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0. Introduction

If X = V (f) ⊂ PN is a hypersurface, the hessian determinant of f (from now on simply called the hessian 
of f or, by abusing language, the hessian of X) is the determinant of the hessian matrix of f .

Hypersurfaces with vanishing hessian were studied systematically for the first time in the fundamental 
paper [15], where P. Gordan and M. Noether analysed O. Hesse’s claims in [17,18] according to which these 
hypersurfaces should be necessarily cones. Clearly the claim is true if deg(f) = 2 so that the first relevant 
case for the problem is that of cubic hypersurfaces. The cubic hypersurface V (x0x2

3 + x1x3x4 + x2x2
4) ⊂ P 4

has vanishing hessian but it is not a cone, see [22]. By adding the term 
∑N

i=5 x
3
i we get examples of irreducible 

cubic hypersurfaces in PN with N ≥ 4 with vanishing hessian which are not cones.
Notwithstanding, the question is quite subtle because, as it was firstly pointed out in [15], Hesse’s claim is 

true for N ≤ 3, see also [20,11] and [25, Section 7]. Moreover, hypersurfaces with vanishing hessian and the 
Gordan-Noether Theory developed in [15] have a wide range of applications in different areas of mathematics 
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such as Algebraic and Differential Geometry (see [1,2,10]), Commutative Algebra and the theory of EDP 
(see [7,25,12]), Approximation Theory and Theoretical Physics (see [10,1]) and Combinatorics (see [14]).

Hypersurfaces with vanishing hessian have been forgotten by algebraic geometers for a long time and 
recently they were rediscovered in other contexts. For example the cubic hypersurface in P 4 recalled above is 
celebrated nowadays in the modern differential geometry literature as the Bourgain-Sacksteder Hypersurface
(see [2,1,10]).

Many classes of hypersurfaces with vanishing hessian, which are not cones, are ruled by a family of linear 
spaces along which the hypersurface is not developable. In particular, this ruling is different from the one 
given by the fibers of the Gauss map. These examples and their generalizations are known in differential 
geometry as twisted planes, see for example [10]. Despite the huge number of papers dedicated to this subject 
by differential geometers very few classification or structure results have been obtained. Moreover, the global 
point of view provided by polarity, used systematically in this paper, has been completely overlooked in 
other areas.

The known series of examples of hypersurfaces X ⊂ PN with vanishing hessian, which are not cones, 
have been constructed by Gordan and Noether, Perazzo, Franchetta, Permutti, see [15,22,9,23,24], and later 
have been revisited and generalised in [3, Section 2], see also [5,6].

All these examples share several geometrical behaviours, see in particular Subsection 2.3. For instance 
there exists a linear subspace L ⊂ SingX, dubbed the core of X in [3], such that, letting Lα = Pk+1 ⊃ L

and letting Lα ∩X = µαL ∪Xα for some µα ∈ N, the variety Xα is a cone with vertex Vα = Vert(Xα) ⊂ L

tangent to Z∗
X ⊂ L, where ZX ! (PN )∗ is the closure of the image of the polar map of X. When the cones 

Xα split into a union of linear spaces, the hypersurface is a twisted plane. Furthermore, the dual variety 
X∗ ⊂ (PN )∗ of most of the examples in these series tends to be a divisor in ZX . From the perspective of 
Segre’s Formula, recalled in Section 1, this means that the rank of the hessian matrix of a homogeneous 
polynomial with vanishing hessian determinant should be equal to the rank of the hessian matrix modulo 
the ideal generated by f , see Section 1 for precise definitions. This seemed to be the most natural and 
general behaviour, at least at a first glance.

On the other hand, if Y ⊂ (PN )∗ is an arbitrary non-degenerate irreducible variety of dimension n ≥ 1, 
then, after identifying PN with (PN )∗∗, the dual variety X = Y ∗ ⊂ PN is not a cone and, in general, 
one expects that X is a hypersurface with non vanishing hessian. If this is the case, ZX = (PN )∗ and 
codim(X∗, ZX) = codim(Y, (PN )∗) = N − n is arbitrary large.

These remarks motivate the search of hypersurfaces with vanishing hessian X ⊂ PN such that X∗ has 
arbitrary codimension in ZX ! (PN )∗. Here we shall present a general construction of such hypersurfaces, 
starting from any irreducible non-degenerate variety whose dual variety is a hypersurface and based on the 
Dual Cayley Trick. The geometrical properties of these hypersurfaces are different from those described 
above (for example Vα is not contained in L) and their dual varieties can have arbitrary codimension in the 
image of the polar map. The ubiquity of the examples suggests that the classification of hypersurfaces with 
vanishing hessian for N ≥ 5 might be very intricate, perhaps requiring a completely different approach not 
based (only) on Gordan–Noether Theory, which worked for N ≤ 4, see [15,9,11,25]. Other interesting series 
of examples of hypersurfaces with vanishing hessian such that codim(X∗, ZX) is large has been recently 
constructed in [5,6] (see also Remark 4.3 for a possible geometrical description of this series of examples).

The paper is organised as follows. In Section 1 we fix the notation and introduce the main definitions. 
Section 2 is devoted to the construction of the first series of examples, leading to Theorem 2.1 and ending with 
the description of the geometrical properties of the examples. In Section 3 we briefly recall the definitions 
of resultant and discriminant and we apply them to calculate explicitly the dual of rational normal scroll 
surfaces in Theorem 3.1. Then we introduce the Cayley Trick and the Dual Cayley Trick and apply the Dual 
Cayley Trick to a generalisation of the series of examples constructed in Section 2 (see Theorem 3.5), also 
providing a new conceptual proof of the part (ii) of Theorem 2.1. In Section 4 we prove that the duals of 
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internal projections from a point of Scorza Varieties have vanishing hessian and we describe the geometrical 
properties of these hypersuperfaces and of their polar maps.

Acknowledgements. We wish to thank the referee for a very careful reading, for pointing out some 
inaccuracies and for many useful suggestions leading to a significant improvement of the exposition.

1. Preliminaries and definitions

Let f(x0, . . . , xN ) ∈ K[x0, . . . , xN ]d be a homogeneous polynomial of degree d ≥ 1 without multiple 
irreducible factors and let X = V (f) ⊂ PN be the associated projective hypersurface. We shall always 
assume that K is an algebraically closed field of characteristic zero. Let

H(f) =
[

∂2f

∂xi∂xj

]

0≤i,j≤N

be the hessian matrix of f (or of X).
Clearly H(f) = 0(N+1)×(N+1) if and only if d = 1. Thus, from now on, we shall suppose d ≥ 2. Let

hessf = det(H(f))

be the hessian (determinant) of f (or of X, in which case it will be denoted by hessX , which is defined 
modulo multiplication by a non zero element in K).

There are two possibilities:

(1) either hessf = 0 or
(2) hessf ∈ K[x0, . . . , xN ](N+1)(d−2).

We shall be interested in case (1), that is in hypersurfaces with vanishing hessian (determinant).

1.1. The polar map

Let

∇f = ∇X : PN !!" (PN )∗

be the polar (or gradient) map of X = V (f) ⊂ PN which associates to p ∈ PN the polar hyperplane to X
with respect to p. In coordinates it is defined by

∇f (p) =
( ∂f

∂x0
(p) : · · · : ∂f

∂xN
(p)

)
.

The base locus scheme of ∇f is the scheme

Sing(X) := V
( ∂f

∂x0
, . . . ,

∂f

∂xN

)
⊂ PN .

Let

ZX := ∇f (PN ) ⊆ (PN )∗

be the polar image of PN .
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We can consider the rational map ∇f as the quotient by the natural K∗-action of the affine morphism

∇f : KN+1 → KN+1

defined in the same way. Thus we have the following key formula:

H(f) = Jac(∇f : KN+1 → KN+1), (1)

that is, the hessian matrix of f is the Jacobian matrix of the affine morphism ∇f . Hence, hessf = 0 if and 
only if ZX ! PN so that hessf = 0 if and only if ∂f

∂x0
, ∂f∂x1

, . . . , ∂f
∂xN

are algebraically dependent.
The restriction of ∇f to X is the Gauss map of X:

GX = ∇f |X : X !!" (PN )∗
Xreg ∋ p -−→ GX(p) = [TpX]

which to a non-singular point p ∈ Xreg associates the point [TpX] ∈ (PN )∗ representing the projective 
tangent hyperplane TpX to X at the smooth point p. Then, by definition,

X∗ := GX(X) ⊆ ZX

is the dual variety of X.
If A is a matrix with entries in K[x0, . . . , xN ] and if f ∈ K[x0, . . . , xN ], then rk(f) A denotes the rank of 

A modulo (f), that is the maximal order of a minor not belonging to the ideal generated by f . With this 
notation, obviously rkA = rk(0) A.

