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ABSTRACT Data transmission is the most critical operation for mobile sensors networks in term of energy
waste. Particularly in pervasive healthcare sensors network it is paramount to preserve the quality of service
also by means of energy saving policies. Communication and data transmission are among the most critical
operation for such devises in term of energy waste. In this paper we present a novel approach to increase
battery life-span by means of shorter transmission due to data compression. On the other hand, since this
latter operation has a non-neglectable energy cost, we developed a compression efficiency estimator based
on the evaluation of the absolute and relative entropy. Such algorithm provides us with a fast mean for the
evaluation of data compressibility. Since mobile wireless sensor networks are prone to battery discharge-
related problems, such an evaluation can be used to improve the electrical efficiency of data communication.
In facts the developed technique, due to its independence from the string or file length, is extremely
robust both for small and big data files, as well as to evaluate whether or not to compress data before
transmission. Since the proposed solution provides a quantitative analysis of the source’s entropy and the
related statistics, it has been implemented as a preprocessing step before transmission. A dynamic threshold
defines whether or not to invoke a compression subroutine. Such a subroutine should be expected to greatly
reduce the transmission length. On the other hand a data compression algorithm should be used only when
the energy gain of the reduced transmission time is presumably greater than the energy used to run the
compression software. In this paper we developed an automatic evaluation system in order to optimize the
data transmission in mobile sensor networks, by compressing data only when this action is presumed to
be energetically efficient. We tested the proposed algorithm by using the Canterbury Corpus as well as
standard pictorial data as benchmark test. The implemented system has been proven to be time-inexpensive
with respect to a compression algorithm. Finally the computational complexity of the proposed approach is
virtually neglectable with respect to the compression and transmission routines themselves.

INDEX TERMS wireless sensor networks; data compression; entropy; quality of service; energy saving;
quality prediction; differential information entropy.

I. INTRODUCTION

TE micro-electro-mechanical systems (MEMS) technol-
ogy has encountered a tremendous evolution in the last

decades [1]–[3]. The reached integration level permits us
to develop sensors embedding small computational devices
with fully functional storage and communication capabilities.

Such hardware systems are generally constructed in order to
perform some measurements and transmit the collected data
as digital signals. A multiplicity of sensors, deployed in a
collaborative strategy for data gathering, is called sensors net-
work. Moreover, if a sensor is mounted on a mobile device,
it is possible to rearrange their position during time, or ran-
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domly disperse sensors and reposition them in a successive
moment (e.g. due to temporary environmental limitations or
hazards, or in surveillance operations, etc...) [4], [5].

In this latter fashion, a mobile wireless sensor network
(MWSN) is a sensor network constituted by mobile nodes
that communicates through a radio signal. A large number
of MWSNs have been developed for pervasive healthcare
systems [6]: some of them are devoted to continuous
monitoring of elderlies, children, chronically ill or impaired
people, as well as patients affected by cognitive disorders,
such as Alzheimer syndrome; other kind of sensors networks
are in development for healthcare oriented environmental
monitoring, movement tracking, fall detection, live analysis
of human body stats and physiological parameters, etc...
Pervasive healthcare mobile sensor networks are capable
to join different data coming from different sources gath-
ering a more complete understanding of a diagnostic con-
text, therefore such sensors networks provide for advanced
monitoring solutions. Such solutions are extremely valuable
due to their improved ability to recognize unusual patterns
due to the more complete reference basis (e.g. in the case
of body area networks, BAN, or personal area networks,
PAN, etc...). Among the many BAN applications of MWSNs,
uttermost importance has been gained by ECG-monitoring
related solutions [7]–[9] on the other hand for such appli-
cations it is paramount to work under guaranteed quality
of services conditions also in terms of system autonomy
and battery life-cycle [10]. In facts, while remote control
and monitoring is one of the main advantages of MWSN
healthcare systems, energy efficient sensors are often criti-
cal [11], [12]. On the other hand communication interfaces
such as wifi and bluetooth, while mandatory components of
communicating networks, fail to provide support for energy
efficient systems [13]. Due to their nature such sensors must
be powered by means of electrical batteries, on the other
hand their operation cycle is limited due to the unavoidable
power exhaustion during time. It follows that, while in a
battery-powered sensor it is paramount to enforce every pos-
sible energy-saving policies, in MWSN the data transmission
events constitute critical operations that tampers with battery
life. In pervasive healthcare sensors networks, the amount of
autonomy time between charging cycles makes the difference
between a usable technology and a non feasible approach.
I.e., while MWSN can be extremely useful in preventing
cardiac pathologies or to enforce preemptive alert systems
for health operators, it would be pointless to develop such
a technology if the resulting device should be put offline,
recharging, each few hours. Data compression constitutes a
possible solution for energy efficient sensors’ data transmis-
sion, on the other hand that preventive measure should be
carefully evaluated. In facts, while compressed data requires
a shorter communication time, and consequently reduces the
amount of energy wasted in data transmission, the compres-
sion algorithm itself will require a certain amount of energy
to be executed. Therefore, as possible trade-off, it would
be agreeable to transmit compressed data only when such
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FIGURE 1. The interaction of the proposed entropy evaluation system with
the other hardware and software components is shown in the right panel (b),
with respect to the traditional interactions design shown in the left panel (a).

