

Mechanical time constant tm ms 6.3

Number of poles np - 8

Moment of inertia Jm kgm2 73.08� 10�4
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of the rotor, the DSP calculates the rotation angle and
rotor speed based on the optical encoder feedback.

Now suppose that the d-q coordinate in the DSP is
fixed by the servo program, represented by the ds-axis
and the qs-axis in Figure 8, while the ‘‘actual coordin-
ate’’, synchronized with the rotor flux, is represented by
the dr-axis and the qr-axis. Suppose that the stator coil
is imported with a current vector with constant magni-
tude (is) and direction (points to the direction of the
qs-axis), as shown in Figure 8, a static circular magnetic
field will be generated in the motor space.

Suppose that the rotor is originally stationary. From
the actual coordinate (dr-qr coordinate) point of view,
when the stator current is imported, it becomes

id ¼ is cos �

iq ¼ is sin �
ð42Þ

Thus, without load, the mechanical equation is
obtained

Te ¼ 1:5np’pis sin � ¼ J
d!

dt
ð43Þ

Since np, ’p and is are constant, the direction of torque
is determined by the angle, �, between the current
vector and the rotor flux. If 0<���, then Te> 0, the
rotor will rotate counterclockwise, if ��� � < 0, then
Te< 0, the rotor will rotate clockwise, if �¼ 0, then
Te¼ 0 and the rotor will not rotate.

Based on this principle, the experimental scheme can
be confirmed. Before the sampling process, a current
vector with constant magnitude (is) and direction (�)
is imported into the stator coil. Then the rotor flux
direction axis (dr-axis) will be dragged close to the cur-
rent vector is direction axis, as shown in Figure 8. After
a tiny oscillation, the rotor will eventually stop and stay
at the position corresponding to the current vector, as
shown in Figure 9. Then the PRBS is imported into the
qs-axis input voltage, with the ds-axis voltage remaining
at zero. The motor speed will be zero in the subsequent
experiment.

The electromagnetic part is an inertia part as shown
in Figure 10, under the condition that the rotor speed is
always zero. In Figure 10, K0 represents the conversion
factor from the per-unit value of the qs-axis stator
voltage uqs to its actual value uq, K1 represents the con-
version factor from the actual qs-axis current iq to its
per-unit value iqf in the DSP. During the sampling pro-
cess, the qs-axis current is with open-loop control. The
qs-axis stator voltage uqs and current iqf are sampled
respectively. The PRBS is imported into the qs-axis
stator voltage uqs after the rotor stops and the q-axis
current reaches a relative steady value (the current may
not be strictly steady because it is achieved without
current closed-loop control). The parameters of the
electromagnetic part are identified applying the identi-
fication method proposed in Section 3, with the qs-axis

Figure 7. Equivalent DC control system of the PMSM fractional-order model.

si
qi

di
o

rd

sd

rq
sq

Figure 8. Decomposition of is.

2262 Journal of Vibration and Control 22(9)



stator voltage being taken as the input signal and the
qs-axis current as the output signal.

4.3.2. Identification procedure. Based on the principle
mentioned in the previous section, the model identifica-
tion procedure is presented as follows:

1. Disconnect the speed loop and set the rotation angle
of the rotor to be a constant value. Set the q-axis
input voltage to be a small constant (0.1 per unit
value) and the d-axis input voltage to be zero in
the servo program.

2. Sample the q-axis stator voltage and the q-axis feed-
back current.

3. Set the q-axis input voltage to be the PRBS and keep
the d-axis input voltage as zero.

4. Applying the identification method proposed in
Section 3, identify the model parameters using
MATLAB software based on input-output data.

4.3.3. Identification experiment. The current conversion
factor K1 in Figure 10 can be obtained based on
the design of the servo drive. The stator current
of the motor is measured with a Hall sensor and
then converted into the input voltage signal of the
DSP’s A/D conversion module. The input voltage
of the DSP’s A/D conversion pin is described by
equation (44)

ui ¼ 1:5 þ 0:025ip ð44Þ

where ip represents the actual stator current of the
motor. The input voltage range of the A/D conversion
pin of DSP is 0 – 3V, namely, 0V� ui� 3V. Thus

0 � 1:5þ 0:025ip � 3 ð45Þ

The analog input voltage is then converted into digital
value by the A/D conversion module in DSP. Then the
per-unit value of current if in the DSP is calculated by
equation (46)

if ¼
2

3
ui � 1 ð46Þ

Substituting ui with its representation shown in equa-
tion (44), it becomes

if ¼
2

3
ð1:5þ 0:025ipÞ � 1 ¼

1

60
ip ð47Þ

Equation (47) shows the relationship between the
actual stator current ip and its per-unit value if in
DSP. So the value of the current conversion factor is
K1¼ 1/60. Therefore, the actual q-axis current can be
obtained by

iq ¼
1

K1
iqf ¼ 60iqf ð48Þ

The conversion factor K0 can be obtained by motor
experiments in open-loop. Consider the voltage
equation

uq ¼ K0uqs ¼ Riq þ L
d#iq

dt#
þ Cen ð49Þ

If uqs is a constant value and the motor operates with a
constant load, the q-axis current and motor speed will
eventually reach stable states. Therefore, the term

si

o

rd

sd

rq
sq

Figure 9. Positioning of the rotor flux.
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qfi

qi
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Figure 10. Block diagram of the electromagnetic part

modeling.
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Riq þ L
d#iq
dt# can be approximated to a constant. In this

way, the voltage equation can be written as

uqs ¼
Ce

K0
nþ const ð50Þ

The value of K0 can be calculated by measuring uqs and
n and confirming their quantitative relation.

Eight pairs of (uqs,n) are measured and plotted as
data points in Figure 11. The quantitative relation
between uqs and n is obtained by fitting the data
points using the least square method. The obtained
relation can be described by equation (51), which is
also plotted as a red line in Figure 11

uqs¼ 0:0003207n þ 0:0487 ð51Þ

Therefore, Ce

K0
¼ 0:0003207. According to the motor

datasheet, Ce¼ 0.046, then it gives K0¼ 143.41. The
actual q-axis voltage can be obtained by

uq ¼ K0uqs ¼ 143:41uqs ð52Þ

Taking uq as the input signal and n as the output
signal, the transfer function of the electromagnetic
part is described by equation (53)

G1ðsÞ ¼
iq

uq
¼

1=L

s# þ R=L
ð53Þ

For the integer-order model, the order of # is 1, only
the inductance L and the resistance R need to be iden-
tified. For the fractional-order model, the inductance L,
the resistance R and the fractional-order # need to be
identified.

1024 pairs of input-output data are sampled, with the
sampling period Ts¼ 0.0005 s. The frequency band in
which the filter needs to approximate the fractional oper-
ator is (0.01 rad/s, 10,000 rad/s). The order of the filter
determines the accuracy of the approximated fractional
operator: the higher the order, the higher the accuracy.
However, the calculation time is also longer. Therefore,
to balance the accuracy and efficiency, the order is set to
be 9, namely, 2Nþ 1¼ 9, which is time-saving and
enough for precise identification.

The sampled q-axis input voltage is shown in Figure
12. The sampled q-axis current is shown in Figure 13.

The reference model of the identification method
mentioned in Section 3 is described by equation (26).
Taking the transfer function of the electromagnetic part
(equation (53)) into account, gives a¼R/L, b¼K0/L
and �¼#. The order � is represented by variable � in
the algorithm (See equation (14)). During the identifi-
cation of the fractional-order model, � is updated in
every iteration. In contrast, � is fixed to be 1 during
the identification of the integer-order model. In order
to improve the accuracy of the identification results, cal-
culations are performed from t¼ 0 s to obtain the simu-
lation outputs, but only the output data from t¼ 0.1 s
are used in the identification algorithm. The iterative
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Figure 11. Quantitative relation between uqs and n.
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Figure 13. The q-axis current.
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Figure 12. The q-axis input voltage.
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calculation will be terminated when the variation of J is
smaller than 0.0001, which means the parameters con-
verge to their stable values.

Using the identification method proposed in
Section 3, the parameters of the fractional-order
model are obtained, �¼ 0.9081, a¼ 127.3803 and
b¼ 83.6368. The optimal sum of square deviations,
J is 21.9403. Then it gives #¼ 0.9081, L¼ 11.956 mH
and R¼ 1.52 �. The fractional-order model of electro-
magnetic part is

G1fðsÞ ¼
1=L

s# þ R=L
¼

83:6368

s0:9081 þ 127:3803
ð54Þ

Simulation is performed based on the obtained frac-
tional-order model of the electromagnetic part, taking
the q-axis stator voltage samples as the input signal.
The estimated result of the q-axis current and the
actual q-axis current samples are showed in Figure 14,
where the red curve represents the simulation output
and the blue curve represents the actual output.

The parameters of the integer-order model are
obtained, a¼ 223.6513 and b¼ 136.4613. The optimal
sum of square deviations, J is 102.3944. Then it gives
L¼ 7.328 mH and R¼ 1.639 �. The integer-order
model of electromagnetic part is

G1iðsÞ ¼
1=L

sþ R=L
¼

136:4613

sþ 223:6513
ð55Þ

Simulation is performed based on the obtained inte-
ger-order model of the electromagnetic part, taking the
q-axis stator voltage samples as the input signal. The
estimated result of the q-axis current and the actual
q-axis current samples are showed in Figure 15, where
the red curve represents the simulation output and the
blue curve represents the actual output.

Comparing Figures 14 and 15, and the sum of square
deviations of two identification experiments, the con-
clusion is that the simulation output of the fractional-
order model is closer to the experimental output than
that of the integer-order model, the fitting effect of the
fractional-order model is better than that of the integer-
order model.

4.4. Fractional-order model identification of the
mechanical part

4.4.1. Model identification setup. The block diagram of
the mechanical part (marked in solid lines) is
shown in Figure 16, where uqr is the per-unit value of
the q-axis stator voltage and uq is its actual value, iq is
the q-axis stator current and iqf is its per-unit value in
DSP, and K2 represents the conversion factor from the
speed of motor n to its per-unit value nf in DSP. During
the experiment, the d-axis input voltage is zero while
the q-axis current loop and speed loop are
disconnected.

At first, the q-axis input voltage is set to be a con-
stant. The q-axis current iqf1 and rotor speed nf1 are
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Figure 14. The estimated and actual result of the q-axis current for fractional-order model.
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sampled respectively. When the rotor speed reaches a
relatively steady state (the speed may not be strictly
steady because it is achieved without current and
speed closed-loop control), PRBS is added into the
q-axis input voltage. The sampled q-axis current can
be divided into two components, one is generated by
the DC component (constant) of the q-axis voltage,
while the other is generated by the PRBS. Only the
latter component is used for identification. Similarly,

the motor speed can also be divided into two compo-
nents, one is generated by the DC component of the q-
axis current (generated by the DC component of q-axis
voltage), while the other is generated by the AC com-
ponent of the q-axis current (generated by the PRBS).
Only the latter component is used for identification. In
order to obtain the components only generated by the
PRBS, another process needs to be performed. The q-
axis input voltage should be set to be constant (equal to
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Figure 15. The estimated and actual result of the q-axis current for integer-order model.

Figure 16. Block diagram of the mechanical part modeling.

Zheng et al. 2267



the value in the previous process) again. Then the q-axis
current iqf2 and rotor speed nf2 are sampled respectively.
This time, the q-axis current is generated by the con-
stant q-axis voltage. The motor speed is generated by
the q-axis current obtained in this process. The q-axis
current, iqf, only generated by the PRBS is obtained by

iqf ¼ iqf1 � iqf2 ð56Þ

The motor speed, nf, only generated by the q-axis cur-
rent generated by the PRBS is obtained by

nf ¼ nf1 � nf2 ð57Þ

Then the parameters of the mechanical part are identi-
fied applying the identification method proposed in
Section 3, with the q-axis current iq being taken as the
input signal and the rotor speed n as the output signal.

4.4.2. Identification procedure. Based on the principle
mentioned in the previous section, the experimental
steps are confirmed as follows.

1. Disconnect the q-axis current loop and speed loop.
Set the rotation angle of the rotor to be the value
calculated based on the pulse signal transmitted by
the optical encoder.

2. Set the d-axis voltage to be zero and the q-axis volt-
age to be a small constant (0.3 per-unit value).
Sample the q-axis current and the rotor speed.

3. Perform step 2 again. When the motor current
reaches a steady state, add the PRBS into the
q-axis voltage.

4. Remove the DC components contained in the q-axis
current by subtracting the q-axis current obtained in
step 2 from that obtained in step 3. Remove the DC
components contained in the motor speed by sub-
tracting the motor speed obtained in step 2 from that
obtained in step 3.

5. Applying the identification method proposed in
Section 3, identify the model parameters using
MATLAB software based on input-output data.

4.4.3. Identification experiment. The speed feedback
coefficient K2 can be obtained based on the motor par-
ameters shown in Table 1. The rated motor speed is
2000 rpm, whose corresponding per-unit value in DSP
is 1. Therefore, K2, the conversion factor from actual
speed value to per-unit value, is 1/2000.

Taking iq as the input signal and n as the output
signal, the transfer function of the mechanical part is
described by equation (58)

G2ðsÞ ¼
n

iq
¼

375Cm

GD2s�
ð58Þ

For the integer-order model, the order � is 1, only the

term 375Cm

GD2 needs to be identified. For the fractional-

order model, both the order � and the term 375Cm

GD2 need

to be identified.

1024 pairs of input-output data are sampled, with
the sampling period Ts¼ 0.005 s. The frequency band
in which the filter needs to approximate the fractional
operator is (0.01 rad/s, 10, 000 rad/s). To balance the
accuracy and efficiency, the order of the filter is also
set to be 9.

The q-axis stator voltage is shown in Figure 17. The
q-axis current, iq1, generated by both the constant volt-
age and the PRBS, and iq2 generated only by the con-
stant component of uq, is shown in Figure 18.

The actual q-axis current iq, only generated by the
PRBS is obtained by equation (59)

iq ¼ iq1 � iq2 ð59Þ

The q-axis current iq is shown in Figure 19.
The motor speeds n1 generated by iq1, and n2 gener-

ated by iq2 are shown in Figure 20. The motor speed
only generated by the AC component of the q-axis cur-
rent (generated by the PRBS) is obtained by equation (60)

n ¼ n1 � n2 ð60Þ

The motor speed n is shown in Figure 21.
The reference model of identification method men-

tioned in Section 3 is described by equation (26).
Taking the transfer function of the mechanical part
(equation (58)) into account, it gives a¼ 0 and
b ¼ 375Cm

GD2 . The order � is represented by variable � in
the algorithm. In the parameter vector, a is fixed to be
zero. During the identification of the fractional-order
model, � is updated in every iteration. In contrast, � is
fixed to be 1 during the identification of the integer-
order model. In order to improve the accuracy of iden-
tification results, calculations are performed from
t¼ 0 s to obtain the simulation outputs, but only the
output data from t¼ 1.5 s are used in the identification
algorithm. The iterative calculation will be terminated
when the variation of J is smaller than 0.0001.

Using the identification method proposed in
Section 3, the system parameters of the fractional-
order model are obtained, �¼ 1.0463 and
b¼ 1033.084. The optimal sum of square deviations,
J is 5087.6517. Then the fractional-order model of the
mechanical part is

G2fðsÞ ¼
375Cm

GD2s�
¼

1033:084

s1:0463
ð61Þ
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Simulation is performed based on the obtained frac-
tional-order model of the mechanical part, taking the
q-axis stator current samples as the input signal. The
estimated result of the motor speed and the actual
motor speed samples are showed in Figure 22, where
the red curve represents the simulation output and the
blue curve represents the actual output.