Lemma 1.1. ([26]) Let X = V (f) = X1 ∪ · · · ∪ Xr ⊂ PN be a reduced hypersurface with Xi = V (fi), 
f = f1 · · · fr and fi irreducible. Then:

(i) If pi ∈ Xi is general, then

rk(dGX)pi = rk(fi) H(f) − 2. (2)

In particular,

dim(X∗
i ) = rk(dGX)pi = rk(fi) H(f) − 2 ≤ rkH(f) − 2 = dim(ZX) − 1. (3)

(ii) If X is irreducible, then fN−dim(X∗)−1 divides hessf .

We point out an immediate consequence for further reference.

Corollary 1.2. Let X = V (f) ⊂ PN be a reduced hypersurface with vanishing hessian. Then

X∗ ! ZX ! (PN )∗.

We shall also need the following remark.

Lemma 1.3. ([3, Lemma 3.10]) Let X = V (f) ⊂ PN be a hypersurface. Let H = PN−1 be a hyperplane not 
contained in X, let h = H∗ be the corresponding point in (PN)∗ and let πh denote the projection from the 
point h. Then we have a commutative diagram:
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H
∇X∩H

(∇X)|H

H∗

(PN )∗
πh

In particular, ∇X∩H(H) ⊆ πh(ZX).

2. Hypersurfaces with vanishing hessian constructed from any non-degenerate variety

2.1. Hypersurfaces with vanishing hessian constructed from duals of arbitrary non-degenerate subvarieties

Let us consider P 2n+1 with homogeneous coordinates

(u : v : x1 : · · · : xn : y1 : · · · : yn),

P 1 with homogeneous coordinates (s : t) and Pn−1
z with homogeneous coordinates (z1 : · · · : zn), where 

z = (z1, . . . , zn). Let x = (x1, . . . , xn), let y = (y1, . . . , yn), let

φ1 : P 2n+1 !!" P 1

be the rational map defined by

φ1(u : v : x : y) = (u : v)

and let φ2 : P 2n+1 !!" Pn−1
z be the rational map defined by

φ2(u : v : x : y) = (ux1 − vy1 : · · · : uxn − vyn). (4)

Let g(z1, . . . , zn) ∈ K[z1, . . . , zn]d be a reduced irreducible polynomial such that the associated irreducible 
hypersurface of degree d

Y ∗ = V (g) ⊂ Pn−1
z

is not a cone. This is equivalent to

Y = Y ∗∗ = ∇g(Y ∗) ⊂ (Pn−1
z )∗

being non-degenerate.
Let

f(u, v,x,y) = g(ux1 − vy1, . . . , uxn − vyn) ∈ K[u, v,x,y]2d

and let X = V (f) ⊂ P 2n+1. Clearly,

V (f) = φ−1
2 (V (g)). (5)

The partial derivatives of f are linearly independent over K, due to the hypothesis on g, so that X =
V (f) ⊂ P 2n+1 is not a cone. One verifies that

Sing(X) = V (u, v) ∪ (P 1 × Pn) ∪ φ−1
2 (Sing(V (g))),
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where P 1 × Pn ⊂ P 2n+1 is the Segre variety defined by the equations

rk
(

v x1 . . . xn

u y1 . . . yn

)
= 1.

From

∂f

∂xi
= u

∂g

∂zi
(ux− vy) (6)

and

∂f

∂yj
= −v

∂g

∂zj
(ux− vy), (7)

we deduce that, for every i ̸= j,

∂f

∂xi

∂f

∂yj
− ∂f

∂xj

∂f

∂yi
= 0. (8)

Thus X ⊂ P 2n+1 has vanishing hessian since the partial derivates of f are algebraically dependent.

2.2. Polar image and dual variety of X = V (g(ux− vy)) ⊂ P 2n+1

We need to introduce some more notation. Let

(u′ : v′ : x′
1 : · · · : x′

n : y′1 : · · · : y′n)

be homogenous coordinates on (P 2n+1)∗, dual to the coordinates chosen on P 2n+1. Let

L′ = V (x′
1, . . . , x

′
n, y

′
1, . . . , y

′
n) = P 1

u′,v′ ⊂ (P 2n+1)∗

and let

W = P 1 × Pn−1 ⊂ V (u′, v′) = P 2n−1
x′,y′ ⊂ (P 2n+1)∗

be the Segre variety defined by the equations:

rk
(
x′

1 . . . x′
n

y′1 . . . y′n

)
= 1. (9)

Let S(L′, W ) ⊂ (P 2n+1)∗ be the cone with vertex L′ over the Segre variety W = P 1 × Pn−1. Thus 
dim(S(L′, W )) = n + 2 and S(L′, W ) ⊂ (P 2n+1)∗ is defined by the equations (9) of W .

Let Pn−1
z′ with homogeneous coordinates (z′1 : · · · : z′n) be the dual of Pn−1

z and consider Pn
z′ with 

homogeneous coordinates (z′0 : z′1 : · · · : z′n). With this notation Pn−1
z′ ⊂ Pn

z′ is the hyperplane of equation 
z′0 = 0. Given Y ⊂ Pn−1

z′ , let Ỹ ⊂ Pn
z′ be the cone over Y with vertex (1 : 0 : · · · : 0).

Theorem 2.1. Let the hypothesis and the notation be as above, let

ZY ∗ = ∇g(Pn−1
z ) ⊆ Pn−1

z′ ,

let
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P 1 × ZY ∗ ⊂ (P 2n−1)∗

be the Segre embedding and let X = V (g(ux− vy)) ⊂ P 2n+1. Then:

(i) ZX = ∇f (P 2n+1) = S(L′, P 1 × ZY ∗) ⊂ (P 2n+1)∗;
(ii) X∗ = P 1 × Ỹ ⊂ (P 2n+1)∗ Segre embedded;
(iii) codim(X∗, ZX) = codim(Y, ZY ∗) + 1.

In particular, if g(z) has non-vanishing hessian determinant, then ZY ∗ = Pn−1
z′ and codim(X∗, ZX) =

codim(Y, Pn−1) + 1.

Proof. By definition ∇f : P 2n+1 !!" (P 2n+1)∗ is given by

(∂f
∂u

: ∂f
∂v

: ∂f

∂x1
: · · · : ∂f

∂xn
: ∂f

∂y1
: · · · : ∂f

∂yn
).

From (8) and from (9) we deduce that

∇f (P 2n+1) ⊆ S(L′,P 1 × ZY ∗). (10)

We also have

∂f

∂u
=

n∑

i=1
xi

∂g

∂zi
(ux− vy), (11)

∂f

∂v
= −

n∑

j=1
yj

∂g

∂zj
(ux− vy). (12)

Let

p = (ũ′ : ṽ′ : z̃′ : λz̃′) ∈ S(L′,P 1 × ZY ∗)

be a general point. In particular, we can suppose ũ′ ̸= λṽ′ and that z̃′ ̸= 0. Then [z̃′] ∈ ZY ∗ is general and 
by definition there exists z̃ ∈ Pn−1

z such that ∇g(z̃) = z̃′. Looking at (6) and (7), we impose v = −λu. If 
u(x + λy) = z̃ and if v = −λu hold, then ∂f

∂xi
= uz̃′i and ∂f

∂yi
= uλz̃′i. Hence, to find q such that ∇f (q) = p, 

it is sufficient to determine a solution of the system of equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x + λy) = z̃∑n
i=1 xi

∂g
∂zi

(z̃) = uũ′

−
∑n

i=1 yi
∂g
∂zi

(z̃) = uṽ′
(13)

From

uũ′ =
n∑

i=1
( z̃i
u

− λyi)
∂g

∂zi
(z̃) = 1

u
d · g(z̃) + λuṽ′,

we deduce

u2 = d · g(z̃)
ũ′ − λṽ′

.
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If ũ is a solution of this last equation and if ã = (ã1, . . . , ̃an) is a solution of the last linear equation in 
(13), then

p = ∇f (ũ : −λũ : z̃
ũ
− λã : ã),

yielding equality in (10).
By restricting ∇f to X, we deduce that

X∗ = ∇f (X) ⊆ S(L′,P 1 × ZY ∗).