operation greatly reduces the transmission time. It follows
that, for mobile senors networks communicating by means
of wireless signals, data should be compressed only after a
positive estimation of the compression efficiency of the data
compression algorithm (see Figure 1).

The general problem is easy to state. Given many senders
and receivers and a channel transition matrix that describes
the effects of the interference and the noise in the network,
decide whether or not the sources can be transmitted over
the channel [14]. On the other hand a compression algo-
rithm does not represent an optimal solution in all condi-
tions, although there are many optimized software system
opportunely designed to achieve the best performances for
specific data formats (e.g. [15], [16].) While a large number
of algorithms are devoted to data compression for specific ap-
plications (see Figure 2), the optimum is generally achieved
only by few specific compression algorithm. On the other
hand, such an optimality on regards the compressed data size
with respect to its original size. Unfortunately, the design
and development of an optimal compression system in terms
of battery-savings on the field of MWSN would become a
strongly data-dependent task and would require a significant
effort, both on theoretical and practical side. Moreover the
energy efficiency of a compression algorithm would strongly
depend on the accuracy of the related model. Hence such
a model should have to be meticulously calibrated basing
on the structural and semantical topology of the data to
compress. Moreover both the complexity of the algorithms
and the overall computational effort are strongly influenced
by the admissible error in the process. The main issues
preliminarily examined when applying data compression are
efficiency aspects such as the total compression ratio, and the
computing resources (time and memory) required, especially
for space communications; other important issues are sensi-
tivity to errors and adaptability to different data types.

Data compression algorithms can be roughly classified
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FIGURE 2. A non exhaustive classification of existing compression algorithms.

in two categories: lossy (or non invertible) or lossless (or
invertible). While the algorithms that falls in the first of such
categories are generally capable of a greater result in terms
of compressed data size, this kind of algorithms are unable to
fully reconstruct the original data, suffering therefore of an
unavoidable information loss, hence they ends by reducing
the informational entropy, then definitively neglecting an
hopefully small portion of the original data. On the con-
trary lossless compression systems reduces the transmitted or
stored data size by reducing information redundancy from the
source, therefore preserving the informational entropy, and
allowing the integral reconstruction of the original data.

While lossy compression is in generally suitable for a
wide range of applications, on the field of sensors and sensor
networks such data requires to be perfectly reconstructed,
therefore, often, only lossless compression techniques are
applicable. It follows that, in lossless compression, an a

priori estimate of the source statistics is highly desirable
since it allows us to estimate the maximum theoretically-
achievable compression ratio. Such a knowledge becomes
helpful to improve the energy efficiency of communicating
sensors network. In facts, estimating the data compressibility
it is also possible to decide whether or not that procedure
would be convenient (e.g. a low compression ratio would not
reduce the communication time enough to justify the amount
of electrical power spent for the compression itself).