The system parameters of the integer-order model
are obtained, b¼ 925.8358. The optimal sum of

square deviations, J is 15708.4198. Then the integer-
order model of the mechanical part is

G2iðsÞ ¼
375Cm

GD2s
¼

925:8358

s
ð62Þ

Simulation is performed based on the obtained inte-
ger-order model of the mechanical part, taking the
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Figure 17. The q-axis stator voltage.
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q-axis stator current samples as the input signal. The
estimated result of the motor speed and the actual
motor speed samples are showed in Figure 23, where
the red curve represents the simulation output and the
blue curve represents the actual output.

Comparing Figures 22 and 23, and the sum of square
deviations of two identification experiments, the con-
clusion is that the simulation output of the fractional-
order model is closer to the experimental output than
that of the integer-order model, the fitting effect of the

fractional-order model is better than that of the integer-
order model.

5. Verification of the PMSM
fractional-order model

5.1. Experimental platform

The PMSM speed-control platform is shown in
Figure 24. The motor to be used is the
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Figure 19. The q-axis current, iq.
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Figure 22. Estimated and actual result of the motor speed for the fractional-order model.
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Sanyo-P10B18200BXS PMSM. The servo drive is
laboratory-made and the DSP used in the control
board is TMS320F2812 TI-DSP. The software plat-
form used on the PC is the Code Composer Studio
(CCS) developed by Texas Instruments. The PC is con-
nected with servo drive through an emulator, control-
ling the motor to operate.

5.2. Model verification setup

The deviation between the simulation output and experi-
mental output reflects the accuracy of the mathematical

model of an actual system. Suppose that two models
have been established for an actual system. Simulations
and experiments are then performed based on these two
models under equal conditions. If the deviation
between the simulation output and experimental
output of one model is smaller than that of another,
it means that the former one is closer to the character-
istics of the actual system. Now suppose that simula-
tions and experiments are performed respectively,
based on the integer-order model and fractional-order
model of the PMSM. If the deviation between the
experimental output and simulation output of the frac-
tional-order system is smaller than that of the experi-
mental output and simulation output of the integer-
order system, it means the fractional-order model is
closer to the intrinsic characteristics of the PMSM
than the integer-order model. The rationality of the frac-
tional-order model is then demonstrated. Based on this
assumption, model verification experiments are per-
formed in open-loop and closed-loop respectively.

5.3. Model verification based on open-loop
response

The transfer function of the PMSM (see Figure 1) can
be described by equation (63)

GðsÞ ¼
375Cm

GD2L

s#þ� þ R
L s

� þ 375CmCe

GD2L

ð63Þ
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Figure 23. Estimated and actual result of the motor speed for the integer-order model.

Figure 24. The PMSM speed-control platform.

2272 Journal of Vibration and Control 22(9)



Based on the identification results in Section 4, the
fractional-order model of the PMSM is

Gf ðsÞ ¼
86405:3895

s1:9544 þ 127:3803s1:0463 þ 3974:6479
ð64Þ

The integer-order model is

GiðsÞ ¼
126340:7569

s2 þ 223:6513sþ 5811:674
ð65Þ

Open-loop frequency response experiments are per-
formed on the PMSM, taking uq as input signal and n
as output signal. Eight groups of (!,A,�) are measured
and plotted as data points in a magnitude-frequency
characteristic figure (Figure 25) and a phase-frequency
characteristic figure (Figure 26).

The magnitude-frequency characteristics and phase-
frequency characteristics of the fractional-order and
integer-order models of PMSM are also plotted in
Figures 25 and 26 respectively, where the red curves
represent the characteristics of the fractional-order
model and the green curves represent those of the inte-
ger-order model. Figure 25 shows that the magnitude-
frequency characteristics of two models are close to
each other. Figure 26 shows that the phase-frequency
characteristics of two models show differences in the
middle- and high-frequency range. Specifically, the
characteristics of the fractional-order model is closer

to the actual characteristics of the PMSM than that
of the integer-order model.

5.4. Model verification based on closed-loop
response

If the current controller in Figure 7 is set to be Ci(s)¼ 1
and the speed feedback is converted into a unit feed-
back system, the PMSM speed-control system can be
simplified as shown in Figure 27.

In Figure 27, Gs(s) is the open-loop transfer function
of the speed system, which can be described by equa-
tion (66)

GsðsÞ ¼
K2K0

375Cm

GD2L

s#þ� þ RþK1K0

L s� þ 375CmCe

GD2L

ð66Þ

Using the parameters obtained in Section 4, the frac-
tional-order transfer function is

GsfðsÞ ¼
6195:698

s1:9544 þ 327:2898s1:0463 þ 3974:6479
ð67Þ

The integer-order transfer function is

GsiðsÞ ¼
9059:264

s2 þ 549:8166sþ 5811:674
ð68Þ
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In order to verify the proposed fractional-order
model, three groups of PI controllers are designed
applying the gain crossover frequency and phase
margin specifications, based on the obtained frac-
tional-order and integer-order models. Then the
closed-loop speed-tracking simulations are performed,
using the controllers designed for the fractional-order
model to control the fractional-order model, and those
for the integer-order model to control the integer-order
model. Closed-loop speed-tracking experiments are
also performed on the PMSM control platform using
these controllers to control the PMSM. Taking the inte-
gral of absolute deviations as the criterion

J ¼

Z ts

0

neðtÞ � nsðtÞ
�� ��dt ð69Þ

where ne represents the experimental output, ns repre-
sents the simulation output and ts represents the simu-
lation time, the simulation outputs of two models are
then compared with their corresponding experimental
outputs to clarify the advantage of the fractional-order
model.

The PI controller has the form shown in
equation (70)

CðsÞ ¼ Kp 1þ
Ki

s

� �
ð70Þ

The PI controller is designed based on the following
gain crossover frequency and phase margin specifica-
tions (Xue at el., 2006)

Cð!cÞGð!cÞ
�� �� ¼ 1 ð71Þ

Arg Cð!cÞGð!cÞ½ � ¼ ��þ ’m ð72Þ

where !c represents the gain crossover frequency and
’m represents the phase margin.

The gain and phase of the PI controller are

Cð!Þ
�� �� ¼ Kp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

K2
i

!2

r
ð73Þ
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Figure 26. Phase-frequency characteristic.

Figure 27. Simplified diagram of the PMSM speed control

system.
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Arg Cð!Þ½ � ¼ � tan�1
Ki

!
ð74Þ

Assume that the plant model to be controlled has the
following form

GðsÞ ¼
c

s� þ as	 þ b
ð75Þ

Then the gain and phase of this model can be obtained

Gð!Þ
�� �� ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Að!Þ2 þ Bð!Þ2
q ð76Þ

Arg Gð!Þ½ � ¼ �tan�1
Bð!Þ

Að!Þ
ð77Þ

where

Að!Þ ¼ !� cos
�

2
�

� 
þ a!	 cos

�

2
	

� 
þ b ð78Þ

Bð!Þ ¼ !� sin
�

2
�

� 
þ a!	 sin

�

2
	

� 
ð79Þ

Based on the gain and phase margin specifications, we
get the following equations

Kp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

K2
i

!2
c

s
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Að!cÞ
2
þ Bð!cÞ

2
q ¼ 1 ð80Þ

�tan�1
Ki

!c
� tan�1

Bð!cÞ

Að!cÞ
¼ ��þ ’m ð81Þ

Thus, according to different gain crossover frequency
and phase margin requirements, the parameters of PI
controllers can be obtained by solving equations (80)
and (81).

5.4.1. !c ¼ 20 rad=s, ’m ¼ 75	. Given the gain cross-
over frequency !c¼ 20 rad/s and phase margin
’m ¼ 75	, CA(s) as designed for the integer-order
model and CB(s) as designed for the fractional-order
model are

CAðsÞ ¼ 1:018 1þ
17:511

s

� �
ð82Þ

CBðsÞ ¼ 1:045 1þ
15:215

s

� �
ð83Þ

The open-loop Bode plots of two control systems are
shown in Figure 28, where the blue curve represents

the characteristics of the integer-order system and
the red curve represents that of the fractional-order
system.

With the speed reference as 1000 rpm, the speed step
response experiments are implemented on MATLAB
and the PMSM speed-control platform as shown in
Figure 24 using CA(s) and CB(s). The comparison
between simulation output and experimental output
of the integer-order control system is shown in
Figure 29(a), where the red curve represents the simu-
lation output and the blue curve represents the experi-
mental output. The comparison between the simulation
output and experimental output of the fractional-order
control system is shown in Figure 29(b), where the red
curve represents the simulation output and the blue
curve represents the experimental output. The integral
of deviation between the fractional-order system output
and experimental output is 7.192, while that of the
integer-order system output and experimental output
is 9.839.

5.4.2. !c ¼ 35 rad=s, ’m ¼ 75	. Given the gain cross-
over frequency !c¼ 35 rad/s and phase margin
’m ¼ 75	, CA(s) as designed for the integer-order
model and CB(s) as designed for the fractional-order
model are

CAðsÞ ¼ 1:823 1þ
23:084

s

� �
ð84Þ

CBðsÞ ¼ 1:946 1þ
18:776

s

� �
ð85Þ

The open-loop Bode plots of two control systems
are shown in Figure 30, where the blue curve repre-
sents the characteristics of the integer-order system
and the red curve represents that of the fractional-
order system.

With the speed reference as 1000 rpm, the speed
step response experiments are implemented on
MATLAB and the PMSM speed-control platform
using CA(s) and CB(s). The comparison between simu-
lation output and experimental output of integer-order
control system is shown in Figure 31(a), where the red
curve represents the simulation output and the blue
curve represents the experimental output. The com-
parison between simulation output and experimental
output of the fractional-order control system is shown
in Figure 31(b), where the red curve represents the
simulation output and the blue curve represents the
experimental output. The integral of deviation
between the fractional-order system output and
experimental output is 5.952, while that of the inte-
ger-order system output and experimental output is
12.382.
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5.4.3. !c ¼ 50 rad=s, ’m ¼ 75	. Given the gain cross-
over frequency !c¼ 50 rad/s and phase margin
’m ¼ 75	, CA(s) as designed for the integer-order
model and CB(s) as designed for the fractional-order
model are

CAðsÞ ¼ 2:727 1þ
25:333

s

� �
ð86Þ

CBðsÞ ¼ 2:964 1þ
19:541

s

� �
ð87Þ

The open-loop Bode plots of two control systems
are shown in Figure 32, where the blue curve repre-
sents the characteristics of the integer-order system
and the red curve represents that of the fractional-
order system.

With the speed reference as 1000 rpm, the speed step
response experiments are implemented on MATLAB
and the PMSM speed-control platform using CA(s)
and CB(s). The comparison between simulation
output and experimental output of the integer-order
control system is shown in Figure 33(a), where the
red curve represents the simulation output and
the blue curve represents the experimental output.
The comparison between simulation output and experi-
mental output of the fractional-order control system is

shown in Figure 33(b), where the red curve represents
the simulation output and the blue curve represents the
experimental output.

The integral of deviation between the fractional-
order system output and experimental output is 6.31,
while that of the integer-order system output and
experimental output is 12.073.

5.5. Analysis of simulation and experimental
results

Open-loop simulation and experimental results show
that the frequency response of the fractional-order
model of the PMSM is closer to the actual frequency
response of the PMSM than that of the integer-order
model. Speed-tracking simulation and experimental
results in closed-loop using three groups of PI control-
lers show that the deviations between experimental out-
puts and simulation outputs of the fractional-order
system are smaller than those between experimental
outputs and simulation outputs of the integer-order
system. Therefore, it is verified that the fractional-
order model proposed in this paper is more accurate
and closer to the true nature of the PMSM over the
integer-order model.

In practical applications, the identification
method proposed in this paper can be applied to
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establish a fractional-order model of the PMSM, which
is more accurate than the integer-order model. The
speed controllers can be designed based on the obtained
fractional-order model and then tuned based on the
simulation results. Since the fractional-order model is
closer to the true nature of the PMSM than the integer-
order model, the actual control performance of the

controller designed based on the fractional-order
model will be more satisfying and reliable.

6. Conclusion

By applying a method combining mechanical modeling
and numerical modeling, fractional-order modeling of
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PMSM is studied. Based on the component mechanism
of the PMSM, system identification experiments and
parameter identification are performed on the electro-
magnetic part and mechanical part of the PMSM,
applying the presented system identification scheme,
obtaining the fractional-order and integer-order

models of the PMSM. Open-loop simulations and
experiments are performed, demonstrating that the fre-
quency response of the fractional-order model of the
PMSM is closer to the actual frequency response of
the PMSM compared to that of the integer-order
model. Three groups of PI speed controllers are
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designed for the PMSM speed servo system according
to the integer-order model and the fractional-order
model obtained in this paper respectively. Speed-track-
ing simulations and experiments are performed on
MATLAB and the PMSM speed-control system using
these PI controllers. Simulation results and
experimental results show that the deviations between
experimental outputs and simulation outputs of the
fractional-order system are smaller than those between
experimental outputs and simulation outputs of the
integer-order system, indicating that the fractional-
order system model obtained in this paper is more
accurate and closer to the nature of the PMSM over
the traditional integer-order model. The identification
method proposed in this paper can be applied to estab-
lish a fractional-order model of the PMSM. The per-
formance of the control system designed based on this
fractional-order model will be more satisfying and
reliable.

Funding

The author(s) received no financial support for the research,
authorship, and/or publication of this article.

References

Aguila-Camacho N, Duarte-Mermoud MA and Gallegos JA

(2014) Lyapunov functions for fractional order systems.

Communications in Nonlinear Science and Numerical

Simulation 19(9): 2951–2957.

Chen BS (2003) Electric Drive Automatic Control System:

Motion Control Systems. Beijing: China Machine Press.
Gabano JD and Poinot T (2011) Fractional modelling and

identification of thermal systems. Signal Processing 91(3):

531–541.

Hajiloo A, Nariman-zadeh N and Moeini A (2012) Pareto

optimal robust design of fractional-order PID controllers

for systems with probabilistic uncertainties. Mechatronics

22(6): 788–801.
Hartley TT and Lorenzo CF (2003) Fractional-order system

identification based on continuous-order distributions.

Signal Processing 83(11): 2287–2300.
Kilbas AA, Srivastava HM and Trujillo JJ (2006) Theory and

Applications of Fractional Differential Equations.

Amsterdam: Elsevier Science.
Ladaci S, Loiseau JJ and Charef A (2008) Fractional order

adaptive high-gain controllers for a class of linear systems.

Communications in Nonlinear Science and Numerical

Simulation 13(4): 707–714.

Li BN (1987) Pseudo Random Signal and Related

Identification. Beijing: Science Press.
Li Y, Chen YQ and Podlubny I (2010) Stability of fractional-

order nonlinear dynamic systems: Lyapunov direct

method and generalized mittag-leffler stability.

Computers and Mathematics with Applications 59(5):

1810–1821.
Li YH and Pi YG (2010) Research of the initial position

based on the principle of magnetic orientation. Electric

Drive 40(3): 28–31.
Luo Y, Chen YQ and Pi YG (2008) Authentic simulation

studies of periodic adaptive learning compensation of cog-

ging effect in PMSM position servo system. In: Chinese

control and decision conference, 2008, Yantai, China, 2–4

July 2008, pp. 4760–4765. Yantai: IEEE.
Luo Y, Chen YQ and Pi YG (2011) Experimental study of

fractional order proportional derivative controller synthe-

sis for fractional order systems. Mechatronics 21(1):

204–214.
Marquardt DW (1963) An algorithm for least-squares esti-

mation of nonlinear parameters. Journal of Society

Industrial Applied Mathemetics 11(2): 431–441.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1000

1200(a) (b)

time/s

n/
rp

m
experimental output
IO model output

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1000

1200

time/s

n/
rp

m

experimental output
FO model output

Figure 33. Speed step responses of two systems. (a) Responses of the integer-order system. (b) Responses of the fractional-order

system.