Let T = P 1 × Pn ⊂ (P 2n+1)∗ be the Segre variety defined by the equations

rk
(

v′ x′
1 . . . x′

n′

u′ y′1 . . . y′n

)
= 1.

Since deg(f) = 2d, Euler’s Formula gives

(2d)f = u
∂f

∂u
+ v

∂f

∂v
+

n∑

i=1
xi

∂f

∂xi
+

n∑

i=1
yi

∂f

∂yi
= 2(u∂f

∂u
+ v

∂f

∂v
). (14)

Thus, for every p ∈ X, we have

u(p)∂f
∂u

(p) + v(p)∂f
∂v

(p) = 0, (15)

yielding

∇f (X) = X∗ ⊆ T ⊂ (P 2n+1)∗.

Indeed, for i ̸= j the equations x′
iy

′
j − xjy′i = 0 are satisfied by any point ∇f (p) due to (8). Due to (15), 

the equations v′y′i − u′x′
i = 0 are satisfied by ∇f (p) for every p ∈ X. Furthermore, for every (µ : ν) ∈ P 1

K, 
the hypersurface X ∩ V (µu + νv) is singular so that (µ : ν : 0 : 0) ∈ X∗ ∩ ((µ : ν) × Pn). By fixing u, v, by 
restricting to X∩V (ux−vy) and by taking into account (6), (7) and (15) one deduces that X∗ = P 1× Ỹ ⊂ T

(see also the next sections for more details). The other conclusions are now clear. ✷

Remark 2.2. To prove equality in (10) one could have argued also in this way. Letting ρ = rk(H(g)) =
dim(ZY ∗) +1, it is sufficient to prove that rk(H(f)) = dim(ZX) +1 is equal to ρ +3 = dim(S(L′, P 1×ZY ∗)) +1.

Clearly H(f) is a (2n + 2) × (2n + 2) matrix, whose rank can be computed in this way. The (2n) × (2n)
submatrix corresponding to the second partial derivatives with respect to the variables xi and yj has rank ρ
by (6) and (7). The 2 × 2n submatrix of H(f) corresponding to the second partial derivatives with respect to 
the variables (u, v) × (xi, yj) increases the rank by 1 by (11) and by (12). The 2 × 2 submatrix corresponding 
to the second partial derivatives with respect to the variables u, v increases the rank by 2. In conclusion 
rk(H(f)) = ρ + 1 + 2 = ρ + 3 so that equality holds in (10) (see also Remark 3.6).

Remark 2.3. Obviously also other similar changes of variables, for example like z → (ux − vy)k with 
k ≥ 2, will produce other interesting hypersurfaces with vanishing hessian. Instead of pursuing further 
these generalizations, we prefer to focus on the geometrical properties of the previous examples and on the 
connections with the so called Dual Cayley Trick.
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2.3. Geometrical properties of X = V (g(ux− vy)) ⊂ P 2n+1, of Z∗
X and of the associated polar map

Let notation be as above and suppose that V (g) ⊂ Pn−1 has non-vanishing hessian. Then

ZX = S(L′,W ) = S(L′,P 1 × Pn−1) ⊂ (P 2n+1)∗

and

Z∗
X ≃ P 1 × Pn−1 ⊂ V (u, v) = ⟨Z∗

X⟩ ⊂ P 2n+1

is the Segre variety defined in V (u, v) by the equations:

rk
(
x1 . . . xn

y1 . . . yn

)
= 1.

In the terminology of [3, Section 2.2], the linear space

Π = V (u, v) = P 2n−1 ⊂ Sing(X)

is the core of X. If p = (0 : 0 : x : y) ∈ V (u, v), then we can take (x : y) as coordinates on V (u, v). Let L
be the line of equations x = 0 = y, let

ξ = (u : v : 0 : 0) ∈ L,

and let

Πξ = ⟨Π, ξ⟩ ⊂ P 2n+1.

For a fixed ξ, the points of the hyperplane Πξ can be parametrized by (tu : tv : x : y) so that (t : x : y) can 
be taken as coordinates on Πξ. Then Πξ ∩X has the following equation in the hyperplane Πξ:

tdg(ux− vy) = 0

with u, v fixed. Since t = 0 is the equation of Π ⊂ Πξ, Πξ ∩X contains Π with multiplicity d, while

V (g(ux− vy)) ⊂ Πξ

is a cone with vertex a Pn, which is not contained in Π. The change of variable ux− vy -→ x, y -→ y, t -→ t

shows that the resulting equation does not depend on the variables y and t, yielding that the vertex of the 
cone is the linear subspace of Πξ given by the n linear equations ux− vy = 0.

Varying the hyperplane in the pencil of hyperplanes through V (u, v), the vertices of the corresponding 
cones describe a Segre variety P 1× Pn, which is the dual of T ⊂ (P 2n+1)∗ and which cuts V (u, v) along Z∗

X .
In particular, the series of examples constructed in this section is completely different from those known 

up to now, which we shall simply call of Gordan-Noether-Perazzo-Permutti-CRS type. Indeed, in all these 
examples the intersection of the linear spaces Πξ = P c+1 through the core Π =< Z∗

X >= P c with the 
hypersurface X consists of the core with a suitable multiplicity and of a cone, whose vertex is a linear space 
contained in Π.

From the algebraic point of view this new phenomenon means that there does not exist a suitable linear 
change of coordinates such that we can separate the variables in the equation via the core. We recall that 
Gordan-Noether-Perazzo-Permutti-CRS type hypersurfaces in P 4 exhaust the list of hypersurfaces with 
vanishing hessian that are not cones.
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Example 2.4. In P 7 with homogeneous coordinates (u : v : x1 : x2 : x3 : y1 : y2 : y3), let

X = V ((x1u− y1v)2 + (x2u− y2v)2 + (x3u− y3v)2) ⊂ P 7

and let Y = V (z2
1 + z2

2 + z2
3) ⊂ P 2 be the self dual Fermat conic. Letting the notation be as above, we have 

X∗ = P 1 × Ỹ ⊂ (P 7)∗. Let us remark that the construction of irreducible hypersurfaces of this kind starts 
from P 7. Specialisations of above examples have interesting applications, see [8, Example 2.3] and [7].

Example 2.5. In P 5 with homogeneous coordinates (u : v : x1 : x2 : y1 : y2), let

X = V ((x1u− y1v)2 + (x2u− y2v)2 + u4) ⊂ P 5.

It is not difficult to see that ZX = V (x̃1ỹ2− x̃2ỹ1) ⊂ P 5 and that, taking into account the previous remarks, 
X ⊂ P 5 is the first example of a hypersurface with vanishing hessian that is not a cone and that it is not 
of Gordan-Noether-Perazzo-Permutti-CRS type.

3. Hypersurfaces with vanishing hessian constructed from cones with vertex a Pk−1 via Dual Cayley 
Trick

3.1. Resultants and discriminants

We recall some well known facts on resultants and discriminants. A reference for most of the properties 
listed below is [16], see also [4].

Let fi(x0, . . . , xN ), i ∈ {0, . . . , N}, be N + 1 universal homogeneous polynomials of degree di ≥ 1. Then 
the resultant of f0, . . . , fN , indicated by

Res(f0, . . . , fN ),

is a polynomial in the coefficients of the fi’s, which is homogeneous of degree d0 · · · dj−1dj+1 · · · dN in the 
variables corresponding to fj and which has degree

d0 · · · dN
N∑

i=0

1
di
. (16)

The polynomial Res(f0, . . . , fN ) has the following property: given homogeneous polynomials g0, . . . , gN ∈
K[x0, . . . , xN ] with deg(gi) = di, the value of Res(f0, . . . , fN ) on the coefficients of g0, . . . , gN is zero if and 
only if g0 = . . . = gN = 0 has a non-zero solution in KN+1 (or equivalently V (g0) ∩ . . . ∩ V (gN ) ̸= ∅ where 
V (gi) ⊂ PN

K is the projective hypersurface defined by gi), see [16].
For a universal f ∈ K[x0, . . . , xN ]d, let

∆N,d = Res( ∂f

∂x0
, . . . ,

∂f

∂xN
),

which is a homogeneous polynomial of degree (N + 1)(d − 1)N in the 
(N+d

d

)
coefficients of the universal 

f ∈ K[x0, . . . , xN ]d. By the previous geometrical property of the resultant we deduce that the (geometrically 
irreducible) hypersurface V (∆N,d) ⊂ P (K[x0, . . . , xN ]d), called the discriminant hypersurface, is well defined 
and it describes the locus of singular projective hypersurfaces of degree d.
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3.2. Dual varieties of rational normal scrolls surfaces and some explicit examples of hypersurfaces with 
vanishing hessian