The key quantity which gives us useful information about
such items is the entropy content associated with a given data
source [17]–[19]. The better the stochastic approximation,
the better the compression. First-order entropy compressors
do not exploit the internal correlation of source sequences
(taken into account by higher-order entropies) unlike the
more advanced compression schemes, which obtain a signifi-
cant gain [20], [21]. ln this paper we present some algorithms
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which give an evaluation of the source statistics and compute
the related absolute and character-relative entropy up to a
preassigned order N. The algorithms presented are robust
and can deal with data files of arbitrary length. They have
been extensively tested with different kinds of files from the
Canterbury Corpus. In all cases the observed computing time
is typically one order lower than that required to actually
compress the files with the best data compressors on the
market.

II. ENTROPY BASED COMPRESSIBILITY ASSESSMENT

Elementary calculus then shows that the expected description
length must be greater than or equal to the entropy, the
first main result. Then Shannon’s simple construction shows
that the expected description length can achieve this bound
asymptotically for repeated descriptions. This establishes the
entropy as a natural measure of efficient description length.

An open problem in the field of compressibility theory
is about reckoning the deviation from maximum compress-
ibility of the effective compression when using a selected
algorithm on the data. In [22] Shannon has devised that
the lowest entropy value of an ascii file occurs to be 1.3
bit/digit by using an human being to solve the compression
task, but also restricting the related alphabet to 30 different
symbols (26 letter from the English alphabet and 4 punctu-
ation symbols). Expert linguists have been able to compress
up to 108 consecutive digits, while software algorithms can
compress 4 to 6 characters long strings. The reason for such
a difference lies on the human knowledge of grammar rules,
syntax, semantics and the topic-related personal experience.
These latter makes the human linguist able to naturally infer
or predict portion of the information therefore cumulating the
informational entropy of a text in few significant portions,
and so naturally implementing a compression procedure ab
initio, such a compression capability is unfortunately un-
quantifiable and actually inimitable by a software algorithm.
The best compression algorithms actually developed could
achieve 0.88 bit/digit at their best performances, although
such algorithms are benchmarked using an alphabet of 256
different symbols (give or take 32 control characters). Ef-
fectively the real performances obtained by a compression
algorithm depends on the intrinsic compressibility of a file
which can be evaluated by characterizing the related informa-
tional entropy. In order to evaluate the informational entropy
of a file, and consequently its intrinsic compressibility, first
order statistics does not suffice, therefore we need to consider
larger order statistics. In this context it is mandatory to
distinguish between the absolute entropy and the relative
entropy of a digit [20].

A. N-TH ORDER ABSOLUTE ENTROPY

Consider an ergodic source emitting sequences of symbols of
length L. The number of all possible subsequences of length
N(N ≤ L) is (L-N+1), therefore if the i-th subsequence Si

TABLE 1. Subsequence probability for the string ‘ABRACADABRA’.

Si AB AC AD BR CA DA RA
P (Si) 0.2 0.1 0.1 0.2 0.1 0.1 0.2

TABLE 2. Occurrences of the subsequences for the string ‘ABRACADABRA’.

Wh A B C D R
FWh

5 2 1 1 2

occurs Mi times, its relative frequency f(Si) is:

f(Si) =
Mi

L−N + 1
(1)

By using the interpretation of probability as a relative fre-
quency, we have:

P (Si) = f(Si) (2)

N-th order absolute entropy, Ha(N), is defined as:

Ha(N) =
L−N+1∑
i=1

HSi
(N) (3)

where
HSi

(N) = P (Si) log2 P (Si) (4)

is the contribution of the generic subsequence Si to Ha(N).
A practical example of absolute N-th order entropy estima-
tion can be given with the text string