Zheng et al. 2279



Nakagava M and Sorimachi K (1992) Basic characteristics of
a fractance device. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences E75-

A(12): 1814–1818.
Oustaloup A (1995) La Dérivation Non Entière: Théorie,
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Article

On comparison between iterative
methods for solving nonlinear
optimal control problems

Hossein Jafari1,2, Saber Ghasempour1 and Dumitru Baleanu3,4

Abstract

Recently some semi-analytical methods have been introduced for solving a class of nonlinear optimal control problems

such as the Adomian decomposition method, homotopy perturbation method and modified variational iteration method.

In this manuscript we compare these methods for solving a type of nonlinear optimal control problem. We prove that

these methods are equivalent, which means that they use the same iterative formula to obtain the approximate/analytical

solution.

Keywords

Nonlinear optimal control problem, Adomian decomposition methods, homotopy perturbation method, Pontryagin’s

maximum principle, variational homotopy perturbation method

1. Introduction

The theory of optimal control and its applications are
now widely used in multi-disciplinary applications such
as aircraft systems, biomedicine, robotics, etc. Optimal
control of nonlinear systems is a challenging task which
has been widely studied. It is known that a nonlinear
optimal control problem (OCP) can be converted to a
Hamilton–Jacobi–Bellman (HJB) partial differential
equation or a nonlinear two-point boundary value
problem (TPBVP). Many researchers have attempted
to solve these two problems (see Diehl et al., 2005;
Fakharian and Behshti, 2008; Fakharian et al., 2010;
Fakharzadeh, 2012; Hämäläinen and Halme, 1976;
Jajarmi et al., 2011; Manseur et al., 2005; Matinfar
and Saeidy, 2014; Nik et al., 2012, and the references
therein).

Several computational methods have been used for
solving nonlinear OCPs. Fakharian et al. used the
modified Adomian decomposition method (ADM)
(Fakharian and Behshti, 2008; Fakharian et al.,
2010), Saberi Nik et al. applied the homotopy perturb-
ation method (HPM) (Nik et al., 2012), Jajarmi et al.
used the series method (Jajarmi et al., 2011), Manseur
et al. applied the coupled Adomian/Alienor method
(Manseur et al., 2005), Fakharzadeh used differential
transformation method (DTM) (Fakharzadeh, 2012)

and so on (Diehl et al., 2005; Hämäläinen and
Halme, 1976).

Recently Matinfar and Saeidy presented a new tech-
nique for solving a class of nonlinear OCP (Matinfar
and Saeidy, 2014), which they call the modified
variational iteration method (MVIM). This method is
similar to an existing method called the variational
homotopy perturbation method (VHPM) (Matinfar
and Ghasemi, 2010; Matinfar et al., 2010; Noor and
Mohyud-Din, 2008).

In Matinfar and Saeidy, (2014) the following
nonlinear OCP was considered

min J ¼

Z tf

t0

ðxTðtÞQxðtÞ þ uTðtÞRuðtÞÞdt
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s:t:
_x ¼ Fðt, xðtÞÞ þ Gðt, xðtÞÞuðtÞ; t 2 ½t0, tf�

xðt0Þ ¼ x0, xðtfÞ ¼ xf

�
ð1Þ

where x2Rn and u2Rm are the state and control vec-
tors respectively, Q2Rn�n and R2Rm�m are positive
semi-definite and positive definite matrices respectively,
and x0 and xf are the given initial and final states at t0
and tf respectively. Also, F and G are continuously
differentiable functions in all arguments.

According to Pontryagin’s maximum principle
(Pinch, 1993), and following the method presented in
Jajarmi et al., (2011), they converted equation (1) into
the following form of nonlinear TPBVP

_x¼Fðt,xÞþGðt,xÞ½�R�1gTðt,xÞy�,

_y¼� Qxþ
@Fðt,xÞ

@x

T� �
y

�

þ
Xn
i¼1

yi½�R
�1GTðt,xÞy�T

@Gi

@x

!
,

xðt0Þ ¼x0, yðt0Þ¼ �

ð2Þ

where �2R is an unknown parameter which will be
determined later by using boundary conditions.

Finally, they introduced an MVIM for solving
equation (2).

In this paper, we prove that the ADM, the HPM and
the VHPM are equivalent when used to solve nonlinear
differential equations with initial or boundary condi-
tions. Equivalent means these methods use the same
iterative formula for solving a class of nonlinear OCP.

2. The methods

In Section 1, we saw that the nonlinear OCP (1) can be
converted to a nonlinear TPBVP (2). In this section, we
briefly recall the ADM, the HPM and the VHPM for
solving equation (2). To convey the basic idea of the
above methods, we applied these methods to the fol-
lowing nonlinear equation

L½uðtÞ� þ R½uðtÞ� þN½uðtÞ� ¼ gðtÞ, t4 0 ð3Þ

where L ¼ dm

dtm , m 2 N is a linear operator with the
highest order derivative, R[u(t)] (remainder linear
term) is the linear differential operator of lower order
than m, N[u(t)] is a nonlinear operator and g(t) is the
source inhomogeneous term, subject to the initial
conditions

uðkÞð0Þ ¼ ck, k ¼ 0, 1, 2, . . . ,m� 1 ð4Þ

We want to obtain a solution u of equation (3) in
Hilbert space. If equation (3) does not have a unique
solution, then these methods give only a solution
among other possible solutions.

2.1. The ADM for solving equation (3)

For solving equation (3) using the ADM (Abbaoui and
Cherruault, 1994; Adomian et al., 1996; Wazwaz,
2011), we apply L�1½:� ¼ 1

ðn�1Þ!

R t
0 ðt� �Þ

n�1
½:�d� on both

side of equation (3). Thus

uðtÞ ¼
Xm�1
k¼0

ck
tk

k!
þL�1ðgðtÞÞ �L�1ðR½uðtÞ�Þ

�L�1ðN½uðtÞ�Þ, t40

ð5Þ

The ADM consists of the solution to equation (5) as an
infinite series

uðxÞ ¼
X1
i¼0

uiðxÞ ð6Þ

and N(u(x)) is also decomposed as

NðuðxÞÞ ¼
X1
i¼0

Ai ð7Þ

where An, n¼ 1,2,3,. . . are called the Adomian polyno-
mials, which are calculated by Abbaoui and Cherruault
(1994), Adomian et al. (1996), and Wazwaz (2011) as

An ¼
1

n!

dn

dpn

�
N

�Xn
i¼0

uip
i

������
p¼0

ð8Þ

Here p is a parameter introduced for convenience.
Substituting equations (6) and (7) into equation (5)
yields

X1
i¼0

uiðtÞ ¼
Xm�1
k¼0

ck
tk

k!
þ L�1ð gðtÞÞ � L�1

�
R

�X1
i¼0

uiðtÞ

��

� L�1
�X1

i¼0

Ai

�
ð9Þ

In view of the convergence of the series into equation
(9), the components of the series in equation (6) are
computed by following formula

u0 ¼
Xm�1
k¼0

ck
tk

k!
þ L�1ð gðtÞÞ

unþ1 ¼ �L
�1ðR½un�Þ � L�1ðAnÞ, n ¼ 0, 1, 2, . . .

ð10Þ

When the independent variable (time) is unbounded,
the series solution of equation (6) will diverge from
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the true solution at larger values of time. This is where
the discretization of the time axis makes itself indis-
pensable. An estimate of local error over a particular
time interval is given by Errorl ¼

P1
i¼nþ1 ui � Oð�hnÞ.

The global error order is one integral order fewer
than the corresponding local error order. It is
Errorl�O(d hn�1). So it can achieve a more accurate
solution and get a higher rate of convergence by
increasing the number of series terms (Az-Zo’bi, 2012;
Ramana and Raghu Prasad, 2014). For conver-
gence of this method we refer to Abbaoui and
Cherruault (1994), Adomian et al. (1996), and
Az-Zo’bi (2012).

2.2. The HPM for solving equation (3)

The HPM was developed by combining two techniques:
standard homotopy and perturbation. For solving
equation (3) according to He’s HPM (He, 1999), we
first construct a homotopy as

Hð�; pÞ ¼ ð1� pÞ½Lð�Þ � Lðu0Þ� þ p½Lð�Þ

þ Rð�Þ þNð�Þ � gðtÞ� ¼ 0
ð11Þ

or

Hð�; pÞ ¼ Lð�Þ � Lðu0Þ þ pLðu0Þ

þ p½Rð�Þ þNð�Þ � gðtÞ� ¼ 0
ð12Þ

where p2 [0,1] and u0 is an initial guess of equation (3),
which satisfies equation (4). In the HPM, a power
series of p

� ¼ �0 þ �1pþ �2p
2 þ � � � ð13Þ

is considered as the solution of equation (12).
Substituting p¼ 1 into equation (11) gives our original
equation (3). Also, as p tends to 1 in equation (13)
we have

uðtÞ ¼ lim
p!1

� ¼ �0 þ �1 þ �2 þ � � � ð14Þ

Like the ADM, N(�) is decomposed as

Nð�Þ ¼
X1
i¼0

piHi ¼ H0 þ pH1 þ p2H2 þ � � � ð15Þ

where Hn is calculated as

Hnð�0, �1, �2, . . . , �nÞ ¼
1

n!

@n

@pn

�
N

�Xn
i¼0

pi�i

������
p¼0

,

n ¼ 0, 1, 2, . . . ð16Þ

which a few authors call He’s polynomials! It must be
mentioned here that the authors of this paper have
proved that He’s polynomials are only Adomian poly-
nomials (Jafari et al., 2013). Substituting equations
(13) and (15) into equation (11) or (12) and arranging
it according to the powers of p, we have

p0 : Lð�0Þ � Lðu0Þ ¼ 0

p1 : Lð�1Þ þ Lðu0Þ þ Rð�0Þ þH0 � gðtÞ ¼ 0

p2 : Lð�2Þ þ Rð�1Þ þH1 ¼ 0,

�2
ðkÞð0Þ ¼ 0, k ¼ 0, 1, 2, . . . ,m� 1

..

.

pn : Lð�nÞ þ Rð�n�1Þ þHn�1 ¼ 0, �n
ðkÞð0Þ ¼ 0,

n ¼ 2, 3, . . . ð17Þ

By solving the above equations, we obtain the compo-
nents �i, i¼ 0,1,2, . . . of equation (13). For convergence
of this method we refer to He (1999).

2.3. The VHPM for solving equation (3)

Now we briefly describe an alternative approach of the
variational iteration method (VIM) which is called
MVIM (Matinfar and Saeidy, 2014) or VHPM
(Matinfar and Ghasemi, 2010; Matinfar et al., 2010).
This method is proposed as the coupling of the VIM and
the HPM. For solving equation (3) using the VHPM, first
according to He’s VIM (He, 2007; Inokuti et al., 1978), a
correction function for equation (3) is constructed as

unþ1ðtÞ ¼ unðtÞ þ

Z t

0

lð�ÞfLunð�Þ þ Run
�
ð�Þ

þNun
�
ð�Þ � gð�Þgd�, n � 0

ð18Þ

where l is a general Lagrangian multiplier, which can
be identified optimally via variational theory. Here,
restricted variation is applied for the nonlinear
term Nu. Then we can determine l easily. In general
(Wazwaz, 2010), we have

l ¼
ð�1Þm

ðm� 1Þ!
� � tð Þ

ðm�1Þ ð19Þ

After finding the value of l, unlike the VIM and similar
to the HPM, we decompose the solution of equation (3)
as the following series

� ¼ �0 þ �1pþ �2p
2 þ � � � ð20Þ

Substituting p¼ 1 into equation (20), yields the
approximate solution of equation (18). Also, the
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nonlinear term is written as Nð�Þ ¼
P1

i¼0 Hip
i. Now,

similar to the HPM, we have

X1
n¼0

�np
n ¼ u0 þ p

Z t

0

lð�Þ
�
R

�X1
n¼0

�np
n

�

þN

�X1
n¼0

�np
n

�
� gð�Þ

#
d� ð21Þ

Finally, by sorting coefficients with respect to powers of
p, we have

p0 : �0 ¼ u0

p1 : �1 ¼

Z t

0

lð�Þ½Rð�0Þ þH0ð�0Þ � gð�Þ�d�

p2 : �2 ¼

Z t

0

lð�Þ½Rð�1Þ þH1ð�0, �1Þ�d�

..

.

pn : �n ¼

Z t

0

lð�Þ½Rð�n�1Þ þHn�1ð�0, �1, . . . , �n�1Þ�d�

ð22Þ

which is called the VHPM using He’s polynomials. For
the selective zeroth approximation �0 we used the initial
values from equation (4). In the VHPM the initial
approximation �0 has been selected as

�0ðtÞ ¼
Xm�1
k¼0

ck
k!

tk ð23Þ

For convergence of this method we refer to Matinfar
and Ghasemi (2010).

3. Comparison between the ADM,
HPM, and VHPM for solving
equation (3)

As we discussed in Section 2, those methods assumed
the solution of equation (3) as an infinite series, com-
puting the components of the series by using an itera-
tive formula. Now, we want to prove analytically that
the ADM, HPM and VHPM use the same iterative
formula to obtain an approximate/analytical solution
of equation (3).

Definition 1. The well-known Cauchy formula for an n-
fold integral (Wazwaz, 2011)

Z x

a

dx1

Z x1

a

dx2 . . .

Z xn�1

a

f ðxnÞdxn ¼
1

ðn� 1Þ!

�

Z x

a

ðx� tÞn�1f ðtÞdt

ð24Þ

Theorem 1. The He’s polynomials equation (16) is the
Adomian’s polynomials equation (8).

Proof. See Jafari et al., (2013).

Theorem 2. The HPM for solving equation (3) is equiva-
lent to the ADM when the homotopyH(�;p) is considered
as equation (11).

Proof. Applying L�1 to both sides of equation (17) we have

�0 ¼
Xm�1
k¼0

ck
k!
tk,

�1 ¼ �L
�1R½�0� � L�1H0 þ L�1gðtÞ,

�2 ¼ �L
�1R½�1� � L�1H1,

..

.

�n ¼ �L
�1R½�n�1� � L�1Hn�1

ð25Þ

According to Theorem 1 we have Hn¼An. In view of
equations (9) and (13) we have

limp!1� ¼ lim
p!1

X1
i¼0

�ip
i ¼

Xm�1
k¼0

ck
k!
tk þ L�1½ gð�Þ�

� L�1Rð�0Þ � L�1A0 � � � �

¼ u0 þ u1 þ � � � ¼
X1
i¼0

ui ¼ u

Theorem 3. If we consider the homotopyH(� ;p) as equa-
tion (21) for the VHPM. Then the VHPM is equivalent
to the ADM.

Proof. Substituting equations (13) and (15) into equa-
tion (21), we have

Hð�; pÞ ¼
X1
n¼0

�np
n � u0 � p

Z t

0

lð�Þ
�
R

�X1
n¼0

�np
n

�

þN

�X1
n¼0

�np
n

�
� gð�Þ

�
d� ¼ 0

) �0 � u0 þ p

�
�1 �

Z t

0

lð�Þ½Rð�0Þ

þHð�0Þ � gð�Þ�d�
i

�

Z t

0

lð�Þ½Rð�nÞ þHn � �nþ1�p
nþ1d� ¼ 0

By arranging the above equation according to the
powers of p, we have

p0 : �0 � u0 ¼ 0
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p1 : �1 �

Z t

0

lð�Þ½Rð�0Þ þH0ð�0Þ � gð�Þ�d� ¼ 0

p2 : �2 �

Z t

0

lð�Þ½Rð�1Þ þH1ð�0, �1Þ�d� ¼ 0

..