Let 1 ≤ a ≤ b be integers and let

S(a, b) ⊂ Pa+b+1

be a rational normal scroll of degree d = a + b. The surface S(a, b) ⊂ Pa+b+1 is smooth and projectively 
generated by a rational normal curve Ca = νa(P 1) ⊂ Pa and a rational normal curve Cb = νb(P 1) ⊂ P b

with ⟨Ca⟩ ∩ ⟨Cb⟩ = ∅, by taking the union of the lines ⟨νa(p), νb(p)⟩, p ∈ P 1.
We shall choose coordinates (x0 : · · · : xa : y0 : · · · : yb) on Pa+b+1 such that V (y0, . . . , yb) = ⟨Ca⟩ and 

such that V (x0, . . . , xa) = ⟨Cb⟩. Accordingly, Ca ⊂ Pa+b+1 has parametrization (sa : sa−1t : · · · : sta−1 :
ta : 0 : 0 : · · · : 0) and Cb ⊂ Pa+b+1 has parametrization (0 : 0 : · · · : 0 : sb : sb−1t : · · · : stb−1 : tb).

The following result is well known, see for example [16, Example 3.6], and it shows the existence of a 
lot of significative examples of hypersurfaces with vanishing hessian, not cones. Special projections of such 
examples in P 4 produce examples of Gordan-Noether-Perazzo-Permutti-CRS hypersurfaces (see [3]).

Theorem 3.1. Let notation be as above and let (w0 : · · · : wa : z0 : · · · : zb) be dual coordinates to (x0 : · · · :
xa : y0 : · · · : yb). Then

S(a, b)∗ = V (Res(f, g)) ⊂ (Pa+b+1)∗

is a hypersurface of degree a + b, where f = w0sa +w1sa−1t + · · ·+wata ∈ K[s, t]a is a general binary form 
of degree a and where g = z0sb + z1sb−1t + · · · + zbtb ∈ K[s, t]b is a general binary form of degree b.

In particular,

S(1, b)∗ = V ((−w1)bz0 + (−w1)b−1w0z1 + · · ·− w1w
b−1
0 + wb

0zb) ⊂ (P b+2)∗

is a hypersurface of degree b + 1, which is not a cone and which for b ≥ 2 has vanishing hessian.

Proof. Let notation be as above. To calculate the parametric equations of the tangent plane to S(a, b) at a 
general point q = λνa(s, t) +µνb(s, t) with (s : t) ∈ P 1 we shall suppose (s : t) = (1 : t) and (λ : µ) = (1 : µ). 
In particular we can suppose x0 = 1 and y0 = µ. Thus the projective tangent space TqS(a, b) is spanned by 
the rows of the following matrix:

⎛

⎜⎝
1 t . . . ta µ µt . . . µtb

0 1 . . . ata−1 0 µ . . . µbtb−1

0 0 . . . 0 1 t . . . tb

⎞

⎟⎠ ,

and hence it is also spanned by the rows of the matrix

⎛

⎜⎝
1 t . . . ta 0 0 . . . 0
0 1 . . . ata−1 0 µ . . . µbtb−1

0 0 . . . 0 1 t . . . tb

⎞

⎟⎠ . (17)

If (w0 : · · · : wa : z0 : · · · : zb) are dual coordinates on (Pa+b+1)∗, we get that a point of (Pa+b+1)∗ belongs 
to S(a, b)∗ if and only if



1226 R. Gondim et al. / Journal of Pure and Applied Algebra 224 (2020) 1215–1240

⎧
⎪⎨

⎪⎩

w0 + w1t + · · · + wata = 0
w1 + 2w2t + · · · + awata−1 + · · · + µz1 + 2µtz2 + · · · + bµtb−1zb = 0
z0 + tz1 + · · · + tbzb = 0

has a solution (t, µ). Since the second equation is linear in µ, this happens if and only if

{
w0sa + w1sa−1t + · · · + wata = 0
z0sb + z1sb−1t + · · · + zbtb = 0

has a solution (s, t) ̸= (0, 0). In conclusion, the equation of S(a, b)∗ is the resultant of two general homoge-
neous forms of degree a and degree b in the variables (s, t). Therefore, S(a, b)∗ is a hypersurface of degree 
d = a + b by (16), whose equation can be explicitly written (for example by using Sylvester Formula).

For a = 1, the first equation is sw0 + tw1 = 0, whose roots are (−w1, w0). Thus the equation of S(1, b)∗
is obtained by imposing that (−w1, w0) is a solution of the second equation, that is

S(1, b)∗ = V ((−w1)bz0 + (−w1)b−1w0z1 + · · · + wb
0zb) ⊂ (P b+2)∗.

If b > 1, then the partial derivatives of the equation of S(1, b)∗ with respect to zi are algebraically 
dependent so that the hypersurface S(1, b)∗ ⊂ (P b+2)∗ has vanishing hessian and is not a cone. ✷

The previous analysis admits obvious generalizations we shall only mention without proofs. The surface 
S(a, b) ⊂ Pa+b+1 can be seen as the embedding of P (OP1(a) ⊕ OP1(b)) into Pa+b+1 = P (H0(OP1(a)) ⊕
H0(OP1(b))) by the tautological line bundle O(1). Thus, letting r ≥ 1 and letting

PN(a0 ,...,ar) = P (H0(OPr(a0)) ⊕ . . .H0(OPr(ar))),

we shall suppose 1 ≤ a0 ≤ . . . ≤ ar and consider

X(a0, . . . , ar) = P (OPr(a0) ⊕ . . .⊕OPr(ar)) ⊂ PN(a0 ,...,ar)

embedded by the tautological line bundle O(1). This smooth manifold is a P r-bundle over P r, which is 
projectively generated by the r + 1 varieties νai(P r) lying in disjoint linear subspaces of PN(a0 ,...,ar).

The same calculations used in the proof of Theorem 3.1 above prove that

X(a0, . . . , ar)∗ = V (Res(f0, . . . , fr)),

where fi is a generic polynomial of degree ai for i = 0, . . . , r. Moreover,

deg(X(a0, . . . , ar)∗) = a0 · · · ar
r∑

i=0

1
ai

by (16).
In particular, if a0 = . . . = ar−1 = 1 and if ar = a ≥ 2, then

X(1, . . . , 1, a)∗ ⊂ (PN(1,...,1,a))∗

is a hypersurface of degree r · a + 1 with vanishing hessian which is not a cone.
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Remark 3.2. These are the first instances of a general method, which has been dubbed the Cayley Trick 
for mixed resultants in [16, Ch. 3, sections 2, 3, 4], for calculating the explicit equations of dual varieties 
of P r-bundles of the form P (E) embedded by the tautological line bundle O(1) with E a very ample rank 
r + 1 locally free sheaf over an irreducible projective variety X of dimension r.

We now introduce and apply the classical Cayley Trick and its dual variant, the so called Dual Cayley 
Trick to calculate explicitly the equations of some dual varieties.

3.3. Cayley Trick

Let X ⊂ PN = P (V ) be an irreducible non-degenerate variety of dimension n ≥ 1. Let G(r, P (V )) denote 
the Grassmann variety of r-dimensional projective subspaces of P (V ). If L = P (U) ⊂ P (V ) has dimension 
r ≥ 0, then L⊥ = P (Ann(U)) ⊂ P (V ∗) has dimension N − r − 1 and we have a natural isomorphism 
G(r, P (V )) ≃ G(N − r − 1, P (V ∗)), defined by sending [L] to [L⊥ ]. We have two natural rational maps:

q : P (Kr+1 ⊗ V ) !!" G(r,P (V ))

and

p : P (KN−r ⊗ V ∗) !!" G(r,P (V )),

corresponding, respectively, to the parametric equations and to the cartesian equations of a subspace L =
P (U) ⊂ P (V ). The rational maps are defined on the open sets of elements of maximal rank and on these 
open sets they are the quotient maps of the natural action via left multiplication of the group of invertible 
matrices.