ABRACADABRA

and supposing to compute the 2nd order absolute entropy.
The subsequences to take into account are constituted by all
the pairs of character contained on the string. Such pairs
represents all the possible outcome using an alphabet of
2562 = 65536 alternatives. To each subsequences can be as-
sociated a probability (see Table 1) considering that the string
is composed by a total number of 10 possible subsequences
of 2 characters (since L = 11). Using (3) it follows that

Ha(2) = −
[
4 · 1

10
· log2

(
1

10

)
+ 3 · 2

10
· log2

(
2

10

)]
=

= 2.7217 bits/digit (5)

B. N-TH ORDER RELATIVE ENTROPY
The N -th order character-relative entropy for the same se-
quence of L characters is computed by considering first
all the N -order contexts within the sequence (an N -order
context is any subsequence of length N − 1). The entropy
associated with the occurrence of the k-th character after the
h-th context constitutes the elementary contribution to the
N -th order character-relative entropy. The sum of all these
contributions gives the total N -th order character-relative
entropy:

Hr(N) = −
∑
h

FWh

L−N + 1

∑
k

Rh,k
FWh

log2

(
Rh,k
FWh

)
(6)
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TABLE 3. Further occurrences of characters for the string ‘ABRACADABRA’

h A A A A A B B B B B C C C C C D D D D D R R R R R
k A B C D R A B C D R A B C D R A B C D R A B C D R

Rh,k 0 2 1 1 0 0 0 0 0 2 1 0 0 0 0 1 0 0 0 0 2 0 0 0 0

where FWh
is the total number of occurrences of the sub-

sequence Wh within the sequence of length L, Rh,k is the
further occurrences of the subsequence k after the considered
one, and (L−N + 1) is the number of the occurrences of the
k-th character after the subsequence Wh. The above quantity
is a useful indicator to establish which of the different subse-
quences exhibiting the same first-order entropy can be further
compressed. Let use the same practical example to compute
the first order relative entropy on the string

ABRACADABRA

in this case it follows that L − N + 1 = 11, and given the
related Rh,k (see Tables 2 and 3), from (6) it follows that

Hr(1) = −
{

5

11
·
[

2

5
· log2

(
2

5

)
+

2

5
· log2

(
2

5

)]}
=

= 0.6625 bits/digit (7)

Consider now the following two sequences having the
same first-order entropy

ABCDACBDBACDABACBCDC
AAAAABBBBBCCCCCDDDDD

It is evident that the second sequence can easily be com-
pressed whereas the first cannot.

III. THE IMPLEMENTED SOLUTION
In this paper we present an efficient algorithm to compute
the N-th order absolute and relative entropy of a string. This
latter will be then used to determine when to compress data
for transmission in a mobile wireless sensor network. In order
to calculate Nth-order absolute and character-relative en-
tropy, existing algorithms are generally articulated into three
separate steps. Before calculating entropies, all the strings
contained in the sequence are lexicographically ordered and
a couple of suitable counters are assigned to each string.
These two steps are time-consuming when higher values of
N are involved. In the algorithms presented, the above two
phases are performed simultaneously; ordering and counter
assignment are done in a single step. The algorithm is thus
composed of just two steps: first a suitable data structure is
constructed and then entropy computations are performed.
The data structure used is a modified suffix tree by which
the source file is efficiently scanned and an implicit order-
ing of substrings is simultaneously performed more rapidly
than classical ordering algorithms using a modified suffix-
tree [23].

A. THE MODIFIED SUFFIX-THREE
For a generic string composed by L digits, each node of the
modified suffix-three can represent:

FIGURE 3. The modified suffix three for the string ‘BANANAS’.