.

pnþ1 : �nþ1 �

Z t

0

lð�Þ½Rð�nÞ þHnð�0, �1, . . . , �nÞ�d� ¼ 0,

n ¼ 0, 1, 2, . . . ð26Þ

From equation (26) we have

�0¼ u0

�1¼

Z t

0

lð�Þ½Rð�0ÞþH0ð�0Þ�gð�Þ�d�

�2¼

Z t

0

lð�Þ½Rð�1ÞþH1ð�0,�1Þ�d�

..

.

�nþ1¼

Z t

0

lð�Þ½Rð�nÞþHnð�0,�1, . . . ,�nÞ�d�, n¼ 0,1,2, . . .

ð27Þ

According to Theorem 1 we have Hn¼An. In view of
equations (19) and (23), substituting equation (27) into
equation (20) leads us to

� ¼ �0 þ �1pþ �2p
2 þ � � �

� ¼
Xm�1
k¼0

ck
k!
tk þ

�Z t

0

lð�Þ½Rð�0Þ þ A0 � gð�Þ�d�

�
p

þ

�Z t

0

lð�Þ½Rð�1Þ þ A1�d�

�
p2 þ � � �

ð28Þ

so

lim
p!1

� ¼
Xm�1
k¼0

ck
k!

tk �

Z t

0

lð�Þ gð�Þd�

þ

�Z t

0

lð�Þ½Rð�0Þ þ A0�d�Þ

þ

�Z t

0

lð�Þ½Rð�1Þ þ A1�d�

�
þ � � �

ð29Þ

In Jafari (2014), the first author proves that

Z t

0

lð�Þ½:�d� ¼ �L�1½:� ð30Þ

Substituting equation (30) into equation (29) we have

lim
p!1

� ¼
Xm�1
k¼0

ck
k!

tk � L�1½ gð�Þ� � L�1½Rð�0Þ þ A0�

� L�1½Rð�1Þ þ A1� þ � � �

hence

lim
p!1

� ¼
Xm�1
k¼0

ck
k!
tk � L�1½ gð�Þ� � L�1

�X1
i¼0

Rð�iÞ

�

� L�1
�X1

i¼0

Ai

�
¼ u

So, we prove that lim
p!1

�¼ u. In a similar way we can

prove that u ¼ lim
p!1

v. In view of Theorems 2 and 3 we

have the following result.

Theorem 4. Let l be equation (19) and the homotopy
H(�; p) be considered as equation (21). Then the
VHPM for solving equation (3) is equivalent to the
HPM.

Proof. From equation (30) we haveR t
0 lð�Þ½:�d� ¼ �L

�1½:� and substituting it into equation
(21) we have

X1
n¼0

�np
n ¼ u0 � pL�1

�
R

�X1
n¼0

�np
n

�

þN

�X1
n¼0

�np
n

�
� gð�Þ

� ð31Þ

We take the limit of equation (31) as p! 1 so that we have

u ¼ u0 þ L�1ð gðtÞÞ � L�1ðR½uðtÞ�Þ � L�1ðN½uðtÞ�Þ ð32Þ

Equation (32) is equivalent to equation (5). That means
the VHPM for equation (3) is same as the HPM for
equation (5).

Example. Consider the following type of nonlinear
OCP (Fakharzadeh, 2012; Matinfar and Saeidy, 2014;
Nik et al., 2012)

min J ¼

Z t

0

u2ðtÞdt

such that _x ¼
1

2
x2ðtÞ sin xðtÞ þ uðtÞ;

t 2 ½0, 1�, xð0Þ ¼ 0, xð1Þ ¼ 0:5

ð33Þ

Solution. It can be transformed to the following non-
linear TPBVP according to Pontryagin’s maximum
principle (Pinch, 1993)

_x ¼
1

2
x2ðtÞ sin xðtÞ þ u	ðtÞ, t 2 ½0, 1�
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_y ¼ �yðtÞxðtÞ sin xðtÞ �
1

2
yðtÞx2ðtÞ cos xðtÞ, t 2 ½0, 1�

xð0Þ ¼ 0, yð0Þ ¼ � ð34Þ

where the optimal control law is given by

u	ðtÞ ¼ �
1

2
yðtÞ

To solve equation (34) we apply L�1½:� ¼
R t
0 ½:�d� on

both sides of equation (34), and obtain

xðtÞ ¼

Z t

0

�
1

2
x2ðtÞ sinxðtÞ �

1

2
yðtÞ

�
d�

yðtÞ ¼ �þ

Z t

0

�
� yðtÞxðtÞ sinxðtÞ �

1

2
yðtÞx2ðtÞ cosxðtÞ

�
d�

ð35Þ

If we apply the ADM (Fakharian et al., 2010) or the
HPM (Nik et al., 2012) to equation (35), we find same
iterative formula that is given in Matinfar and Saeidy
(2014) by using the VHPM.

4. Conclusions

In this paper, it has been shown that the VHPM pro-
vides exactly the same iterative formula as the ADM
and HPM for solving nonlinear OCPs. It has been
proved analytically that those methods, the ADM, the
HPM and the VHPM, are equivalent for solving non-
linear differential equations. However the volume of
calculation for the VHPM is more than for the other
two methods. Specifically we show that the modified
VIM or the VHPM which was recently proposed by
Matinfar and Saeidy (2014) (see equation (20)) is the
same as the HPM for solving integral equations or the
ADM for solving differential equations.
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Article

A highly accurate collocation algorithm
for 1þ 1 and 2þ 1 fractional percolation
equations

Ali H Bhrawy

Abstract

This paper reports two successive spectral collocation methods, that enable easy and highly accuracy discretization, for

1þ 1 and 2þ 1 fractional percolation equations (FPEs). The first step depends mainly on the shifted Legendre Gauss–

Lobatto collocation method for spatial discretization. An expansion in a series of shifted Legendre polynomials for the

approximate solution and its spatial derivatives occurring in the FPE is investigated. In addition, the Legendre-Gauss–

Lobatto quadrature rule is established to treat the boundary conditions. Thereby, the expansion coefficients are then

determined by reducing the FPE with its boundary conditions to a system of ordinary differential equations for these

coefficients. The second step is to propose the shifted Chebyshev Gauss–Radau collocation scheme, for temporal

discretization, to reduce such a system to a system of algebraic equations, which is far easier to solve. The proposed

collocation scheme, both in temporal and spatial discretizations, is successfully extended to the numerical solution of

two-dimensional FPEs. An upper bound of the absolute error is obtained of the approximate solution for the two-

dimensional case. Convergence properties of the method are discussed through numerical examples. Several numerical

examples with comparisons are reported to highlight the high accuracy of the present method over other numerical

techniques.

Keywords

Space fractional percolation equations, two-dimensional fractional percolation equations, collocation method, orthog-

onal polynomials, Gauss-type quadrature

1. Introduction

Spectral methods (Heinrichs, 1989; Canuto et al., 2006;
Doha et al., 2014b; Eslahchi et al., 2014; Kayedi-
Bardeh et al., 2014; Khalil and Khan, 2014;
Abdelkawy et al., 2015a) are often efficient and
highly accurate schemes when compared with local
methods. The speed of convergence is one of the great
advantages of spectral approximations. The spectral
collocation method is a specific type of spectral
method that is more applicable and widely used to
solve almost all types of differential equations
(Bhrawy, 2014; Doha et al., 2014a; Bhrawy and
Zaky, 2015b). In pseudo-spectral techniques for partial
differential equations, the boundary conditions play a
much more crucial role than for ordinary differential
equations, and it becomes important to decide whether
to satisfy the related conditions implicitly, in the

formulation of the collocation scheme, or to investigate
the related conditions as additional constraints.
The boundary conditions were treated implicitly in
some recent pseudo-spectral approximations (Bhrawy,
2014; Doha et al., 2014a).

The development and analysis of fractional calculus
began in recent decades, when the fractional differential
equation emerged as a tool for the description of
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phenomena in nature. Fractional differential equations
(Giona and Roman, 1992; Kirchner et al., 2000;
Magin, 2006; Li and Deng, 2007; Garrappa and
Popolizio, 2011; Alipour et al., 2012; Baleanu et al.,
2012; Machado et al., 2013; Rostamy et al., 2013)
are used to model many phenomena in several fields
(Pooseh et al., 2013; Dehghan et al., 2014; Lazo and
Torres, 2014; Pinto and Carvalho, 2015; Raja and
Chaudhary, 2015; Xu et al., 2015). Numerical tech-
niques are widely used by scientists and engineers to
solve fractional PDEs. A major advantage of numerical
techniques is that a numerical solution can be obtained
even when a problem has no analytical solution.
In some cases, PDEs of fractional order can be solved
analytically, where finding their solutions in the general
case is hard and limited to the linear one. Therefore,
there has been a growing interest in recent decades in
developing numerical methods for solving FDEs.
Several numerical treatments based on the improve-
ment of finite difference schemes for FDEs are given
in Meerschaert and Tadjeran (2006), Ding et al.
(2010) and Wang and Du (2014). Also, efficient spectral
algorithms (He, 1998; Chou et al., 2006; Chen et al.,
2011b; Doha et al., 2011; Doha et al., 2012;
Chen et al., 2013; Bhrawy, 2014; Bhrawy et al.,
2015a; Chen et al., 2014; Irandoust-Pakchin et al.,
2014; Abdelkawy et al., 2015b; Ezz-Eldien et al.,
2015) have been designed and developed for solving
different kinds of fractional differential equation.

Percolation flow problems (Chou et al., 2006) have
been discussed in many fields including groundwater
dynamics, seepage hydraulics, and fluid dynamics in
porous media. He (1998) introduced analytical solu-
tions for fractional percolation equations (FPEs) by
using the variational iteration method. Fractional
derivatives are becoming widely used and accepted in
models of percolation flow problems. Recently, three
advanced implicit finite difference methods have been
investigated in Chen et al. (2011b, 2013, 2014) to dis-
cretize the numerical solutions of FPEs in one- and
two-dimensional spaces. Along the same line of
thought, Chen et al. (2011b) proposed a new implicit
finite difference scheme for solving the 1þ 1 FPE. A
developed numerical algorithm has been achieved and
analyzed by Chen et al. (2013), for solving the 2þ 1
FPE. Several authors have also improved and devel-
oped efficient numerical methods for approximating
the solution of other similar fractional PDEs (Chen
et al., 2011a; Al-Khaled and Alquran, 2014;
Irandoust-Pakchin et al., 2014; Mohebbi et al., 2014;
Bhrawy and Zaky, 2015a; Bhrawy et al., 2015a,
2015b).

The main aim of the present paper is to propose a
numerical method that improves the accuracy of the

numerical solutions of FPEs in one- and two-dimen-
sional space. The main advantage of the present
method is that it proposes a collocation scheme for
both temporal and spatial discretizations. Firstly,
the shifted Legendre Gauss–Lobatto collocation (SL-
GL-C) is proposed, with a suitable modification for
treating the boundary conditions, for spatial discret-
ization. This treatment, for the conditions, improves
the accuracy of the scheme greatly. Therefore, the
FPE with its boundary conditions is reduced to a
system of ordinary differential equations (SODEs) sub-
ject to a vector of initial values. Secondly, the SC-GR-C
is then investigated for temporal discretization, which is
more reasonable for solving initial value problems.
Thereby, the problem is reduced to a system of alge-
braic equations which makes it far easier to solve.
In addition, this algorithm is developed for the numer-
ical solution of FPEs in two dimensions. An upper
bound of the absolute error is obtained for the approxi-
mate solution for the two-dimensional case. Finally,
several numerical examples with comparisons high-
lighting the high accuracy and effectiveness of the pre-
sent method are included. By choosing relatively
limited Legendre Gauss–Lobatto and Chebyshev
Gauss–Radau collocation nodes, we are able to
obtain highly accurate solutions, confirming the applic-
ability and high accuracy of the proposed method over
other numerical schemes in the literature.

This article is organized as follows. Section 2
presents some fractional calculus preliminaries, and
shifted Legendre and shifted Chebyshev polynomials.
Spectral approximation schemes of 1þ 1 and 2þ 1
FPEs based on a combination of SL-GL-C and SC-
GR-C methods are presented in Sections 3 and 4,
respectively. Numerical results are introduced in
Section 5. Finally, we end the paper with some conclud-
ing remarks.

2. Preliminaries and notation

This section presents several useful fractional defin-
itions, and shifted Legendre and shifted Chebyshev
polynomials.

2.1. Fractional calculus

There are many definitions of the fractional-order
derivative, which are not necessarily equivalent to
each other (Miller and Ross, 1993; Kayedi-Bardeh
et al., 2014; Ezz-Eldien et al., 2015; Jafari and
Tajadodi, 2015). Riemann–Liouville and Caputo frac-
tional definitions are the two most popular definitions
from all the other definitions of fractional calculus
which have been introduced recently.
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Definition 2.1. The Riemann–Liouville fractional inte-
gral of order n� 0 is obtained from

Jnf ðxÞ ¼
1

�ð�Þ

Z x

0

ðx� �Þn�1f ð�Þ d�, �4 0, x4 0,

J0f ðxÞ ¼ f ðxÞ

ð1Þ

where

�ðnÞ ¼
Z 1
0

xn�1e�x dx ð2Þ

is the gamma function.
The fractional operator Jn satisfies

JnJ�f ðxÞ ¼ Jnþ�f ðxÞ,

JnJ�f ðxÞ ¼ J�Jnf ðxÞ,

Jnx� ¼
�ð�þ 1Þ

�ð�þ 1þ nÞ
x�þn

ð3Þ

The Riemann–Liouville fractional derivative of order �
satisfies

D�f ðxÞ ¼
dn

xn
ðJn��f ðxÞÞ ð4Þ

where n� 1<�� n, n2N and n is the smallest integer
greater than �.