Let X ⊂ PN = P (V ) be as above and let e = deg(X) ≥ 2. Following [16], let

Z(X) = {[L] ∈ G(N − n− 1,P (V )) : L ∩X ̸= ∅} ⊂ G(N − n− 1,P (V ))

be the associated hypersurface of X. Indeed,

codim(Z(X),G(N − n− 1,P (V )) = 1,

see [16, Proposition 2.2, Chap. 3], and Z(X) is given by a homogeneous element of degree e = deg(X) in 
the homogeneous coordinate ring of

G(N − n− 1,P (V )) ⊂ P (ΛN−nV ),

defined modulo Plücker relations and dubbed the Chow form of X.

Example 3.3. Let f0, . . . , fN ∈ K[x0, . . . , xN ]d be homogeneous forms of degree d ≥ 1. Then Res(f0, . . . , fN )
is a homogeneous polynomial of degree (N+1)dN in the (N+1) ×

(N+d
d

)
variables, which are the coefficients 

of the universal fi’s or equivalently the homogeneous coordinates on P (K[x0, . . . , xN ]d).
Under this assumption, if [ai,j ] ∈ GLN+1(K) and if

hi =
N∑

j=0
ai,jgj ,

then one proves that
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Res(h0, . . . , hN ) = det([ai,j ])d
N Res(g0, . . . , gN ). (18)

In particular, Res(f0, . . . , fN ) is an invariant for the action by left multiplication of SLN+1(K) on the 
set of (N + 1) ×

(N+d
d

)
matrices with entries in the coefficients of f0, . . . , fN .

By the First Theorem of Invariant Theory the polynomial Res(f0, . . . , fN ) can be written as a polynomial 
of degree dN in the (N + 1) × (N + 1) minors of the (N + 1) ×

(N+d
d

)
matrix associated to {f0, . . . , fN}, 

that is in the Plücker coordinates of the matrix. This polynomial is the (dual) Chow form of νd(P (V )) ⊂
P (Sd(V )) = PN(d), defined modulo Plücker coordinates, and its restriction to G(N(d) −N − 1, P (Sd(V )))
defines Z(νd(P (V ))) by the geometrical interpretation of the resultant.

Letting

p : P (KN+1 ⊗ (SdV )∗) !!" G(N(d) −N − 1,P (Sd(V )))

be the natural map defined above, we deduce

V (Res(f0, . . . , fN )) = p−1(Z(νd(P (V ))).

Let y0, . . . , yN be other variables and let

y0f0 + · · · + yNfN ∈ K[x0, . . . , xN , y0, . . . , yN ]d+1,

which is also a bihomogeneous polynomial of bidegree (d, 1). Then the classical Cayley Trick is the formula:

Res(f0, . . . , fN ) = ∆(y0f0 + · · · + yNfN ), (19)

a useful remark which dates back to Cayley.
The geometrical translation of the Cayley Trick is the following: if

P (KN+1) × νd(P (V )) ⊂ P (N+1)(N(d)+1)−1 = P (KN+1 ⊗ Sd(V ))

is the Segre embedding of PN × νd(PN ), then

(PN × νd(P (V )))∗ = p−1(Z(νd(P (V )))).

Indeed, formula (19) says that if a hyperplane H ⊂ P (KN+1 ⊗ Sd(V )) contains PN × p, p ∈ νd(PN ) (the 
condition on the left), then there exists q ∈ PN such that q × Tpνd(PN ) ⊂ H so that H is tangent to 
PN × νd(PN ) at (q, p) (the condition on the right), yielding [H] ∈ (Pn × νd(PN ))∗.

Nowadays the geometrical version of the Cayley Trick has been generalized by Gelfand, Weyman and 
Zelevinsky to arbitrary irreducible varieties.

Theorem 3.4. (Cayley Trick, [16, Theorem 2.7, Chap. 3]) Let X ⊂ PN = P (V ) be an irreducible non-
degenerate variety of dimension n ≥ 1 and let Pn × X ⊂ P (Kn+1 ⊗ V ) be the Segre embedding. Then

(Pn × X)∗ = p−1(Z(X)), (20)

where p : P (Kn+1 ⊗ V ∗) !!" G(N − n − 1, P (V )) is the quotient map corresponding to cartesian equations 
of linear subspaces of dimension N − n − 1 of P (V ).
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3.4. Dual Cayley Trick

We now present the so called Dual Cayley trick, introduced by Weyman and Zelevinsky in [28], see also 
[19].

Let Ỹ ⊂ PN = P (V ) be an irreducible variety of dimension n ≥ 1 such that Ỹ ∗ ⊂ P (V ∗) has dimension 
N − 1 − r. Let P r = P (T ) and let

P r × Ỹ ⊂ P (r+1)(N+1)−1 = P (T ⊗ V )

be the Segre embedding of P (T ) × Ỹ . Then by [28, Corollary 3.3] the dual variety (P r × Ỹ )∗ ⊂
(P (r+1)(N+1)−1)∗ is a hypersurface

V (f) ⊂ (P (r+1)(N+1)−1)∗ = P ((T ⊗ V )∗) = P (T ∗ ⊗ V ∗),

which can be computed in this way.
Let

q : (P (r+1)(N+1)−1)∗ = P (T ∗ ⊗ V ∗) !!" G(r,P (V ∗))

be the natural rational map defined above and corresponding to parametric equations of linear subspaces 
of dimension r of P (V ∗). This map, in the natural coordinates, sends a rank r+ 1 matrix X ∈ Kr+1,N+1 to 
its Plücker coordinates. It is thus given by forms of degree r + 1 in the natural coordinates.

Let

Z(Ỹ ∗) ⊂ G(r,P (V ∗))

be the associated hypersurface of Ỹ ∗. Then [28, Proposition 4.2.b] yields the following formula:

(P (T ) × Ỹ )∗ = q−1(Z(Ỹ ∗)). (21)

3.5. Hypersurfaces with vanishing hessian constructed from cones with vertex a P r−1

We now apply the Dual Cayley Trick to generalize part (ii) of Theorem 2.1, giving also a different and 
more theoretical proof of this result.

Let r ≥ 1 be an integer and let Ỹ ⊂ PN = P (V ) be a cone with vertex a P r−1 = P (U) over a 
non-degenerate variety Y ⊂ PN−r = P (W ) without dual defect, that is Y ∗ = V (g) ⊂ (PN−r)∗ = P (W ∗) is 
a hypersurface with g = g(z0, . . . , zN−r) ∈ K[z0, . . . , zN−r]d for some d ≥ 2. By definition V = U ⊕W .

Let P r = P (T ) and let

P (T ) × Ỹ ⊂ P (T ) × P (V ) ⊂ P (T ⊗ V ) = P (r+1)(N+1)−1,

be the Segre embedding of P r × Ỹ .
We can identify points of (P (r+1)(N+1)−1)∗ = P ((T ⊗ V )∗) with matrices

X =
[

A’ B’
]
, (22)

where A′ ∈ Kr+1,N−r+1 and B′ ∈ Kr+1,r. This decomposition corresponds to the natural decomposition

Hom(T, V ∗) ≃ Hom(T,W ∗) ⊕ Hom(T,U∗) ≃ (T ∗ ⊗ W ∗) ⊕ (T ∗ ⊗ U∗).
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The linear system of equations B′ = 0(r+1)×r defines the linear span P (Hom(T, W ∗)) = P (T ∗ ⊗ W ∗) of 
the Segre variety

R = P (T ∗) × P (W ∗) ⊂ (P (r+1)(N+1)−1)∗.

There are exactly N − r + 1 minors B′
j of order r + 1, obtained from X as in (22) by adding the jth

column of A′ to B′, j = 0, . . . , N − r. Define

φ1 : (P (r+1)(N+1)−1)∗ !!" P (r+1)r−1 = P (Hom(T,U∗)),

by

φ1(X) = B′,

and

φ2 : (P (r+1)(N+1)−1)∗ !!" (PN−r)∗ = P (W ∗),

by

φ2(X) = (B′
0 : · · · : B′

N−r) ∈ (PN−r)∗.

The point φ2(X) is the intersection of P (W ∗) with the r-dimensional linear subspace of P (V ∗) corre-
sponding to X.

Theorem 3.5. Let the hypothesis and the notation be as above, let

ZY ∗ = ∇g(P (W ∗)) ⊆ P (W ) = PN−r,

let

P r × ZY ∗ ⊂ P (T ⊗ W )

be the Segre embedding, let X = V (g(B′
0, . . . , B

′
N−r)) ⊂ P (T ∗ ⊗ V ∗) and let f = g(B′

0, . . . , B
′
N−r). Then:

(i) (P r × Ỹ )∗ = V (g(B′
0, . . . , B

′
N−r)) ⊂ P (T ∗ ⊗ V ∗);

(ii) ZX = ∇f (P (T ∗ ⊗ V ∗)) ⊆ S(P (T ⊗ U), P (T ) × ZY ∗) ⊂ P (T ⊗ V ) and X has vanishing hessian.