• a prefix: a substring composed by the first characters of
a string

• a suffix: a substring composed by the last characters of
a string

• an explicit node: a node with 2 or more children
• an implicit node: a node made by collapsing edges with

only one child
• a leaf node: a node without children
Therefore the modified suffix-three can be populated in-

serting each character form the beginning to the end of the
given string by operating three kinds of update:

1) an explicit node update
2) an implicit node update
3) an edge split
Each edge of the suffix-three contains a string, this lat-

ter is not entirely stored, in fact, in order to improve
the memory occupancy of the algorithm, due the implicit
invariance of the sting inherent its suffix-three, we only
stored the indexes of the first (first_char_index) and
last (last_char_index) digit as parameters of a class
(Edge). All the edges are then organized in an hash table.
Similarly we store the first and last index for each suffix,
along with the origin node index (origin_node) which
represents the node from which originates the edge contain-
ing the suffix at hand (see Table 4).

B. ENTROPY EVALUATION
When evaluating each individual contribution to entropy, it is
sufficient to visit the modified suffix-tree structure, avoiding
a new complete scan of the file; a sensible reduction in the
total computing time is thus achieved. In the modified suffix-
tree algorithm, counters are introduced at each branch of the
tree. Every counter takes into account how many strings,
beginning with the string in the branch considered, there are
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TABLE 4. UML-like table showing several parameters (-) and methods (+) of Edge and Suffix classes.

Edge Suffix
-first_char_index:int -first_char_index:int
-last_char_index:int -last_char_index:int
-start_node:int -origin_node:int
-end_node:int
+SplitEdge(s:Suffix):int +Explicit():int

+Implicit():int

TABLE 5. Computed subsequence occurrences for the string ‘BANANAS’
when N = 3

Wh ANA AS BAN NAN NAS S
FWh

2 * 1 1 1 *
* ignored since shorter than N digits

in the complete sequence of length L. This number is the
context frequency and is equal to FWh

.
Rh,k is found by considering all the first characters of

the strings contained in the subtrees departing from the node
considered. Moreover, a complete scanning of the tree does
not necessarily have to be performed: if we want to compute,
for example, fifth-order entropies, we only have to scan five
levels of the tree (in the worst case), because these levels
contain all the information about the statistics of 5 character
strings. An example of a modified suffix tree for the string
BANANAS is shown in Figure 3: it is possible to verify that
the edges with only one child have been collapsed. If we
want to compute 2nd order entropies we only have to visit the
nodes labeled 0,1,8,6,10; all the other nodes do not need to
be visited at all; the time saving obtained with this approach
is significant, especially in the case of very long sequences
(over 108 symbols). By using the presented modified suffix-
three the computation of entropy for an assigned order N
is quite straightforward; all the contributions to the entropy
are obtained by visiting only the tree levels from the root
to the levels representing N-length o subsequences. All the
other tree levels are ignored, thus achieving efficiency and
speed in the evaluation. In addition, no preliminary ordering
is required. Let consider again the string

BANANAS

and let suppose to compute the 3rd order absolute and relative
entropy for such a string. In order to obtain the occurrences
of a substring it suffices to count the repetition numbers on
the suffixes list. Each time a new substring of different length
is found, then we will have yet counted all the occurrences
of the previous substring. Therefore it will be possible to
compute its entropic contribute immediately. For the string
BANANAS the possible substring occurrences are shown in
Table 5. Therefore once computed the contributions:

Ha(3)[ANA] =

[
2

5
· log2

(
2

5

)]
ANA

(8)

Ha(3)[BAN] =

[
1

5
· log2

(
1

5

)]
BAN

(9)

Ha(3)[NAN] =

[
1

5
· log2

(
1

5

)]
NAN

(10)

Ha(3)[NAS] =

[
1

5
· log2

(
1

5

)]
NAS

(11)

it immediately follows that

Ha(3)[BANANAS] =

= −
[

2

5
· log2

(
2

5

)
+

3

5
· log2

(
1

5

)]
BANANAS

=

= 0.8643 bits/digit (12)

The 3rd order relative entropy computation is a little more
difficult. In order to reckon the 3rd order entropy (N = 3)
we need to take into account substrings of 2 digits (N − 1).
Therefore the algorithms will execute the following steps:

1) scan the list considering the first two digits for each
suffix

2) compare the found substring with the previous suffix
3) count the digits position-related occurrences for each

substring
4) proceed to the next substring
After all the suffix occurrences have been computed, the

related counts are given as input for a statistical routine. This
latter routine determines the occurrence probability for each
substring in order to compute the relative entropy as in (6).