Lemma 2.1. If n� 1<�� n, n2N, then

D�J�f ðxÞ ¼ f ðxÞ,

J�D�f ðxÞ ¼ f ðxÞ �
Xn�1
j¼0

fð j Þð0þÞ
xj

j!
, x4 0

ð5Þ

2.2. Shifted Legendre Gauss–Lobatto
interpolation

In this subsection, we recall some approximation results
for the shifted Legendre Gauss–Lobatto (SL-GL) inter-
polation, which play important roles in the proposed
collocation scheme. The Legendre polynomials Pk(x)
(k¼ 0,1. . .) satisfy the following Rodrigue’s formula

PkðxÞ ¼
ð�1Þk

2kk!
Dkðð1� x2ÞkÞ ð6Þ

also we recall that Pk(x) is a polynomial of degree k.
Accordingly, P

ð pÞ
k ðxÞ (the pth derivative of Pk(x)) is

given by

P
ð pÞ
k ðxÞ ¼

Xk�p
i¼0ðiþk¼evenÞ

Cpðk, iÞPiðxÞ ð7Þ

where

Cpðk, iÞ ¼
2p�1ð2iþ 1Þ�ðpþk�i2 Þ�ð

pþkþiþ1
2 Þ

�ð pÞ�ð2�pþk�i2 Þ�ð3�pþkþi2 Þ

Next, denoting by kuk and (u,v) the norm and inner
product of space L2[� 1,1]. The set of Pk(x) is a com-
plete orthogonal system in L2[� 1,1], namely

PjðxÞ,PkðxÞ
� �

¼

Z 1

�1

PjðxÞPkðxÞ dx ¼ hk�jk ð8Þ

where hi ¼
2

2iþ1 and djk is the Dirac function. Thus for
any v2L2[� 1,1]

vðxÞ ¼
X1
i¼0

aiPiðxÞ, ai ¼
1

hi

Z 1

�1

vðxÞPiðxÞdx ð9Þ

For any positive integer N, let SN[� 1,1] be the set of
all polynomials of degree at most N, due to the L-GL
quadrature. Thus, for any �2S2N�1[� 1,1] we obtain

Z 1

�1

�ðxÞdx ¼
XN
i¼0

$N,i�ðxN,iÞ ð10Þ

where xN,i (0� i�N) and $N,i (0� i�N) are the nodes
and Christoffel numbers of the L-GL interpolation on
the interval [� 1,1], respectively. Now, it is quite useful
in the sequel to define the following norm and discrete
inner product

uk kN¼ ðu, vÞ
1
2

N, ðu, vÞN ¼
XN
j¼0

uðxN,jÞ vðxN,jÞ$N,j ð11Þ

Let us denote by PL,i(x) the shifted Legendre poly-
nomials which are defined on the interval [0,L]. These
polynomials can be generated from the following
recurrence relation

ð jþ 1ÞPL,jþ1ðxÞ ¼ ð2jþ 1Þ

�
2x

L
� 1

� �
PL,jðxÞ � jPL,j�1ðxÞ, j ¼ 1, 2, . . .

ð12Þ
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The analytical form of PL,i(x) can be written as

PL,iðxÞ ¼
Xi
k¼0

ð�1Þiþk
ðiþ kÞ!

ði� kÞ! ðk!Þ2 Lk
xk ð13Þ

The Riemann–Liouville fractional integration of PL,i(x)
may be obtained from

JnPL,iðxÞ ¼
Xi
k¼0

ð�1Þkþi
ðkþ iÞ!

ð�kþ iÞ! ðk!Þ2 tk
Jnxk

¼
Xi
k¼0

ð�1Þkþi
ðkþ iÞ! k!

ð�kþ iÞ! ðk!Þ2 tk �ðkþ nþ 1Þ

� xkþn, i ¼ 0, 1, . . . ,N

ð14Þ

where PL,i(0)¼ (� 1)i.
The orthogonality condition is

Z L

0

PL,jðxÞPL,kðxÞwLðxÞdx ¼ hLk �jk ð15Þ

where wLðxÞ ¼ 1 and hLk ¼
L

2kþ1 :

If a function u(t)2L2[0,L], then one can express it by
means of PL,i(t) as

uðtÞ ¼
X1
i¼0

ciPL,iðtÞ

where ci is given by

ci ¼
1

hLi

Z L

0

uðtÞPL,iðtÞx, i ¼ 0, 1, 2, . . . ð16Þ

In the approximation, u(x) may be expanded as

uNðtÞ ’
XN
i¼0

ciPL,iðtÞ ð17Þ

2.3. Shifted Chebyshev Gauss–Radau
interpolation

The Chebyshev polynomials are defined on the interval
[� 1,1], by

TkðtÞ ¼ cosðk arccosðtÞÞ, k � 0 ð18Þ

Also

Tkð�1Þ ¼ ð�1Þ
k, Tkð�tÞ ¼ ð�1Þ

kTkðtÞ ð19Þ

Let wcðtÞ ¼ 1ffiffiffiffiffiffiffi
1�t2
p , then we introduce the following norm

and inner product of the the weighted space L2
wc ½�1, 1� as

kukwc ¼ ðu, uÞ
1
2
wc , ðu, vÞwc ¼

Z 1

�1

uðtÞ vðtÞwcðtÞdt ð20Þ

The set of Chebyshev polynomials satisfies

kTkk
2
wc ¼ hck

¼

&k
2 �, k ¼ j,

0, k 6¼ j,

�
&0 ¼ 2, &k ¼ 1, k � 1

ð21Þ

Now, we introduce the following norm and discrete
inner product

kukwc ¼ ðu, uÞ
1
2
wc , ðu, vÞwc ¼

XN
j¼0

uðtN,jÞ vðtN,jÞ$
c
N,j ð22Þ

Let us denote by TT,n(t) the shifted Chebyshev poly-
nomials which are defined on the interval [0,T]. The
analytical form of TT,n(t) is obtained from

TT,nðtÞ ¼ n
Xn
k¼0

ð�1Þn�k
ðnþ k� 1Þ! 22k

ðn� kÞ! ð2kÞ! Tk
tk ð23Þ

where TT,n(0)¼ (� 1)n and TT,n(T)¼ 1.
The orthogonality condition is

Z L

0

TT,mðtÞTT,nðxÞwTðxÞ dx ¼ �mn
chTn ð24Þ

where wTðtÞ ¼
1ffiffiffiffiffiffiffiffiffi

Tt�t2
p and chTn ¼

cn
2 �, with c0 ¼ 2,

ci ¼ 1, and i � 1:
As in the previous subsection, if uðtÞ 2 L2

wTðtÞ
½0,T�,

then one can express it by means of TT,i(t) as

uðtÞ ¼
X1
j¼0

ajTT,jðtÞ ð25Þ

where

aj ¼
1

chTj

Z T

0

uðtÞTT,jðtÞwTðtÞdt, j ¼ 0, 1, 2, . . . ð26Þ

3. One-dimensional space fractional
percolation equation

This section outlines the key aspects of discretization
for the numerical solution of the one-dimensional FPE
using a new spectral technique.
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Consider the following 1þ 1 FPE

@tuðx, tÞ ¼@
n1
x

�
g1ðxÞ@

n2
x uðx, tÞ

	
þ f ðx, tÞ,

� ðx, tÞ 2 ½0,L� � ½0,T�
ð27Þ

subject to

uðx, 0Þ ¼ g2ðxÞ, x 2 ½0,L� ð28Þ

and

uð0, tÞ ¼ g3ðtÞ, uðL, tÞ ¼ g4ðtÞ, t 2 ½0,T� ð29Þ

where n1 and n2 (0< n1, n2< 1) are the fractional
orders, and f(x,t), g1(x), g2(x), g3(t) and g4(t) are
given functions. We discretize equation (27) for the spa-
tial variable x by the SL-GL-C method. While the SC-
GR-C method is applied to discretize the resulting
SODEs in time advance.

3.1. SL-GL-C scheme for the space variable

We first propose the SL-GL-C method to transform the
1þ 1 FPE into SODEs. To this end, we approximate
the spatial variable using the SL-GL-C method at some
nodes. The nodes are the set of points in a specified
domain. To acquire high accuracy, the choice of
nodes is usually related to some Gaussian integration
formula, see Canuto et al. (2006) for more details. The
collocation points are taken to be the SL-GL quadra-
ture nodes which we denote by xLN,i.

Equation (27) may be restated as

@tuðx, tÞ ¼g5ðxÞ@
n2
x uðx, tÞ þ g1ðxÞ@

n1
x

�
@n2x uðx, tÞ

	
þ f ðx, tÞ,

05n1, n2 5 1, ðx, tÞ 2 ½0,L� � ½0,T�

ð30Þ

where g5ðxÞ ¼ @
n1
x g1ðxÞ.

Now, we present the main steps of applying the SL-
GL-C scheme to solve the FPE. Let the approximate
solution of equation (27) be

uNðx, tÞ ¼
XN
j¼0

aj ðtÞPL,jðxÞ ð31Þ

the unknown coefficients aj(t) may be approximated by

aj ðtÞ ¼
1

hLj

XN
i¼0

PL,jðx
L
N,iÞ$

L
N,i uðx

L
N,i, tÞ ð32Þ

Accordingly, the approximate solution (31) may be
expanded to

uNðx, tÞ ¼
XN
i¼0

�XN
j¼0

1

hLj
PL,jðx

L
N,iÞPL,jðxÞ$

L
N,i

	
uðxLN,i, tÞ

ð33Þ

where $L
N,j (0� j�N) are the weights of the SL-GL

quadrature on [0,L].
The fractional derivative of the approximate solu-

tion uN(x,t) is then estimated as

@n2x uNðx, tÞ ¼
XN
i¼0

�XN
j¼0

1

hLj
PL,jðx

L
N,iÞ@

n2
x PL,jðxÞ
� �

$L
N,i

	

uðxLN,i, tÞ,

ð34Þ

For 0< n2< 1, the Riemann–Liouville fractional
derivative is

@n2x x
k ¼

1

�ð1� n2Þ
@x

� Z x

0

	k

ðx� 	Þn2
d	
	
¼

xk�n2�ð1þ kÞ

�ð1þ k� n2Þ
ð35Þ

thus

@n2x PL,iðxÞ¼P
ðn2Þ
L,i ðxÞ

¼
Xi
k¼0

ð�1Þiþk
ðkþ iÞ!�ðkþ1Þ

ði�kÞ! ðk!Þ2�ð1þk�n2ÞLk
xk�n2

ð36Þ

Consequently

@n2x uNðx, tÞ ¼
XN
i¼0

�XN
j¼0

1

hLj
PL,jðx

L
N,iÞP

ðn2Þ
L,i ðxÞ$

L
N,i

	
uðxLN,i, tÞ

ð37Þ

Similarly, we obtain

@n1x

�
@n2x uNðx, tÞ

	

¼
XN
i¼0

�XN
j¼0

1

hLj
PL,jðx

L
N,iÞ@

n1
x ðP

ðn2Þ
L,i ðxÞÞ$

L
N,i

	
uðxLN,i, tÞ

¼
XN
i¼0

�XN
j¼0

1

hLj
PL,jðx

L
N,iÞðP

ðn1þn2Þ
L,i ðxÞÞ$L

N,i

	
uðxLN,i, tÞ

ð38Þ
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The fractional derivative of the numerical solution
uN(x,t) is then computed at the collocation points as

�
@n2x uNðx, tÞ

	
x¼xL

N,n

¼
XN
i¼0


n,iuiðtÞ, n ¼ 1, 2, . . . ,N� 1,

ð39Þ

�
@n1x
�
@n2x uNðx, tÞ

�	
x¼xL

N,n

¼
XN
i¼0

"n,iuiðtÞ, n¼ 1, 2, . . . ,N� 1

ð40Þ

where

uiðtÞ ¼ uNðx
L
N,i, tÞ,


n,i ¼
XN
j¼0

$L
N,i

hLj
PL,jðx

L
N,iÞ
�
P
ðn2Þ
L,j ðxÞ

�
x¼xL

N,n

,

"n,i ¼
XN
j¼0

$L
N,i

hLj
PL,jðx

L
N,iÞ
�
P
ðn1þn2Þ
L,i ðxÞ

�
x¼xL

N,n

Since the approximate solution and its derivatives in
equations (33)–(40) do not satisfy the FPE (27) exactly,
we enforce the approximate solution and its derivatives
to satisfy it exactly at the chosen collocation points, by
making the residuals equal to zero. In addition, the
boundary conditions (29) will be satisfied at the two
nodes 0 and L. Thus, we ensure that the boundary con-
ditions are satisfied without adding additional equa-
tions. Therefore, adopting equations (30)–(40),
enables one to write equation (27) in the form

_unðtÞ ¼g5ðx
L
N,nÞ

�XN�1
i¼1


n,iuiðtÞ þ 
n,0u0ðtÞ þ 
n,NuNðtÞ
	

þ f ðxLN,n, tÞ þ g1ðxÞ
�XN�1

i¼1

"n,iuiðtÞ þ "n,0u0ðtÞ

þ "n,NuNðtÞ
	

ð41Þ

Obviously, the problem (27)–(29) is equivalent to the
following SODEs

_unðtÞ ¼g5ðx
L
N,nÞ

�XN�1
i¼1


n,iuiðtÞ þ 
n,0g3ðtÞ þ 
n,Ng4ðtÞ
	

þ f ðxLN,n, tÞ þ g1ðxÞ
�XN�1

i¼1

"n,iuiðtÞ þ "n,0g3ðtÞ

þ "n,Ng4ðtÞ
	
, n ¼ 1, . . . ,N� 1

ð42Þ

subject to the initial values

unð0Þ ¼ g2ðx
L
N,nÞ, n ¼ 1, . . . ,N� 1 ð43Þ

We can reformulate the previous equations in matrix
form as

_u1ðtÞ

_u2ðtÞ

. . .

. . .

. . .

_uN�2ðtÞ

_uN�1ðtÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

F1ðt, u1ðtÞ, u2ðtÞ, . . . , uN�1ðtÞÞ

F2ðt, u1ðtÞ, u2ðtÞ, . . . , uN�1ðtÞÞ

. . .

. . .

. . .

FN�2ðt, u1ðtÞ, u2ðtÞ, . . . , uN�1ðtÞÞ

FN�1ðt, u1ðtÞ, u2ðtÞ, . . . , uN�1ðtÞÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
ð44Þ

subject to a vector of initial values

u1ð0Þ
u2ð0Þ
. . .
. . .
. . .

uN�2ð0Þ
uN�1ð0Þ

0
BBBBBBBB@

1
CCCCCCCCA
¼

g2ðx
L
N,1Þ

g2ðx
L
N,2Þ

. . .

. . .

. . .
g2ðx

L
N,N�2Þ

g2ðx
L
N,N�1Þ

0
BBBBBBBB@

1
CCCCCCCCA

ð45Þ

where

Fnðt,u1ðtÞ,u2ðtÞ, . . . ,uN�1ðtÞÞ

¼ g5ðx
L
N,nÞ

�XN�1
i¼1


n,iuiðtÞ þ 
n,0g3ðtÞ þ 
n,Ng4ðtÞ
	

þ f ðxLN,n, tÞ þ g1ðxÞ
�XN�1

i¼1

"n,iuiðtÞ þ "n,0g3ðtÞ þ "n,Ng4ðtÞ
	

ð46Þ

3.2. SC-GR-C scheme for the time variable

The second step of our algorithm is to propose an effi-
cient collocation scheme to approximate the solution of
the following SODEs

_u1ðtÞ

_u2ðtÞ

. . .

. . .

. . .

_uN�2ðtÞ

_uN�1ðtÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

F1ðt, u1ðtÞ, u2ðtÞ, . . . , uN�1ðtÞÞ

F2ðt, u1ðtÞ, u2ðtÞ, . . . , uN�1ðtÞÞ

. . .

. . .

. . .

FN�2ðt, u1ðtÞ, u2ðtÞ, . . . , uN�1ðtÞÞ

FN�1ðt, u1ðtÞ, u2ðtÞ, . . . , uN�1ðtÞÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
ð47Þ
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subject to the initial values

u1ð0Þ

u2ð0Þ

. . .

. . .

. . .

uN�2ð0Þ

uN�1ð0Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

g2ðx
L
N,1Þ

g2ðx
L
N,2Þ

. . .

. . .

. . .

g2ðx
L
N,N�2Þ

g2ðx
L
N,N�1Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð48Þ

In order to approximate the solution of the previous
system, we use the SC-GR-C method to deal with the
temporal variable t. We choose the approximate solu-
tion of the form

un,MðtÞ ¼
XM
j¼0

an,jTT,jðtÞ, n ¼ 1, . . . ,N� 1 ð49Þ

Furthermore, the approximation of the time derivative
can be computed as

@tun,MðtÞ ¼
XM
j¼0

an,j@tðTT,jðtÞÞ ¼
XM
j¼0

an,jT
ð1Þ
T,jðtÞ,

n ¼ 1, . . . ,N� 1

ð50Þ

where T
ð1Þ
T,kðtÞ represents the first time derivative of the

shifted Chebyshev polynomials, which can be easily
evaluated at any point tTK,s (shifted Chebyshev Gauss–
Radau points).