Proof. One can argue as in the proof of Theorem 2.1 but we prefer to deduce this more general result from 
(21), specializing the Dual Cayley Trick to our situation.

Recall that in this case Ỹ ∗ = Y ∗ ⊂ (PN−r)∗ = P (W ∗) ⊂ P (V ∗). Moreover, we can define a rational map

ψ : G(r,P (V ∗)) !!" (PN−r)∗ = P (W ∗),

by

ψ([L]) = [L ∩ P (W ∗)].

The map ψ is not defined along G(r, P (W ∗)) ⊂ G(r, P (V ∗)) and along the Schubert cycles given by the 
[L]’s such that dim(L ∩ P (W ∗)) > 0.
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Since, by hypothesis, Ỹ ∗ = Y ∗ = V (g) is a hypersurface in P (W ∗), it follows that

ψ−1(Y ∗) = Z(Ỹ ∗).

Using the coordinates introduced above, we deduce that

φ2 = ψ ◦ q, (23)

where q : P (T ∗ ⊗ V ∗) !!" G(r, P (V ∗)) is the natural rational map considered above.
Then (21) gives

(P (T ) × Ỹ )∗ = q−1(Z(Ỹ ∗)).

Using (23) we get

q−1(Z(Ỹ ∗)) = q−1(ψ−1(Ỹ ∗)) = φ−1
2 (Y ∗) = V (g(B′

0, . . . , B
′
N−r)) = X.

Let notation be as in (22), let a′i,j , with i = 0, . . . , r and with j = 0, . . . , N − r, be the homogeneous 
coordinates corresponding to A′ and let b′i,k with k = 1, . . . , r be the coordinates corresponding to B′. By 
definition of B′

j , j = 0, . . . , N − r, we deduce from Laplace Formula applied to the first column of B′
j:

B′
j =

r∑

i=0
(−1)iai,jCi

yielding

∂B′
j

∂ai,j
= (−1)iCi.

Moreover, for m ̸= j, we have

∂B′
j

∂ai,m
= 0.

From
∂f

∂ai,j
= (−1)iCi

∂g

∂zj
(B′

0, . . . , B
′
N−r) (24)

we deduce that, for every i ̸= k and for every l ̸= m,

∂f

∂ai,l

∂f

∂ak,m
− ∂f

∂ai,m

∂f

∂ak,l
= 0. (25)

Thus X ⊂ P (T ∗ ⊗ V ∗) has vanishing hessian since the partial derivates of f are algebraically dependent 
and more precisely

ZX = ∇f (P (T ∗ ⊗ V ∗)) ⊆ S(P (T ⊗ U),P (T ) × ZY ∗) ⊂ P (T ⊗ V ). ✷ (26)

Let us remark that for r = 1 the base locus of ψ is exactly G(1, (P (W ∗)) since a line cuts P (W ∗) in 
one point if and only if it is not contained in P (W ∗). Thus in this case the expression of φ2 is, modulo the 
obvious identifications, that given in (4).
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Remark 3.6. One could ask if equality holds in (26). Letting ρ = rk(H(g)) = dim(ZY ∗) + 1, it would be 
sufficient (indeed equivalent) to prove that

rk(H(f)) − 1 = dim(ZX) = dim(S(P (T ⊗ U),P (T ) × ZY ∗)) = r(r + 1) + r + ρ− 1,

i.e. that rk(H(f)) = r(r + 1) + r + ρ.
Since this analysis is quite delicate (and also intricate) we preferred to skip the details and to con-

centrate on the interesting connections with the Dual Cayley Trick in order to produce the new ex-
amples, which generalize to arbitrary r ≥ 2 the case r = 1 considered in part (ii) of Theorem 2.1. 
Last but not least, we point out that Theorem 2.1 is sufficient to construct examples of hypersurfaces 
with vanishing hessian with codim(X∗, ZX) arbitrary large. Assuming equality in (26), one would deduce 
codim(X∗, ZX) = codim(Y, ZY ∗) + r2 and there is no advantage in solving the previous equation instead of 
the simpler codim(X∗, ZX) = codim(Y, ZY ∗) + 1.

3.6. The dual variety of P 1 × Y ⊂ P 2n+3 with Y = V (f) ⊂ Pn+1 an irreducible hypersurface

Let X ⊂ PN = P (V ) be an irreducible projective variety of dimension n = dim(X) and degree e ≥ 2. 
Let Pn−i = P (T ), i ∈ {0, . . . , n} and let

Pn−i × X ⊂ P (n−i+1)(N+1)+1 = P (T ⊗ V )

be the Segre embedding of P (T ) × X. Let Zi(X) ⊂ G(N − n + i − 1, P (V )) be the ith higher associated 
variety of X in the sense of [16], i.e. it is the closure of the set

{[L] ∈ G(N − n + i− 1,P (V )) : ∃ x ∈ Xreg : x ∈ L,dim(L ∩ TxX) ≥ i}.

Clearly Z0(X) = Z(X) is the Chow hypersurface of X and

Zn(X) = X∗ ⊂ P (V ∗) = G(N − 1,P (V )).

Let us recall that Zi(X) is a hypersurface in G(N − n + i − 1, P (V )) if and only if i ≤ n − codim(X∗) + 1, 
see [16,28] and [19]. In particular Zn−1(X) is a hypersurface if and only if codim(X∗) ∈ {1, 2}.

Let

p : (P (n−i+1)(N+1)−1)∗ = P (T ∗ ⊗ V ∗) !!" G(N − n + i− 1,P (V ))

be the rational map defined in Subsection 3.3 by considering the cartesian equations of a linear subspace of 
P (V ). We defined also the rational map

q : (P (n−i+1)(N+1)−1)∗ = P (T ∗ ⊗ V ∗) !!" G(n− i,P (V ∗))

associated to the representation of a linear subspace of P (V )∗ via parametric equations. Then [28, Propo-
sition 4.2.a], see also [19], yields the following formulas:

(Pn−i × X)∗ = p−1(Zi(X)), (27)
(Pn−i × X)∗ = q−1(Zn−codim(X∗)−i+1(X∗)). (28)

Suppose now that Y ⊂ Pn+1 = P (V ) is a hypersurface such that Y ∗ ⊂ P (V ∗) is a hypersurface. Then the 
previous formulas give
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(P 1 × Y )∗ = p−1(Zn−1(Y )) = q−1(Z1(Y ∗)). (29)

Let Y ⊂ P (V ) = Pn+1 be an irreducible hypersurface of degree at least two, then Z1(Y ) ⊂ G(1, P (V )) is 
a hypersurface parametrizing the tangent lines to Y . It is given by a polynomial in the Plücker coordinates of 
G(1, P (V )). To determine the degree e of this polynomial let us remark that a general line L ⊂ G(1, P (V ))
consists of the lines l ⊂ P (V ) passing through a general point p ∈ P (V ) and contained in a general plane 
Π ⊂ P (V ) with p ∈ Π. Then e = #(L ∩Z1(Y )) equals the number of tangent lines to Y ∩Π passing through 
p, that is e = deg((Y ∩ Π)∗).

Example 3.7. Let Y = V (x2
0 + · · · + x2

n+1) ⊂ Pn+1 be the Fermat quadric hypersurface. Then Z1(Y ) ⊂
G(1, Pn+1) is a hypersurface of degree 2 whose equation is quadratic and, modulo Plücker relations, is the 
quadratic Fermat in the Plücker coordinates, that is

Z1(V (x2
0 + · · · + x2

n+1)) = V (
∑

0≤i<j≤n+1
p2
i,j) ⊂ G(1,Pn+1).

Let f(x0, . . . , xn+1) = x2
0+x2

1+· · ·+x2
n+1, then Y ∗ = V (f(y0, . . . , yn+1)) ⊂ (Pn+1)∗. Let a = (a0 : · · · : an+1)

and b = (b0 : · · · : bn+1) and let (a : b) the natural coordinates on P 2n+3 in such a way that the Plücker 
coordinates qi,j of a matrix whose first row is a and whose second row is b are qi,j = aibj − ajbi for 
0 ≤ i < j ≤ n + 1. Then

Z1(V (y2
0 + · · · + y2

n+1)) = V (
∑

0≤i<j≤n+1
q2
i,j) ⊂ G(1, (Pn+1)∗)

and

(P 1 × Y )∗ = q−1(Z1(Y ∗)) = V (
∑

0≤i<j≤n+1
(aibj − ajbi)2) ⊂ (P 2n+3)∗.