C. COMPRESSION EFFICIENCY ESTIMATION
Once the relative entropy have been evaluated at different
orders, the obtained values are considered to estimate the
possible compression efficiency. It must be pointed out that it
is not possible to precisely estimate an a priori compression
cost in terms of consumed power due to the many aleatory
variables that should be considered otherwise. On the other
hand, trough empirical evaluation, it is possible to establish
for each given device an entropy descent related threshold,
which could eventually be demanded to the hardware con-
structor. Such a threshold must be related to the slope of the

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2962771, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 4. The figure shows an order-wise comparison of the relative entropy Hr(h) with respect to the h0 order, the maximum relative entropy Hr(1) and the
computed slope proportional to Hr(2) −Hr(1). The superposition shows the behavior of different files extracted from the Canterbury Corpus: [A] an image
(lena.bmp), [B] an object code for VAX (obj1), [C] the first milion digits for π (pi.txt), and [D] an english text (alice29.txt).

TABLE 6. The used Canterbury corpus (and the image lena.bmp, added for a more representative test).

Corpus collection Filename Type Content Size
Canterbury alice29.txt ascii English text 152089 B
Canterbury asyoulik.txt ascii Shakespeare 125179 B
Canterbury cp.html html HTML source 24603 B
Canterbury fields.c ascii C source 11150 B
Canterbury grammar.lsp list LISP source 3721 B
Canterbury kennedy.xls excel Excel Spreadsheet 1029744 B
Canterbury lcet10.txt ascii Technical writing 426754 B
Canterbury plrabn12.txt ascii Poetry 481861 B
Canterbury ptt5 fax CCITT test set 513216 B
Canterbury sum bin SPARC Executable 38240 B
Canterbury xargs.1 man GNU manual page 4227 B

Artificial a.txt ascii The letter ’a’ 1 B
Artificial aaa.txt ascii The letter ’a’ 100000 times 100000 B
Artificial alphabet.txt ascii alphabet repetitions 100000 B
Artificial random.txt ascii pseudorandom alphanumeric 100000 B

Large E.coli ascii Genome of the E. Coli bacterium 4638690 B
Large bible.txt ascii The Bible of King James 4047392 B
Large world192.txt ascii The CIA world fact book 2473400 B

Miscellaneous pi.txt ascii The first million digits of pi 1000000 B
Calgary bib ascii Latex Bibliography file 111261 B
Calgary book1 ebook Fiction book 768771 B
Calgary book2 ebook Non-fiction book (troff format) 610856 B
Calgary geo raw Geophysical data 102400 B
Calgary news ascii USENET batch file 377109 B
Calgary obj1 obj Object code for VAX 21504 B
Calgary obj2 obj Object code for Apple Mac 246814 B
Calgary paper1 ascii Technical paper 53161 B
Calgary paper2 ascii Technical paper 82199 B
Calgary pic gif Black and white fax picture 513216 B
Calgary progc ascii Source code in C 39611 B
Calgary progl ascii Source code in LISP 71646 B
Calgary progp ascii Source code in PASCAL 49379 B
Calgary trans ascii Transcript of terminal session 93695 B

lena.bmp bmp Bitmap picture 263200 B

relative entropy value with respect to its order, as well as the
maximum non-zero entropy order (h0) defined as

h0 = min
h
{h : Hr(h) < ε} (13)

where ε is a number close to 0 (i.e. 10−8), used to avoid
machine’s related fluctuations.

Since an high slope for the relative entropy, as well as a
small maximum non-zero order suggest a low compressibil-
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ity ratio, and since, on the contrary, an high first order relative
entropy value will suggest an high compressibility, it follows
that we can define

χ =
Hr(1) · h0

Hr(1)−Hr(2)
(14)

as an evaluation parameter directly proportional to the com-
pressibility of the data at hand (see Figure 4). In this fashion,
given an empirically determined threshold θ, it will follows
that data will be compressed only if χ > θ.