Therefore, adopting equations (49)–(50) enables one
to write equations (47)–(48) in the form

PM
j¼0

a1,jTT,jð0Þ

PM
j¼0

a2,jTT,jð0Þ

. . .

. . .

. . .PM
j¼0

aN�2,jTT,jð0Þ

PM
j¼0

aN�1,jTT,jð0Þ

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

¼

g2ðx
L
N,1Þ

g2ðx
L
N,2Þ

. . .

. . .

. . .

g2ðx
L
N,N�2Þ

g2ðx
L
N,N�1Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð52Þ

In the proposed technique, the residual of equation (51)
has to be enforced to zero at M� (N� 1) collocation
points. In other words, we have to collocate equation
(51) at the M� (N� 1) shifted Chebyshev Gauss–
Radau collocation nodes, which immediately yields

XM
j¼0

an,jT
ð1Þ
T,jðt

T
M,sÞ ¼Fn

�
tTM,s,

XM
j¼0

a1,jTT,jðt
T
M,sÞ, . . . ,

�
XM
j¼0

aN�1,jTT,jðt
T
M,sÞ

	
,

n ¼ 1, . . . ,N� 1, s ¼ 1, . . . ,M

ð53Þ

In virtue of equation (52), we get

XM
j¼0

an,jTT,jð0Þ ¼ �n, n ¼ 1, . . . ,N� 1 ð54Þ

PM
j¼0

a1,jT
ð1Þ
T,jðtÞ

PM
j¼0

a2,jT
ð1Þ
T,jðtÞ

. . .

. . .

. . .PM
j¼0

aN�2,jT
ð1Þ
T,jðtÞ

PM
j¼0

aN�1,jT
ð1Þ
T,jðtÞ

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

¼

F1

�
t,
PM
j¼0

a1,jTT,jðtÞ, . . . ,
PM
j¼0

aN�1,jTT,jðtÞ
	

F2

�
t,
PM
j¼0

a1,jTT,jðtÞ, . . . ,
PM
j¼0

aN�1,jTT,jðtÞ
	

. . .

. . .

. . .

FN�2

�
t,
PM
j¼0

a1,jTT,jðtÞ, . . . ,
PM
j¼0

aN�1,jTT,jðtÞ
	

FN�1

�
t,
PM
j¼0

a1,jTT,jðtÞ, . . . ,
PM
j¼0

aN�1,jTT,jðtÞ
	

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

, ð51Þ
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The set of previous equations is equivalent to a system
of (N� 1)� (Mþ 1) algebraic equations in the
unknowns ai,j, i¼ 1,. . .,N� 1; j¼ 0,. . .,M

�1,0 . . . �1,M

�2,0 . . . �2,M

. . . . .
.

. . .

. . . . .
.

. . .

. . . . .
.

. . .

�N�2,0 . . . �N�2,M

�N�1,0 . . . �N�1,M

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

1,0 . . . 1,M

2,0 . . . 2,M

. . . . .
.

. . .

. . . . .
.

. . .

. . . . .
.

. . .

N�2,0 . . . N�2,M

N�1,0 . . . N�1,M

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð55Þ

where

�n,s ¼

PM
j¼0

an,jTT,jð0Þ, s¼ 0, n¼ 1, . . . ,N� 1,

PM
j¼0

an,jT
ð1Þ
T,jðt

T
M,sÞ, n¼ 1, . . . ,N� 1, s¼ 1, . . . ,M

8>>><
>>>:

ð56Þ

and

The system of algebraic equations can be solved using
Newton’s iterative method. After the coefficients ai,j are
determined, the approximate solution uN,M(x,t) can be
computed at any value of (x,t) in the given domain from

uN,Mðx, tÞ ¼
XM
k¼0

XN
i¼0

XN
j¼0

ai,k

�PL,jðx
L
N,iÞ$

L
N,i

hLj

	
PL,jðxÞTT,kðtÞ

ð58Þ

4. Two-dimensional space fractional
percolation equations

In this section, we develop the algorithm for one-
dimensional FPEs to handle the following two-
dimensional space FPE

@tuðx, y, tÞ ¼ @
n1
x

�
g1ðx, yÞ@

n2
x uðx, y, tÞ

	

þ @n3y

�
g2ðx, yÞ@

n4
y uðx, y, tÞ

	
þ f ðx, y, tÞ,

05n1, n2, n3, n4 5 1, ðx, y, tÞ 2 ½0,L1�

� ½0,L2� � ½0,T� ð59Þ

with the initial condition

uðx, y, 0Þ ¼ g3ðx, yÞ, ðx, yÞ 2 ½0,L1� � ½0,L2� ð60Þ

and four boundary conditions

uð0, y, tÞ ¼ g4ð y, tÞ, uðL1, y, tÞ ¼ g5ð y, tÞ,

ð y, tÞ 2 ½0,L2� � ½0,T�,

uðx, 0, tÞ ¼ g6ðx, tÞ, uðx,L2, tÞ ¼ g7ðx, tÞ

ðx, tÞ 2 ½0,L1� � ½0,T�

ð61Þ

4.1. SL-GL-C scheme for the space variable

The SL-GL-C method will be extended to reduce the
solution of the previous FPE into SODEs. Let us
expand the dependent variable in the form

uN,Mðx, y, tÞ ¼
XM
j¼0

XN
i¼0

ai,jðtÞPL1,iðxÞPL2,jð yÞ ð62Þ

The coefficients ai,j(t) can be approximated by

ai,jðtÞ ¼
1

hL1

i hL2
j

XN
l¼0

XM
k¼0

�
PL2,jð y

L2

M,kÞ$
L2

M,kPL1,iðx
L1

N,lÞ$
L1

N,l

	

� uðxL1

N,l, y
L2

M,k, tÞ

ð63Þ

Hence we can rewrite uN,M(x,y,t) as

uN,Mðx, y, tÞ ¼
XM
j¼0

XN
i¼0

XN
l¼0

XM
k¼0

�

�
PL2,jð y

L2

M,kÞ$
L2

M,kPL1,iðx
L1

N,lÞ$
L1

N,l

	
hL1

i hL2

j

� PL1,iðxÞPL2,jð yÞ ul,kðtÞ

ð64Þ

where uN,M(xN,n,yM,m,t)¼ un,m(t).

l,m ¼

�n, s ¼ 0, n ¼ 1, . . . ,N� 1,

Fn

�
tTM,s,

PM
j¼0

a1,jTT,jðt
T
M,sÞ, . . . ,

PM
j¼0

aN�1,jTT,jðt
T
M,sÞ

	
, n ¼ 1, . . . ,N� 1, s ¼ 1, . . . ,M

8<
: ð57Þ
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Similarly to equations (34)–(38), we compute the
fractional spatial partial derivatives as

@n2x uðx, y, tÞ

¼
XN
l¼0

XM
k¼0

XM
j¼0

XN
i¼0

�
PL2,jð y

L2

M,kÞ$
L2

M,kPL1,iðx
L1

N,lÞ$
L1

N,l

	
hL1

i hL2
j

� P
ðn2Þ
L1,i
ðxÞPL2,jð yÞ ul,kðtÞ, ð65Þ

@n4y uðx, y, tÞ

¼
XN
l¼0

XM
k¼0

XM
j¼0

XN
i¼0

�
PL2,jð y

L2

M,kÞ$
L2

M,kPL1,iðx
L1

N,lÞ$
L1

N,l

	
hL1

i hL2

j

� P
ðn4Þ
L2,j
ð yÞPL1,iðxÞ ul,kðtÞ,

ð66Þ

@n1x

�
@n2x uðx, y, tÞ

	

¼
XN
l¼0

XM
k¼0

XM
j¼0

XN
i¼0

�
PL2,jð y

L2

M,kÞ$
L2

M,kPL1,iðx
L1

N,lÞ$
L1

N,l

	
hL1

i hL2
j

� P
ðn1þn2Þ
L1,i

ðxÞPL2,jð yÞ ul,kðtÞ,

ð67Þ

@n3y

�
@n4y uðx, y, tÞ

	

¼
XN
l¼0

XM
k¼0

XM
j¼0

XN
i¼0

�
PL2,jð y

L2

M,kÞ$
L2

M,kPL1,iðx
L1

N,lÞ$
L1

N,l

	
hL1

i hL2
j

� P
ðn3þn4Þ
L2,j

ð yÞPL1,iðxÞ ul,kðtÞ

ð68Þ

The previous fractional derivatives can be evaluated at
the SL-GL interpolation nodes for n¼ 1, 2, . . .,N�1,
m¼ 1, 2, . . . ,M�1, as follows

�
@n2x uðx, y, tÞ

	x¼xL1
N,n

,

y¼y
L2
M,m

¼
XN
l¼0

XM
k¼0

�n,ml,k ul,kðtÞ ð69Þ

�
@n1x

�
@n2x uðx, y, tÞ

		x¼xL1
N,n

,

y¼y
L2
M,m

¼
XN
l¼0

XM
k¼0

�n,ml,k ul,kðtÞ ð70Þ

�
@n4y uðx, y, tÞ

	x¼xL1
N,n

,

y¼y
L2
M,m

¼
XN
l¼0

XM
k¼0

ln,ml,k ul,kðtÞ ð71Þ

�
@n3y

�
@n4y uðx, y, tÞ

		x¼xL1
N,n

,

y¼y
L2
M,m

¼
XN
l¼0

XM
k¼0

�n,m
l,k ul,kðtÞ ð72Þ

where

�n,ml,k ¼
XN
i¼0

XM
j¼0

�
PL2,jð y

L2

M,kÞ$
L2

M,kPL1,iðx
L1

N,lÞ$
L1

N,l

	
hL1

i hL2
j

�

�
P
ðn2Þ
L1,i
ðxÞ
	
x¼x

L1
N,n

PL2,jð y
L2

M,mÞ

ð73Þ

�n,ml,k ¼
XN
i¼0

XM
j¼0

�
PL2,jð y

L2

M,kÞ$
L2

M,kPL1,iðx
L1

N,lÞ$
L1

N,l

	
hL1

i hL2
j

�

�
P
ðn1þn2Þ
L1,i

ðxÞ
	
x¼x

L1
N,n

PL2,jð y
L2

M,mÞ,

ð74Þ

ln,ml,k ¼
XN
i¼0

XM
j¼0

�
PL2,jð y

L2

M,kÞ$
L2

M,kPL1,iðx
L1

N,lÞ$
L1

N,l

	
hL1

i hL2
j

�

�
P
ðn4Þ
L2,j
ð yÞ
	
y¼y

L2
M,m

PL1,iðx
L1

N,nÞ,

ð75Þ

�n,m
l,k ¼

XN
i¼0

XM
j¼0

�
PL2,jð y

L2

M,kÞ$
L2

M,kPL1,iðx
L1

N,lÞ$
L1

N,l

	
hL1

i hL2
j

�

�
P
ðn3þn4Þ
L2,j

ð yÞ
	
y¼y

L2
M,m

PL1,iðx
L1

N,nÞ

ð76Þ

In the proposed SL-GL-C method, the residual of
equation (59) is set to zero at (N� 1)� (M� 1) SL-
GL points. Moreover, the values of u0,k(t), uN,k(t),
ul,0(t) and ul,N(t) can be given by

u0,kðtÞ ¼ g7ðy
L2

M,k, tÞ, uN,kðtÞ ¼ g8ðy
L2

M,k, tÞ, k¼ 0, . . . ,M,

ul,0ðtÞ ¼ g9ðx
L1

N,l, tÞ, ul,NðtÞ ¼ g10ðx
L1

N,l, tÞ, l¼ 0, . . . ,N

ð77Þ

the combination of equations (64)–(77), with equations
(59)–(61) leads us to the (N� 1)� (M� 1) SODEs

_un,mðtÞ ¼g8ðx
L1

N,n, y
L2

M,mÞ
XN
l¼0

XM
k¼0

�n,ml,k ul,kðtÞ þ g1ðx
L1

N,n, y
L2

M,mÞ

�
XN
l¼0

XM
k¼0

�n,ml,k ul,kðtÞ þ g9ðx
L1

N,n, y
L2

M,mÞ

�
XN
l¼0

XM
k¼0

ln,ml,k ul,kðtÞ þ g2ðx
L1

N,n, y
L2

M,mÞ

�
XN
l¼0

XM
k¼0

�n,m
l,k ul,kðtÞ þ f ðxL1

N,n, y
L2

M,m, tÞ,

n ¼ 1, . . . ,N� 1, m ¼ 1, . . . ,M� 1

ð78Þ
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subject to the initial conditions

un,mð0Þ ¼ g3ðx
L1

N,n, y
L2

M,mÞ ¼ gn,m3 , n ¼ 1, . . . ,N� 1,

m ¼ 1, . . . ,M� 1

ð79Þ

where

g8ðx
L1

N,n, y
L2

M,mÞ ¼

�
@n1x g1ðx, yÞ

	x¼xL1
N,n

,

y¼y
L2
M,m

,

g9ðx
L1

N,n, y
L2

M,mÞ ¼

�
@n3y g2ðx, yÞ

	x¼xL1
N,n

,

y¼y
L2
M,m

ð80Þ

Finally, we can rearrange equations (78)–(79) to their
matrix formulation

where

Hn,mðt, u1,1, . . . , uN�1,M�1Þ

¼ g8ðx
L1

N,n, y
L2

M,mÞ �
XN
l¼0

XM
k¼0

�n,ml,k ul,kðtÞ þ g1ðx
L1

N,n, y
L2

M,mÞ

�
XN
l¼0

XM
k¼0

�n,ml,k ul,kðtÞ þ g9ðx
L1

N,n, y
L2

M,mÞ
XN
l¼0

XM
k¼0

ln,ml,k ul,kðtÞ

þ g2ðx
L1

N,n, y
L2

M,mÞ
XN
l¼0

XM
k¼0

�n,m
l,k ul,kðtÞ þ f ðxL1

N,n, y
L2

M,m, tÞ,

n ¼ 1, . . . ,N� 1, m ¼ 1, . . . ,M� 1 ð83Þ

4.2. SC-GR-C scheme for the time variable

We are interested in using the SC-GR-Cmethod to trans-
form the SODEs (81) subject to equation (82) into a
system of algebraic equations. To this end, we approxi-
mate the time variable using the following approximation

un,m,KðtÞ ¼
XK
k¼0

an,mk TT,kðtÞ, n ¼ 1, . . . ,N� 1,

m ¼ 1, . . . ,M� 1

ð84Þ

_u1,1ðtÞ . . . _u1,M�1ðtÞ

_u2,1ðtÞ
..
.

_u2,M�1ðtÞ

. . . . .
.

. . .

. . . . .
.

. . .

. . . . .
.

. . .

_uN�2,1ðtÞ
..
.

_uN�2,M�1ðtÞ

_uN�1,1ðtÞ . . . _uN�1,M�1ðtÞ

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

¼

H1,1ðt, u1, . . . , uN�1Þ . . . H1,M�1ðt, u1, . . . , uN�1Þ

H2,1ðt, u1, . . . , uN�1Þ
..
.

H2,M�1ðt, u1, . . . , uN�1Þ

. . . . .
.

. . .

. . . . .
.

. . .

. . . . .
.

. . .

HN�2,1ðt, u1, . . . , uN�1Þ
..
.