By Lagrange’s Identity
∑

0≤i<j≤n+1
(aibj − ajbi)2 = ||a||2 · ||b||2 − (a • b)2.

Thus the dual of P 1 × V (x2
0 + · · · + x2

n+1) ⊂ P 2n+3 has a Cauchy-Schwartz equation:

(P 1 × V (x2
0 + · · · + x2

n+1))∗ = V (||a||2 · ||b||2 − (a • b)2).

This is a homaloidal polynomial, that is the associated polar map is a Cremona transformation of P 2n+3. 
In particular, the hessian of this quartic polynomial is different from zero and one can verify that it has a 
unique irreducible factor equal to the polynomial itself.

4. Duals of internal projections of Scorza varieties from a point have vanishing hessian

The series of varieties

Pn × Pn ⊂ Pn2+2n (Segre embedded, n ≥ 2),

ν2(Pn) ⊂ P
n2+3n

2 (quadratic Veronese embedding, n ≥ 2),

G(1,P 2m+1) ⊂ P 2m2+3m (Plücker embedding, m ≥ 2)
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together with the Severi variety E16 ⊂ P 26 are the so called Scorza varieties. These varieties and their duals 
have a uniform description via linear algebra and via the theory of determinantal varieties we now briefly 
recall.

4.1. Generic determinantal Scorza varieties

Let

Pn2+2n = P (M(n+1)×(n+1)(K)).

We shall indicate the generic matrix in M(n+1)×(n+1)(K) by

X = [xi,j ],

i, j = 0, . . . , n and, by abusing notation, we shall also consider

(x0,0 : · · · : xn,n)

as homogeneous coordinates on Pn2+2n. Analogously, we shall indicate by Y = [yi,j ] the matrices in the 
dual space P ((M(n+1)×(n+1)(K))∗) in such a way that (y0,0 : · · · : yn,n) are homogeneous coordinates dual 
to the previous ones.

For every r = 1, . . . , n + 1 we can define the variety

Xr = {[X] : rk(X) ≤ r} ⊂ P (M(n+1)×(n+1)(K));

the variety Yr ⊂ P ((M(n+1)×(n+1)(K))∗) is defined in the same way. With this notation we have

X1 = Pn × Pn ⊂ Pn2+2n

Segre embedded and

Xn = V (det(X)) ⊂ Pn2+2n

is a hypersurface of degree n + 1. For simplicity, let

f = det(X) ∈ K[xi,j ]n+1

and consider

∇f : P (M(n+1)×(n+1)(K)) !!" P ((M(n+1)×(n+1)(K))∗).

Letting

X# ∈ M(n+1)×(n+1)(K)

be the matrix defined by the Laplace formula:

X ·X# = det(X) · I(n+1)×(n+1) = X# ·X, (30)

the identity
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(X#)# = det(X)n−1 ·X (31)

shows that ∇f ([X]) = [X#]t is birational outside Xn. The map is not defined along Xn−1 = Sing(Xn)
and its ramification divisor is given by the determinant of the Jacobian matrix of ∇f , which is hess(f). 
Since f = det(X) is an irreducible polynomial, we deduce from (31) that the ramification divisor of ∇f is 
supported on Xn, yielding

hess(f) = α · f (n+1)(n−1)

with α ∈ K∗. This property was proved in a similar (but not identical) way by B. Segre in [27, Teorema 1]. 
By evaluating the previous identity on particular matrices B. Segre also deduced α = (−1)n(n−1)

2 n, see [27, 
Teorema 1].

If [X] /∈ Xn, then [X#] /∈ Yn while for [X] ∈ Xn \Xn−1, [X#] ∈ Y1 from which it easily follows that

X∗
n = Y1 = Pn × Pn ⊂ P ((M(n+1)×(n+1)(K))∗).

By the definition of the Gauss map, for every [X] ∈ Xn \Xn−1, we have that ∇f ([X]) = [T[X]Xn] and, 
recalling that the closure of the fibers of the Gauss map are linear spaces, that ∇−1

f ([T[X]Xn]) is linear space 
of dimension n2 − 1.

We are now ready to prove the next result.

Proposition 4.1. Let notation be as above, let n ≥ 2 and let [X] ∈ Xn \Xn−1. Then

∇f (T[X]Xn)

is a hypersurface of degree n which is a cone with vertex

∇−1
f ([T[X]Xn])

⊥
= P 2n

over the dual of a Segre variety Pn−1 × Pn−1.

Proof. Since Xn \ Xn−1 is homogeneous, it is sufficient to verify the assertion for X with xi,j = δi,j for 
i, j = 0, . . . , n − 1 and xn,j = xi,n = 0 for every i, j. Then

X# = (0 : 0 : · · · : 0 : 1),

so T[X]Xn has equation xn,n = 0. Letting h = det(Y ), (31) implies ∇−1
f = ∇h as rational maps. Then

∇f (V (xn,n)) = V ( ∂h

∂yn,n
)

is the determinant of the n × n matrix with entries yi,j , i, j = 0, . . . , n − 1 which does not depend on the 

2n + 1 variables yn,i and yj,n. Hence it is a cone with vertex ∇−1
f ([T[X]Xn])

⊥
over the dual of the Segre 

variety Pn−1 × Pn−1 ⊂ Pn2−1 corresponding to the n2 variables yi,j , i, j = 0, . . . , n − 1. ✷

Corollary 4.2. Let notation be as above, let n ≥ 2, let

p ∈ Y1 = Pn × Pn ⊂ Pn2+2n = P ((M(n+1)×(n+1)(K))∗)
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and let Tn ⊂ Pn2+2n−1 be the projection of Y1 = Pn× Pn from p. Let q ∈ Xn\Xn−1 be such that TqXn = p⊥

and let

Rn = Xn ∩ p⊥ ⊂ p⊥ = Pn2+2n−1.

Then:

(i) Rn ⊂ Pn2+2n−1 is an irreducible hypersurface of degree n + 1 with vanishing hessian and such that 
R∗

n = Tn.
(ii) ZRn ⊂ Pn2+2n−1 is a hypersurface of degree n which is a cone with vertex a P 2n−1 over the dual of a 

Segre variety Pn−1 × Pn−1.
(iii) codim(R∗

n, ZRn) = n2 − 2.

Proof. The hypersurface Rn ⊂ Pn2+2n−1 is connected, it is also normal by Serre’s Criterion being non-
singular in codimension 1 (Sing(R) is the closure of the contact locus Pn2−1

q of TqXn defined above) and 
hence it is irreducible. The variety Tn has no dual defect so that T ∗

n is an irreducible hypersurface con-
tained in Rn (see for example [25, Exercise 1.5.22]), yielding Rn = T ∗

n . Since ∇f (TqXn) is a cone such that 
p ∈ Vert(∇f (TqXn)), we deduce that ZRn is the projection of ∇f (TqXn) from p. Thus (ii) follows from 
Proposition 4.1 and Lemma 1.3. ✷

Remark 4.3. The previous result has been discovered for n = 2 in [13], see also [25, Example 7.6.11]. Part (ii) 
has been proved algebraically also in [21, Proposition 4.9]. By passing to a suitable linear section of Xn

obtained by putting some more variable equal to zero in the matrix X such that f = det(X), Cunha, Ramos 
and Simis produced explicit irreducible polynomials with vanishing hessian and such that codim(X∗, ZX) is 
a function of n. These examples can be also described geometrically as the duals of some explicit projections 
of Y1. Clearly the examples in [5] are of Gordan-Noether-Perazzo-Permutti-CRS type since one can separate 
the variables via Laplace formula for the expansion of the determinant.

4.2. Symmetric determinantal Scorza varieties

Let

Wn = {S ∈ M(n+1)×(n+1)(K) : S = St} ⊂ M(n+1)×(n+1)(K).

Although for n ≥ 1 the subspace Wn is not a subalgebra of M(n+1)×(n+1)(K), we have S# ∈ Wn for 
every S ∈ Wn. Let S = [si,j ] be the generic matrix in Wn and let (s0,0 : · · · : sn,n) be the corresponding 
homogeneous coordinates on

P (Wn) = P
n2+3n

2 .