Since the hardware configuration of a device could tamper
with the battery lifespan, as well as any implementation and
usage choice adopted by the constructor or the user, the said
threshold θ must be determined on field and could differ
for different devices. It follows that, in general, θ should
be provided as data-sheet parameter by the vendor or the
implementor of a specific protocol involving such a device.
On the other hand, θ could be experimentally determined
by measuring in controlled conditions, or in laboratory envi-
ronment, the maximum battery life-span as a function T (ϑ),
where ϑ represents a threshold candidate. In this manner it is
possible to devise an optimal threshold θ so that

θ : T (θ) = max
ϑ
{T (ϑ)} (15)

In the following application for testing purposes the
threshold Θ has been defined as approximately 1% of the
average χ.

IV. APPLICATION AND TESTING
As common practice in literature, the algorithms imple-
mented in this paper has been extensively tested using the
Canterbury Corpus: a set of standard files used to test almost
all lossless compression algorithms.

A. THE CANTERBURY CORPUS
The Canterbury Corpus [24] is constituted of several collec-
tion of files that are commonly used as benchmark in order
to evaluate the performances of compression algorithms on
different kinds of file types (such as text files, books, techni-
cal papers, source code, object files, raw data, images, etc...).
The Canterbury Corpus has been devised as an upgrade of
the Calgary Corpus [25]. The purpose of the Canterbury
Corpus was to provide researchers with a set of files that
could be representative of information that an user would
like to compress, as well as provide testing means to gather
sufficient statistical data for both an analytical and empirical
study of the compression performances of an algorithm. The
overall Canterbury Corpus is composed by the following five
collections:

• The Canterbury Collection
• The Artificial Collection
• The Large Collection
• The Miscellaneous Collection
• The Calgary Collection

While the Canterbury Collection constitutes the main focus
of the corpus, the Calgary Collection has been included

FIGURE 6. Three examples among the many experimental results, collected
in different environmental conditions, of battery status of charge (SOC) during
time for a communicating sensor (baseline) when the proposed system is
implemented (proposed) with a threshold of θ = 0.5.

mainly for historic reasons, as well as the Large Collection
has been included to provide a testing ground for algorithms
that are specifically designed, or best performing, for large
files. Moreover the corpus also contains the Artificial Col-
lection providing a set of files that should tamper with the
standard performances of a compression algorithm due to
their intrinsic nature (due to the absence of repetition or due
to a large amount of repetitions). This latter Collection, then,
is unsuitable for performances characterization, while it is
useful to detect outliers. Finally, the Miscellaneous Collec-
tion actually contains only a file with the first million digits
of π. In Table 6 we report a list of the files constituting the
Canterbury Corpus, and that we used to test our algorithm,
along with the commonly used image lena.bmp.

B. ENTROPY EVALUATION
The various evaluations have been performed by using the
files of the Calgary Corpus and Canterbury Corpus that con-
tain different kinds of data. The results of this investigation
are summarized in Figure 5 where the absolute and relative
entropies of four data files are shown for increasing values
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FIGURE 5. Absolute and relative entropy for several of the files used for testing (see Table 6).

of the entropy order N . It is possible to notice that the said
entropy values are strongly affected by the analyzed data
types. As a matter of fact we observe that the shape of the
curves strictly depends upon the kind of data processed;
more precisely, shapes tend to be smoother for compressible
files while they become sharper for incompressible data. In
particular for pseudo-random tiles, character-relative entropy
values always fall exactly to zero within the first five orders.
It is worth noticing that the behavior of the two quantities
is specular with respect to the value assumed for N = 1.
The character-relative entropy tends to a null value as N
increases whereas the absolute entropy reaches an asymptotic
value which depends on the nature of the source. Both
absolute and character-relative entropy approximately reach
their asymptotic values for the same order N . This allows us
to consider only one of the two quantities to get an estimate
of the entropy content of the source.