HN�2,M�1ðt, u1, . . . , uN�1Þ

HN�1,1ðt, u1, . . . , uN�1Þ . . . HN�1,M�1ðt, u1, . . . , uN�1Þ

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

ð81Þ

u1,1ð0Þ . . . u1,M�1ð0Þ

u2,1ð0Þ
..
.

u2,M�1ð0Þ

. . . . .
.

. . .

. . . . .
.

. . .

. . . . .
.

. . .

uN�2,1ð0Þ
..
.

uN�2,M�1ð0Þ

uN�1,1ð0Þ . . . uN�1,M�1ð0Þ

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

¼

g1,13 . . . g1,M�13

g2,13
..
.

g2,M�13

. . . . .
.

. . .

. . . . .
.

. . .

. . . . .
.

. . .

gN�2,13
..
.

gN�2,M�13

gN�1,13 . . . gN�1,M�13

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ð82Þ

Bhrawy 2297



This allows us to immediately obtain the time derivative
of the approximate solution in the form

@tun,mðtÞ ¼
XK
k¼0

an,mk @tðTT,kðtÞÞ ¼
XK
k¼0

an,mk T
ð1Þ
T,kðtÞ,

n ¼ 1, . . . ,N� 1, m ¼ 1, . . . ,M� 1

ð85Þ

Combining equations (81)–(85), enables us to write

where �n,mðtÞ ¼ Hn,m

�
t,
PK

k¼0 a
1,1
k TT,kðtÞ, . . . ,

PK
k¼0

aN�1,M�1k TT,kðtÞ
	
:

In the proposed method, the residual of equation
(86) is set to be zero at K� (N� 1)� (M� 1) colloca-
tion points.

XK
k¼0

an,mk T
ð1Þ
T,kðt

T
K,sÞ ¼ �n,mðt

T
K,sÞ, n ¼ 1, . . . ,N� 1,

m ¼ 1, . . . ,M� 1, s ¼ 1, . . . ,K ð88Þ

according to initial conditions, we have another
(N� 1)� (M� 1) algebraic equations

XK
k¼0

an,mk TT,kð0Þ ¼ gn,m3 , n ¼ 1, . . . ,N� 1,

m ¼ 1, . . . ,M� 1

ð89Þ

Finally, we can merge the previous equations (88) and
(89) in the following matrix system form

� ¼ � ð90Þ

PK
k¼0

a1,1k T
ð1Þ
T,kðtÞ . . .

PK
k¼0

a1,M�1k T
ð1Þ
T,kðtÞ

PK
k¼0

a2,1k T
ð1Þ
T,kðtÞ

..

. PK
k¼0

a2,M�1k T
ð1Þ
T,kðtÞ

. . . . .
.

. . .

. . . . .
.

. . .

. . . . .
.

. . .

PK
k¼0

aN�2,1k T
ð1Þ
T,kðtÞ

..

. PK
k¼0

aN�2,M�1k T
ð1Þ
T,kðtÞ

PK
k¼0

aN�1,1k T
ð1Þ
T,kðtÞ . . .

PK
k¼0

aN�1,M�1k T
ð1Þ
T,kðtÞ

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

¼

�1,1ðtÞ . . . �1,M�1ðtÞ

�2,1ðtÞ . . . �2,M�1ðtÞ

. . . . .
.

. . .

. . . . .
.

. . .

. . . . .
.

. . .

�N�2,1ðtÞ . . . �N�2,M�1ðtÞ

�N�1,1ðtÞ . . . �N�1,M�1ðtÞ

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

, ð86Þ

PK
k¼0

a1,1k TT,kð0Þ . . .
PK
k¼0

a1,M�1k TT,kð0Þ

PK
k¼0

a2,1k TT,kð0Þ . . .
PK
k¼0

a2,M�1k TT,kð0Þ

. . . . .
.

. . .

. . . . .
.

. . .

. . . . .
.

. . .PK
k¼0

aN�2,1k TT,kð0Þ . . .
PK
k¼0

aN�2,M�1k TT,kð0Þ

PK
k¼0

aN�1,1k TT,kð0Þ . . .
PK
k¼0

aN�1,M�1k TT,kð0Þ

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

¼

g1,13 . . . g1,M�13

g2,13
..
.

g2,M�13

. . . . .
.

. . .

. . . . .
.

. . .

. . . . .
.

. . .

gN�2,13
..
.

gN�2,M�13

gN�1,13 . . . gN�1,M�13

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð87Þ

2298 Journal of Vibration and Control 22(9)



where

� ¼

=
1,1
0

=
1,1
1

. . .

. . .

=
1,1
K�1

=
1,1
K

0
BBBBBBBBB@

1
CCCCCCCCCA

=
1,2
0

=
1,2
1

. . .

. . .

=
1,2
K�1

=
1,2
K

0
BBBBBBBBB@

1
CCCCCCCCCA

. . .

=
1,M�2
0

=
1,M�2
1

. . .

. . .

=
1,M�2
K�1

=
1,M�2
K

0
BBBBBBBBB@

1
CCCCCCCCCA

=
1,M�1
0

=
1,M�1
1

. . .

. . .

=
1,M�1
K�1

=
1,M�1
K

0
BBBBBBBBB@

1
CCCCCCCCCA

. . . . . . . .
.

. . . . . .

. . . . . . . .
.

. . . . . .

. . . . . . . .
.

. . . . . .

=
N�1,1
0

=
N�1,1
1

. . .

. . .

=
N�1,1
K�1

=
N�1,1
K

0
BBBBBBBBB@

1
CCCCCCCCCA

=
N�1,2
0

=
N�1,2
1

. . .

. . .

=
N�1,2
K�1

=
N�1,2
K

0
BBBBBBBBB@

1
CCCCCCCCCA

. . .

=
N�1,M�2
0

=
N�1,M�2
1

. . .

. . .

=
N�1,M�2
K�1

=
N�1,M�2
K

0
BBBBBBBBB@

1
CCCCCCCCCA

=
N�1,M�1
0

=
N�1,M�1
1

. . .

. . .

=
N�1,M�1
K�1

=
N�1,M�1
K

0
BBBBBBBBB@

1
CCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, ð91Þ

� ¼

<
1,1
0

<
1,1
1

. . .

. . .
<

1,1
K�1

<
1,1
K

0
BBBBBB@

1
CCCCCCA

<
1,2
0

<
1,2
1

. . .

. . .
<

1,2
K�1

<
1,2
K

0
BBBBBB@

1
CCCCCCA

. . .

<
1,M�2
0

<
1,M�2
1

. . .

. . .
<

1,M�2
K�1

<
1,M�2
K

0
BBBBBB@

1
CCCCCCA

<
1,M�1
0

<
1,M�1
1

. . .

. . .
<

1,M�1
K�1

<
1,M�1
K

0
BBBBBB@

1
CCCCCCA

. . . . . . . .
.

. . . . . .

. . . . . . . .
.

. . . . . .

. . . . . . . .
.

. . . . . .

<
N�1,1
0

<
N�1,1
1

. . .

. . .
<

N�1,1
K�1

<
N�1,1
K

0
BBBBBB@

1
CCCCCCA

<
N�1,2
0

<
N�1,2
1

. . .

. . .
<

N�1,2
K�1

<
N�1,2
K

0
BBBBBB@

1
CCCCCCA

. . .

<
N�1,M�2
0

<
N�1,M�2
1

. . .

. . .
<

N�1,M�2
K�1

<
N�1,M�2
K

0
BBBBBB@

1
CCCCCCA

<
N�1,M�1
0

<
N�1,M�1
1

. . .

. . .
<

N�1,M�1
K�1

<
N�1,M�1
K

0
BBBBBB@

1
CCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, ð92Þ

=n,ms ¼

PK
k¼0

an,mk TT,kð0Þ, s ¼ 0, n ¼ 1, . . . ,N� 1, m ¼ 1, . . . ,M� 1,

PK
k¼0

an,mk T
ð1Þ
T,kðt

T
K,sÞ, n ¼ 1, . . . ,N� 1, m ¼ 1, . . . ,M� 1, s ¼ 1, . . . ,K

8>>><
>>>:

ð93Þ

and

l,m ¼
gn,m3 , s ¼ 0, n ¼ 1, . . . ,N� 1, m ¼ 1, . . . ,M� 1;

�n,mðt
T
K,sÞ, n ¼ 1, . . . ,N� 1, m ¼ 1, . . . ,M� 1, s ¼ 1, . . . ,K

(
ð94Þ
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Finally, from equations (91)–(94), we get a system of
(N� 1)� (M� 1)� (Kþ 1) algebraic equations. This
system can be solved by any iteration technique.
Then, the approximate solution uN,M,K(x,y,t) can be
evaluated as

uN,M,Kðx,y,tÞ

¼
XK
r¼0

XM
j¼0

XN
i¼0

XN
l¼0

XM
k¼0

al,kr

�
PL2,jðy

L2

M,kÞ$
L2

M,kPL1,iðx
L1

N,lÞ$
L1

N,l

	
hL1

i hL2

j

�PL1,iðxÞPL2,jðyÞTT,rðtÞ

ð95Þ

4.3. Error bound

In this subsection, we present an analytic expression for the
error norm of the best approximation for a smooth func-
tion u(x,y,t)2�� [0,L1]� [0,L2]� [0,T] by its expansion

uN,M,Kðx, y, tÞ ¼
XK
k¼0

XN
i¼0

XM
j¼0

�i,j,kPL1,iðxÞPL2,jð yÞTT,kðtÞ

ð96Þ

where

�i,j,k ¼
XN
l¼0

XM
r¼0

al,rk

�
PL2,jð y

L2

M,rÞ$
L2

M,rPL1,iðx
L1

N,lÞ$
L1

N,l

	
�hi�hj

ð97Þ

at any value of (x,y,t) in the given domain. Here we
provide an upper bound on the error expected in our
approximations in the two-dimensional case and for the
one-dimensional case we refer the reader to Bhrawy
and Zaky (2015a).

Let us first consider the space

�N,M,K ¼ spanfPL1,iðxÞPL2,jð yÞTT,kðtÞ, i ¼ 0, 1, . . . ,N,

j ¼ 0, 1, . . . ,M, k ¼ 0, 1, . . . ,Kg

In the following analysis it will always be assumed that
uN,M,K(x,y,t)2

N,M,K is the best approximation of
u(x,y,t), then by the definition of the best approxima-
tion, we have

8 vN,M,Kðx, y, tÞ 2 �N,M,K,

uðx, y, tÞ � uN,M,Kðx, y, tÞ


 



1
� uðx, y, tÞ




� vN,M,Kðx, y, tÞ



1

ð98Þ

It turns out that the previous inequality is also true if
vN,M,K(x,y,t) denotes the interpolating polynomial for

u(x,y,t) at points ðxL1

N,i, y
L2

M,j, t
T
K,kÞ, where

tTK,k, ð0 � k � KÞ are the shifted Chebyshev Gauss–

Radau points and xL1

N,i, ð0 � i � NÞ and

yL2

M,j, ð0 � j �MÞ are the shifted Legendre Gauss–

Lobatto collocation points. Then by similar procedures
to those in Bhrawy and Zaky (2015a), we can write

uðx, y, tÞ � vN,M,Kðx, y, tÞ ¼
@Nþ1uð�1, y, tÞ

@xNþ1ðNþ 1Þ!

YN
i¼0

ðx� xL1

N,iÞ

þ
@Mþ1uðx, �2, tÞ

@yMþ1ðMþ 1Þ!

YM
j¼0

ð y� yL2

M,jÞ

þ
@Kþ1uðx, y, �3Þ

@tKþ1ðKþ 1Þ!

YK
k¼0

ðt� tTK,kÞ

�
@NþMþKþ3uð�01, �

0
2, �
0
3Þ

@xNþ1@yMþ1@tKþ1ðMþ 1Þ!ðNþ 1Þ!ðKþ 1Þ!

�
YN
i¼0

ðx� xL1

N,iÞ
YM
j¼0

ð y� yL2

M,jÞ
YK
k¼0

ðt� tTK,kÞ

ð99Þ

where e1, e012 [0,L1], e2, e022 [0,L2] and e3, e032 [0,T],
and thereby we obtain that

uðx, y, tÞ � vN,M,Kðx, y, tÞ


 



1

� max
ðx,y,tÞ2�

@Nþ1uð�1, y, tÞ

@xNþ1

����
����
QN
i¼0

ðx� xL1

N,iÞ











1

ðNþ 1Þ!

þ max
ðx,y,tÞ2�

@Mþ1uðx, �2, tÞ

@yMþ1

����
����
QM
j¼0

ð y� yL2

M,jÞ













1

Mþ 1Þ!

þ max
ðx,y,tÞ2�

@Kþ1uðx, y, �3Þ

@tKþ1

����
����
QK
k¼0

ðt� tTK,kÞ











1

ðKþ 1Þ!

þ max
ðx,y,tÞ2�

@NþMþKþ3uð"01, "
0
2, "
0
3Þ

@xNþ1@yMþ1@tKþ1

����
����

�

QN
i¼0

ðx� xL1

N,iÞ











1

QM
j¼0

ð y� yL2

M,jÞ













1

QK
k¼0

ðt� tTK,kÞ











1

ðKþ 1Þ!ðNþ 1Þ!ðMþ 1Þ!

ð100Þ

Since u(x,y,t) is a smooth function on �, then there
exists the constants C1, C2, C3 and C4, such that

max
ðx,y,tÞ2�

@Nþ1uðx, y, tÞ

@xNþ1

����
���� � C1,

max
ðx,y,tÞ2�

@Mþ1uðx, y, tÞ

@yMþ1

����
���� � C2,
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max
ðx,y,tÞ2�

@Kþ1uðx, y, tÞ

@tKþ1

����
���� � C3,

max
ðx,y,tÞ2�

@NþMþKþ3uðx, tÞ

@xNþ1@yMþ1@tKþ1

����
���� � C4 ð101Þ

Here, we try to reduce the error in the polynomial
approximation by minimizing the factor
QN
i¼0

ðx� xL1

N,iÞ











1

. Let us use the one-to-one mapping

x ¼ L1

2 ðzþ 1Þ between the intervals [� 1,1] and [0,L1]

to deduce that

min
x
L1
N,i
2 0,L1½ �

max
0�x�L1

YN
i¼0

ðx� xL1

N,iÞ

�����
�����

¼ min
zi2 �1,1½ �

max
�1�z�1

YN
i¼0

L1

2
ðz� ziÞ

�����
�����

¼
L1

2

� �Nþ1

min
zi2 �1,1½ �

max
�1�z�1

YN
i¼0

ðz� ziÞ

�����
�����

¼
L1

2

� �Nþ1

max
�1�z�1

PNþ1ðzÞ

�N

����
����

ð102Þ

where �N ¼
ð2NÞ!

2NðN!Þ2
is the leading coefficient of PNþ1(z)

and zi are the Legendre Gauss–Lobatto collocation
points. It is a well-known fact (Canuto et al., 2006),
that the Legendre and Chebyshev polynomials satisfy

max
�1�z�1

PNþ1ðzÞ
�� �� � 1 and max

�1�z�1
TKþ1ðzÞ
�� �� � 1

We can obtain

YN
i¼0

ðx� xL1

N,iÞ













1

�
ðL1=2Þ

Nþ1

�N
ð103Þ

Also we can obtain

YK
k¼0

ðt� tTK,kÞ













1

�
ðT=2ÞKþ1

�0K
ð104Þ

where �0K ¼ 2K is the leading coefficient of TKþ1(z).
Combining equations (100), (101), (103) and (104),

yields

uðx, y, tÞ � uN,M,Kðx, y, tÞ


 



1
� C01

ðL1=2Þ
Nþ1

�NðNþ 1Þ!