Let

g = det(S) ∈ K[si,j ]n+1.

The operation # on M(n+1)×(n+1)(K) induces by restriction to Wn a birational involution

∇g : P (Wn) !!" P (W ∗
n),

defined by ∇g([S]) = [S#]t.
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For every r = 1, . . . , n + 1 we can define the variety

Sr = {[S] ∈ P (Wn) : rk(S) ≤ r} ⊂ P (Wn);

the variety Ur ⊂ P (W ∗
n) is defined in the same way. With this notation we have

S1 = ν2(Pn) ⊂ P
n2+3n

2 = P (Wn)

Veronese embedded and that

Sn = V (det(S)) ⊂ P
n2+3n

2

is a hypersurface of degree n + 1.
The rational map ∇g is not defined along Sn−1 = Sing(Sn) and its ramification divisor is given by the 

determinant of the Jacobian matrix of ∇g, which is hess(g). Since g = det(S) is an irreducible polynomial, 
we deduce from (31) that the ramification divisor of ∇g is supported on Sn, yielding

hess(g) = β · g
(n+2)(n−1)

2

with β ∈ K∗. This property was proved in a similar (but not identical) way by B. Segre in [27, Theorem 2]. 
By evaluating the previous identity on particular matrices B. Segre deduced β = (−1)n(n−1)

2 · 2 (n+1)n
2 ·n, see 

[27, Teorema 2].
If [S] /∈ Sn, then [S#] /∈ Un while for [S] ∈ Sn \ Sn−1, [S#] ∈ U1. From this it follows that

S∗
n = U1 = ν2(Pn) ⊂ P

n2+3n
2 = P (W ∗

n).

By the definition of the Gauss map, for every [S] ∈ Sn \Sn−1, we have ∇g([S]) = [T[S]Sn] and ∇−1
g ([T[S]Sn])

is an ((n2 + n − 2)/2)-dimensional projective space.
We are now ready to prove the next result and its Corollary, whose proofs will be omitted being analogous 

to those presented in Proposition 4.1 and in Corollary 4.2.

Proposition 4.4. Let notation be as above, let n ≥ 2 and let [S] ∈ Sn \ Sn−1. Then

∇g(T[S]Sn)

is a hypersurface of degree n which is a cone with vertex

∇−1
f ([T[X]Xn])

⊥
= Pn

over the dual of a Veronese variety ν2(Pn−1).

Corollary 4.5. Let notation be as above, let n ≥ 2, let

p ∈ S1 = ν2(Pn) ⊂ P
n2+3n

2 = P (W ∗
n)

and let Vn ⊂ P
n2+3n−2

2 be the projection of S1 = ν2(Pn) from p. Let q ∈ Sn \ Sn−1 be such that TqSn = p⊥

and let

Qn = Sn ∩ p⊥ ⊂ p⊥ = P
n2+3n−2

2 .

Then:
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(i) Qn ⊂ P
n2+3n−2

2 is an irreducible hypersurface of degree n + 1 with vanishing hessian and such that 
Q∗

n = Vn.
(ii) ZQn ⊂ P

n2+3n−2
2 is a hypersurface of degree n which is a cone with vertex a Pn−1 over the dual of a 

Veronese variety ν2(Pn−1).
(iii) codim(Q∗

n, ZQn) = n2+n−4
2 .

Remark 4.6. The varieties Vn ⊂ P
n2+3n−2

2 are smooth being isomorphic to Blp Pn and their duals are 
hypersurfaces with vanishing hessian. The classification of hypersurfaces with vanishing hessian whose dual 
is smooth seems to be an intriguing question, also due to the lack of known examples.

The first element of the series, V2 ⊂ P 4 is nothing but S(1, 2). The cubic hypersurface S(1, 2)∗ ⊂ P 4, 
whose equation we computed explicitly in Theorem 3.1, is surely the easiest and simplest counterexample 
to Hesse’s Claim. As far as we know, the fact that this example was the first member of an infinite series of 
hypersurfaces with vanishing hessian has been noticed by us for the first time several years ago. The very 
recent paper [6] deals with similar phenomena treated from a purely algebraic point of view.

4.3. Skew-symmetric determinantal Scorza varieties

Let

Mn = {A ∈ M(n+1)×(n+1)(K) : A = −At} ⊂ M(n+1)×(n+1)(K).

For n ≥ 1 the subspace Mn is not a subalgebra of M(n+1)×(n+1)(K) but A# ∈ M for every A ∈ M . 
Let A = [ai,j ] be the generic matrix in Mn and let (a0,1 : · · · : an−1,n) be the corresponding homogeneous 
coordinates on

P (Mn) = P
n2+n−2

2 .

From now on suppose that n + 1 = 2m + 2 with m ≥ 2 so that n2+n−2
2 = 2m2 + 3m and n = 2m + 1. Then

det(A) = Pf2 ∈ K[ai,j ]2m+2,

with Pf ∈ K[si,j ]m+1. The operation # on M(n+1)×(n+1)(K) induces by restriction to M2m+1 a birational 
involution

∇Pf : P (M2m+1) !!" P (M∗
2m+1),

defined by ∇Pf([A]) = [A#]t.
For every r = 1, . . . , m + 1 we can define the variety

A2r = {[A] ∈ P (M2m+1) : rk(A) ≤ 2r} ⊂ P (M2m+1);

the variety C2r ⊂ P (M∗
2m+1) is defined in the same way. With this notation we have

A2 = G(1,P 2m+1) ⊂ P 2m2+3m = P (M2m+1)

Plücker embedded and

A2m = V (Pf) ⊂ P 2m2+3m
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is a hypersurface of degree m + 1.
The rational map ∇Pf is not defined along A2m−2 = Sing(A2m) and its ramification divisor is given by 

the determinant of the Jacobian matrix of ∇Pf , which is hess(Pf). Since Pf is an irreducible polynomial, we 
deduce from (31) that the ramification divisor of ∇Pf is supported on A2m, yielding

hess(Pf) = γ · Pf(2m+1)(m−1)

with γ ∈ K∗. This property was proved in a similar (but not identical) way by B. Segre in [27, Theorem 3]. By 
evaluating the previous identity on particular matrices B. Segre deduced γ = (−1)m ·m, see [27, Teorema 3].

If [A] /∈ A2m, then [A#] /∈ C2m while for [A] ∈ A2m \A2m−2, [A#] ∈ C2 so that

A∗
2m = C2 = G(1,P 2m+1) ⊂ P 2m2+3m = P (M∗

2m+2).

By the definition of the Gauss map, for every [A] ∈ A2m \ A2m−2, we have ∇Pf([A]) = [T[A]A2m] and 

∇−1
Pf ([T[A]A2m]) is a (2m2 −m − 1)-dimensional projective space.
We are now ready to prove the next result and its Corollary, whose proofs will be omitted being analogous 

to those presented above.

Proposition 4.7. Let notation be as above, let m ≥ 2 and let [A] ∈ A2m \A2m−2. Then

∇Pf(T[A]A2m)

is a hypersuface of degree m which is a cone with vertex

∇−1
f ([T[A]A2m])

⊥
= P 4m

over the dual of a Grassmann variety G(1, P 2m−1).

Corollary 4.8. Let notation be as above, let m ≥ 2, let

p ∈ C2 = G(1,P 2m+1) ⊂ P 2m2+3m = P (M∗
2m+2)

and let Gm ⊂ P 2m2+3m−1 be the projection of C2 from p. Let q ∈ A2m \ A2m−2 be such that TqA2m = p⊥

and let

Fm = A2m ∩ p⊥ ⊂ p⊥ = P 2m2+3m−1.

Then:

(i) Fm ⊂ P 2m2+3m−1 is an irreducible hypersurface of degree m + 1 with vanishing hessian and such that 
F ∗
m = Gm.

(ii) ZFm ⊂ P 2m2+3m−1 is a hypersurface of degree m which is a cone with vertex a P 4m−1 over the dual 
of a Grassmann variety G(1, P 2m−1).

(iii) codim(F ∗
m, ZFm) = 2m2 −m − 2.

Remark 4.9. The three series of hypersurfaces Rn, Qn and Fm are of Gordan-Noether-Perazzo-Permutti-CRS 
type and such that the duals of their polar images are of the same type of their duals. Indeed, the first 
property easily follows from Laplace formula and by the determinantal description of their equation in a 
suitable coordinate system while Z∗ is of the same type by part (ii) of the previous Corollaries 4.2, 4.5, 
and 4.8.
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