C. EXPERIMENTAL RESULTS
The experiments have been conducted by using a Zig-
bee hardware architecture (Libelium Comunicaciones Dis-
tribuidas, Zaragoza, Spain) designed as ultra low power
technology due to the extremely small operation current. The
architecture, yet know for its use and versatility in mobile
sensor networks [26], is provided with 10 sensor boards and
16 radio technologies for short, medium and long range com-
munication. During the experiments (see Figure 6 the board
has been tested using the Wi-Fi interface to communicate
with a radio-base station at 40 m distance in different kind

FIGURE 7. Equivalent network of lead-acid battery.

of environments (office building, open field, wood, buildings
construction facilities, soccer fields, etc...). During the tuning
phase we defined a threshold of θ = 0.5 (approximately 1%
of the average χ). Within this configuration, the results show
an average the battery-life increment of about 11.8% due to
the reduced amount of energy used for data transfer.

The calculation of the average battery life in the test bed
scenario used for the validation of the proposed methodology
was made by using the experimental apparatus used by one of
the authors in [27]. In fact, as shown in the in the previously
cited paper, the energy management of the batteries should
be based on the state of charge (SOC) checking. The basic
equations that relate the SOC to the discharge current and
voltage at the battery terminals are the listed in the following
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while the equivalent electrical network is shown in fig. 7.

dq

dt
= i

SOC = 1− q

C0
(16)

v = E(SOC)−R(SOC∗) ∗ i

where SOC∗ it’s a fictitious SOC that depends on the effec-
tive SOC value, current discharge rate and depth of discharge.

E(SOC) = E0 + Ee ∗ ln(SOC)

R(SOC∗) = R0 +R1 ∗ ln(SOC∗)
(17)

The energy supplied by the battery to the load is related to
itself rated capacity Ct, expressed in Wh, minus a factor
accounting the energy lost due the irreversibility of the elec-
trochemical discharge phenomenon.∫

vidt = Ct − E(irr) (18)

with a little algebra yields the equation.

∫
vidt =

∫
E0idt−

∫
R0i

2dt

−
∣∣∣∣∫ Eeln(SOC)idt

∣∣∣∣− ∣∣∣∣∫ R1ln(SOC∗)i2dt

∣∣∣∣
(19)

where the integral is taken over the selected discharge time.
For the calculation of the average battery life, in this paper,

we used the equations (16) and (17). The calculus of the
parameters E0, Ee, R0, R1 and the relationship between the
fictitious (SOC∗) and the true SOC have been carried out
by using the neural network described in [27], trained with
the experimental results, collected in different environmental
conditions when the proposed system is implemented with a
threshold of θ = 0.5.

V. CONCLUSIONS
Data prediction techniques are often used in sensor networks
to mitigate the sensors energy consumption, avoiding un-
necessary data transmissions, and extending the network life
cycle.

In this work we developed a new approach to increase
the energy data trasmission efficiency in pervasive health-
care sensor networks. In the presented approach the sensors
battery life has been extended by means of a shorter com-
munication time due to data compression. On the other hand
the evaluation of data compressibility has been a paramount
asset to avoid energy waste due to inefficient or inappropriate
data compression. This evaluations have been performed by
means of a novel algorithm for the evaluation of absolute and
relative N-th order entropies that allowed an ad-hoc decision
system to preliminarily estimate whether or not the reachable
compression ratio would justify the amount of energy spent
for the data compression itself. The computational cost of

this operation is about one order of magnitude lower than a
compression operation itself. Therefore entropy computation
can be advantageously executed before compressing data,
thus avoiding uncertain results.

It can be seen from the experimental results that our
scheme can efficiently decrease redundant transmissions
while improving the prediction precision. By this means, the
energy of sensor nodes is also saved and the fault tolerance
is improved. Then the implemented procedure allows an ef-
ficient management of data compression for communicating
mobile wireless sensor networks, which can be of uttermost
importance for pervasive healthcare systems.
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