þC02
ðL2=2Þ

Mþ1

�MðMþ 1Þ!
þ C03

ðT=2ÞKþ1

�0KðKþ 1Þ!

þC04
ðL1=2Þ

Nþ1
ðL2=2Þ

Mþ1
ðT=2ÞKþ1

�N�M�0KðNþ 1Þ!ðMþ 1Þ!ðKþ 1Þ!
ð105Þ

Hence, an upper bound of the absolute error is
obtained for the approximate solutions. The conver-
gence of the proposed method depends basically on
the above error bound.

5. Numerical results and comparisons

After the construction of the spectral collocation meth-
ods, we now carry out some numerical examples of
1þ 1 and 2þ 1 FPEs to study the performance of the
methods, which are discussed and developed in the cur-
rent paper, and to compare our results with those pro-
posed in Chen et al. (2011b, 2013, 2014). We divide this
section into two main parts. In the first one, we intro-
duce two examples of 1þ 1 FPEs. Then, we deal with
three numerical examples of 2þ 1 FPEs in the second
part.

5.1. Examples for one-dimensional space
fractional percolation equations

Example 1. Let us start with the following FPE (Chen
et al., 2011b)

@tuðx, tÞ ¼ @x

�
ð30� x2Þ@0:5x uðx, tÞ

	

�
e�t 45

ffiffiffi
x
p
� 3:5x2:5

� �
�ð3Þ

�ð2:5Þ

� e�tx2, ðx, tÞ 2 ½0, 1� � ½0, 1�

ð106Þ

subject to

uðx, 0Þ ¼ x2, x 2 ½0, 1�, uð0, tÞ ¼ 0,

uð1, tÞ ¼ e�t, t 2 ½0, 1�
ð107Þ

The exact solution is u(x,t)¼ e�t x2.
Recently, Chen et al. (2011b) introduced approxi-

mate solutions to the previous problem with various
choices of N and M using a novel implicit finite differ-
ence (NIFD) method. Now, we list in Table 1 a com-
parison based on the maximum absolute error (ME)
between the numerical method introduced in Chen
et al. (2011b), and our results with choices of N and
M, which are less than those in Chen et al. (2011b). We
observe that the error, using the present method, decays
exponentially with an increase in the collocation nodes
N,M. In Table 2, we see the high accuracy of the pre-
sent method based on absolute error at N¼M¼ 12.

A space–time graph of the error function between
the exact and approximate solutions at N¼ 12, is
sketched in Figure 1. In addition, to confirm the high
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Table 2. Absolute error at N¼M¼ 12 and various choices of (x,t) for problem (106).

x t E(x,t) x t E(x,t) x t E(x,t)

0.1 0.1 3.33� 10�16 0.1 0.5 3.05� 10�16 0.1 1 1.11� 10�16

0.2 2.22� 10�16 0.2 3.33� 10�16 0.2 1.11� 10�16

0.3 3.05� 10�16 0.3 4.44� 10�16 0.3 1.38� 10�16

0.4 4.16� 10�16 0.4 5.13� 10�16 0.4 1.38� 10�16

0.5 3.33� 10�16 0.5 5.07� 10�16 0.5 5.89� 10�17

0.6 3.54� 10�16 0.6 4.61� 10�16 0.6 8.50� 10�17

0.7 3.05� 10�16 0.7 3.89� 10�16 0.7 1.04� 10�16

0.8 3.33� 10�16 0.8 5.27� 10�16 0.8 1.39� 10�16

0.9 1.67� 10�16 0.9 3.33� 10�16 0.9 0

1 1.11� 10�16 1 2.22� 10�16 1 1.11� 10�16

Table 1. Comparing ME of the proposed method with the NIFD (Chen et al., 2011b) method for problem (106).

N¼M

SL-GL-C Method NIFD (Chen et al., 2011b)

4 8 12 40 80

ME 1.24� 10�5 1.94� 10�11 6.66� 10�16 1.52� 10�7 7.68� 10�8

Figure 1. Absolute error of problem (106).
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accuracy and convergence of the present scheme, in
Figure 2, we plot the logarithmic graph of ME(log10
ME) at various values of N(N¼M), which shows that
the proposed method provides an accurate approxima-
tion and yields exponential convergence rates.

Example 2. Consider the following FPE (Chen et al.,
2011b)

@tuðx, tÞ ¼@
0:9
x

�
@0:8x uðx, tÞ

	
� e�t x2 þ

�ð0:3Þ

�ð1:3Þ
x0:3

� �
,

ðx, tÞ 2 ½0, 1� � ½0, 1�

ð108Þ

subject to

uðx, 0Þ ¼ x2, x 2 ½0, 1�, uð0, tÞ ¼ 0,

uð1, tÞ ¼ e�t, t 2 ½0, 1�
ð109Þ

The exact solution is u(x,t)¼ e�t x2.

In Table 3, the numerical results based on ME,
obtained using the proposed algorithm, are compared
with those presented by the NIFD method (Chen et al.,
2011b). From this table, we observe that the proposed
method is more accurate than the NIFD method (Chen
et al., 2011b). A comparison of the x-directional curves
of the exact solution and the numerical solution at
t¼ 0.1, 0.5, 0.9 is shown in Figure 3. Meanwhile, the
absolute error in the x-directional and at time value
t¼ 0 and N¼M¼ 14, is plotted in Figure 4.
In Figure 5, we sketch the logarithmic graph of ME

(log10ME) at various values of N(N¼M) to demon-
strate the convergence of the present method.

5.2. Examples for two-dimensional space
fractional percolation equations

Example 3. Consider the two-dimensional FPE (Chen
et al., 2013)

@tuðx, y, tÞ ¼@
�1
x

�
ð2� x2Þ@�1x uðx, y, tÞ

	
þ @�2y

4 6 8 10 12

14

12

10

8

6

N

L
og

10
M

E

Figure 2. Convergence of problem (106).

Table 3. Comparing ME of the proposed method and the NIFD (Chen et al., 2011b) method for problem (108).

N¼M

SL-GL-C Method NIFD (Chen et al., 2011b)

6 10 14 40 80

ME 1.77� 10�8 8.55� 10�15 6.66� 10�16 7.55� 10�4 3.82� 10�4
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�
ð2� y2Þ@�2y uðx, y, tÞ

	
� e�tx2y2

� e�ty2
�ð3Þ

�ð3� �1Þ

� 2�ð3� �1Þ

�ð3� �1 � �1Þ
x2��1��1

�
2�ð5� �1Þ

�ð5� �1 � �1Þ
x4��1��1

	

� e�tx2
�ð3Þ

�ð3� �2Þ

� 2�ð3� �2Þ

�ð3� �2 � �2Þ
y2��2��2

�
2�ð5� �2Þ

�ð5� �2 � �2Þ
y4��2��2

	
,

� ðx, y, tÞ 2 ½0, 1� � ½0, 1� � ½0, 1� ð110Þ

0.0 0.2 0.4 0.6 0.8 1.0

0

5. 10 17

1. 10 16

1.5 10 16

2. 10 16

2.5 10 16

3. 10 16

x

E
x,

0

Figure 4. Absolute error of problem (108) at t¼ 0 and N¼M¼ 14.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

x

uN ,M x,0.9

u x,0.9

uN ,M x,0.5

u x,0.5

uN ,M x,0.1

u x,0.1

Figure 3. x-Directional curves of the approximate and exact solutions of problem (108) at N¼M¼ 14.
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subject to the initial condition

uðx, y, 0Þ ¼ x2 y2, ðx, yÞ 2 ½0, 1� � ½0, 1� ð111Þ

and the boundary conditions

uð0, y, tÞ ¼ 0, uð1, y, tÞ ¼ e�ty2, ð y, tÞ 2 ½0, 1� � ½0, 1�,

uðx, 0, tÞ ¼ 0, uðx, 1, tÞ ¼ e�tx2, ðx, tÞ 2 ½0, 1� � ½0, 1�

ð112Þ

The exact solution is u(x,t)¼ e�t x2,y2.
In spite of using small values of N, M and K, we

obtain highly accurate solutions to this problem using
the present method. In Table 4, we present the max-
imum absolute error (ME at t¼ 1) obtained by our
method, at different values of N, M and K, along
with a comparison with the results given by using the

implicit finite difference method (Chen et al., 2013), at
the special values a1¼ 0.5, b1¼ 1, a2¼ 0.5 and b2¼ 1.
In Table 5, we list the absolute error at N¼M¼K¼ 8
for problem (110), where a1¼ 0.5, b1¼ 1, a2¼ 0.5 and
b2¼ 1. We also plot the space graph of absolute error in
Figure 6, with the parameter values listed in its caption.
In order to demonstrate the exponential convergence of
the method, in Figure 7, we sketch the logarithmic
graphs of ME at various values of N(N¼M¼K).

Example 4. Consider the two-dimensional FPE (Chen
et al., 2014)

@tuðx, y, tÞ ¼@x

��ð3� n1Þð3� 2xÞ

2
@n1x uðx, y, tÞ

	

þ @y

��ð4� n2Þð4� yÞ

6
@n2y uðx, y, tÞ

	

4 6 8 10 12 14

14

12

10

8

6

N

L
og

10
M

E

Figure 5. Convergence of problem (108).

Table 4. Comparing ME of the proposed method and the NIFD (Chen et al., 2013) method for problem (110) at a1¼ 0.5, b1¼ 1,

a2¼ 0.5 and b2¼ 1.

N¼M¼ K

SL-GL-C Method NIFD (Chen et al., 2013)

4 6 8 80 160

ME 2.94� 10�6 6.38� 10�9 1.44� 10�11 – –

ME (at t¼ 1) 6.00� 10�6 1.57� 10�8 6.82� 10�12 1.17� 10�3 5.92� 10�4
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� e�tx2y3 þ e�tx2y2�n2 ðn2 � 3Þð4� yÞ þ yð Þ

þ e�tx1�n1y3 ðn1 � 2Þð3� 2xÞ þ 2xð Þ,

ðx, y, tÞ 2 ½0, 1� � ½0, 1� � ½0, 1� ð113Þ

subject to

uðx, y, 0Þ ¼ x2y3, ðx, yÞ 2 ½0, 1� � ½0, 1� ð114Þ

and

uð0, y, tÞ ¼ 0, uð1, y, tÞ ¼ e�ty3, ð y, tÞ 2 ½0, 1� � ½0, 1�,

uðx, 0, tÞ ¼ 0, uðx, 1, tÞ ¼ e�tx2, ðx, tÞ 2 ½0, 1� � ½0, 1�

ð115Þ

The exact solution of equation (113) is u(x,y,t)¼
e�t x2y3.

Table 5. Absolute error for problem (110) with a1¼ 0.5, b1¼ 1, a2¼ 0.5, b2¼ 1 at N¼M¼ K¼ 8.

x y t E(x,y,t) x y t E(x,y,t) x y t E(x,y,t)

0 0.5 0.1 1.60� 10�13 0 0.5 0.5 3.31� 10�13 0 0.5 1 6.05� 10�13

0.1 2.84� 10�13 0.1 8.05� 10�13 0.1 5.40� 10�13

0.2 2.62� 10�13 0.2 1.18� 10�12 0.2 8.12� 10�13

0.3 6.44� 10�14 0.3 1.44� 10�12 0.3 1.43� 10�12

0.4 1.02� 10�13 0.4 1.99� 10�12 0.4 1.36� 10�12

0.5 4.63� 10�13 0.5 2.30� 10�12 0.5 1.30� 10�12

0.6 1.04� 10�12 0.6 2.23� 10�12 0.6 1.37� 10�12

0.7 1.51� 10�12 0.7 2.17� 10�12 0.7 2.16� 10�13

0.8 1.83� 10�12 0.8 1.75� 10�12 0.8 2.24� 10�12

0.9 2.24� 10�12 0.9 4.12� 10�13 0.9 2.36� 10�12

1 1.60� 10�13 1 3.31� 10�13 1 6.05� 10�13

0.0

0.5

1.0

x

0.0

0.5

1.0

y

0

2. 10 12

4. 10 12

6. 10 12

8. 10 12

E x,y,1

Figure 6. The space graph of the absolute error for problem (110) at a1¼ 0.5, b1¼ 1, a2¼ 0.5, b2¼ 1 and N¼M¼K¼ 8.
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In order to show that our method is more accurate
than the implicit difference method (IDM) (Chen et al.,
2014), in Table 6 the numerical results for ME using the
proposed algorithm are compared with those presented
by the IDM (Chen et al., 2014). From this table, we
observe that the proposed method is more accurate
than the IDM (Chen et al., 2014).

Example 5. Finally, consider the two-dimensional FPE

@tuðx, y, tÞ ¼@
0:8
x

�
@0:7x uðx, y, tÞ

	
þ @0:9y

�
@0:6y uðx, y, tÞ

	

� e�tx2y2 �
�ð3Þ

�ð1:5Þ
e�tx0:5y2�

�ð3Þ

�ð1:5Þ
e�tx2y0:5, ðx, y, tÞ 2 ½0, 1�

� ½0, 1� � ½0, 1�

ð116Þ

subject to the initial condition

uðx, y, 0Þ ¼ x2y2, ðx, yÞ 2 ½0, 1� � ½0, 1� ð117Þ

and the boundary conditions

uð0, y, tÞ ¼ 0, uð1, y, tÞ ¼ e�ty2, ð y, tÞ 2 ½0, 1� � ½0, 1�,

uðx, 0, tÞ ¼ 0, uðx, 1, tÞ ¼ e�tx2, ðx, tÞ 2 ½0, 1� � ½0, 1�

ð118Þ

The exact solution of equation (116) is u(x,y,t)¼
e�t x2y2.

2 3 4 5 6 7 8

10

8

6

4

2

0

N

L
og

10
M

E
ME at t 1
ME

Figure 7. Convergence of problem (110).

Table 6. Comparing ME of the proposed method and IDM (Chen et al., 2014) for problem (113).

N¼M¼ k

SL-GL-C Method IDM (Chen et al., 2014)

4 6 8 80 160

ME 5.04� 10�6 9.82� 10�9 1.19� 10�11 – –

ME (at t¼ 1) 5.90� 10�6 1.67� 10�8 1.48� 10�11 2.07� 10�3 1.06� 10�3

Table 7. Maximum absolute error for problem (116).

N¼M¼ K 4 6 8

ME 3.11� 10�6 6.57� 10�9 7.83� 10�12

ME (at t¼ 1) 5.78� 10�6 1.59� 10�8 1.44� 10�11
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Table 7 lists the ME of u(x,y,t) for problem (116)
with various choices of N, M, and K. The numerical
results presented in this table show that the results are
very accurate for small values of N, M and K. Figure 8
demonstrates that the absolute error E(x,y,t) is very
small for even the small number of grid points taken.

6. Conclusion

As one of the few articles dealing with FPEs, we have
proposed and developed a spectral collocation method
to obtain accurate numerical solutions for one- and two-
dimensional FPEs. The core of the proposed method
was to discretize the FPE in the spatial direction by the
SL-GL-C method, along with a new treatment for the
subjected conditions, to create SODEs of the unknown
coefficients of spectral expansion in the time direction.
An efficient numerical integration process for SODEs
was investigated based on the SC-GR-C method. The
proposed method has been successfully applied to
numerically solve one- and two-dimensional FPEs.
The main advantage of the present approach is, by
adding a few terms of the shifted SL-GL and SC-GR
collocation nodes, a highly accurate solution of the
problem can be obtained. Comparison between our
approximate solutions and the approximate solutions
achieved by other methods were presented to demon-
strate the high accuracy and validity of our method.
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