
COLLANA SCIENTIFICA

© CC – Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/

2019

Università di Cassino e del Lazio Meridionale Centro Editoriale di Ateneo Palazzo degli Studi Località Folcara, Cassino (FR), Italia

ISBN 978-88-8317-108-6

CLADAG 2019 Book of Short Papers

Giovanni C. Porzio Francesca Greselin Simona Balzano *Editors*

Contents

Keynotes lectures

Unifying data units and models in (co-)clustering Christophe Biernacki	3
Statistics with a human face Adrian Bowman	4
Bayesian model-based clustering with flexible and sparse priors Bettina Grün	5
Grinding massive information into feasible statistics: current challenges and opportunities for data scientists Francesco Mola	6
Statistical challenges in the analysis of complex responses in biomedicine <i>Sylvia Richardson</i>	7
Invited and contributed sessions Model-based clustering of time series data: a flexible approach using nonparametric state-switching quantile regression models Timo Adam, Roland Langrock, Thomas Kneib	8
Some issues in generalized linear modeling <i>Alan Agresti</i>	12
Assessing social interest in burnout using functional data analysis through google trends Ana M. Aguilera, Francesca Fortuna, Manuel Escabias	16
Measuring equitable and sustainable well-being in Italian regions: a non-aggregative approach Leonardo Salvatore Alaimo, Filomena Maggino	20
Bootstrap inference for missing data reconstruction Giuseppina Albano, Michele La Rocca, Maria Lucia Parrella, Cira Perna	22
Archetypal contour shapes Aleix Alcacer, Irene Epifanio, M. Victoria Ibáñez, Amelia Simó	26

Random projections of variables and units Laura Anderlucci, Roberta Falcone, Angela Montanari	30
Sparse linear regression via random projections ensembles Laura Anderlucci, Matteo Farnè, Giuliano Galimberti, Angela Montanari	34
High-dimensional model-based clustering via random projections Laura Anderlucci, Francesca Fortunato, Angela Montanari	38
Multivariate outlier detection in high reliability standards fields using ICS Aurore Archimbaud, Klaus Nordhausen, Anne Ruiz-Gazen	42
Evaluating the school effect: adjusting for pre-test or using gain scores? Bruno Arpino, Silvia Bacci, Leonardo Grilli, Raffaele Guetto, Carla Rampichini	45
ACE, AVAS and robust data transformations Anthony Atkinson	49
Mixtures of multivariate leptokurtic Normal distributions Luca Bagnato, Antonio Punzo, Maria Grazia Zoia	53
Detecting and interpreting the consensus ranking based on the weighted Kemeny distance Alessio Baldassarre, Claudio Conversano, Antonio D'Ambrosio	57
Predictive principal components analysis Simona Balzano, Maja Bozic, Laura Marcis, Renato Salvatore	61
Flexible model-based trees for count data Federico Banchelli	63
Euclidean distance as a measure of conformity to Benford's law in digital analysis for fraud detection Mateusz Baryła, Józef Pociecha	67
The evolution of the purchase behavior of sparkling wines in the Italian market Francesca Bassi, Fulvia Pennoni, Luca Rossetto	71
Modern likelihood-frequentist inference at work Ruggero Bellio, Donald A. Pierce	75
Ontology-based classification of multilingual corpuses of documents Sergey Belov, Salvatore Ingrassia, Zoran Kalinić, Paweł Lula	79
Modeling heterogeneity in clustered data using recursive partitioning <i>Moritz Berger, Gerhard Tutz</i>	83

Mixtures of experts with flexible concomitant covariate effects: a bayesian solution Marco Berrettini, Giuliano Galimberti, Thomas Brendan Murphy, Saverio Ranciati	87
Sampling properties of an ordinal measure of interrater absolute agreement Giuseppe Bove, Pier Luigi Conti, Daniela Marella	91
Tensor analysis can give better insight Rasmus Bro	95
A boxplot for spherical data Davide Buttarazzi, Giuseppe Pandolfo, Giovanni C. Porzio, Christophe Ley	97
Machine learning models for forecasting stock trends Giacomo Camba, Claudio Conversano	99
Tree modeling ordinal responses: CUBREMOT and its applications Carmela Cappelli, Rosaria Simone, Francesca Di Iorio	103
Supervised learning in presence of outliers, label noise and unobserved classes Andrea Cappozzo, Francesca Greselin, Thomas Brendan Murphy	104
Asymptotics for bandwidth selection in nonparametric clustering Alessandro Casa, José E. Chacón, Giovanna Menardi	108
Foreign immigration and pull factors in Italy: a spatial approach Oliviero Casacchia, Luisa Natale, Francesco Giovanni Truglia	112
Dimensionality reduction via hierarchical factorial structure Carlo Cavicchia, Maurizio Vichi, Giorgia Zaccaria	116
Likelihood-type methods for comparing clustering solutions Luca Coraggio, Pietro Coretto	120
Labour market analysis through transformations and robust multilevel models Aldo Corbellini, Marco Magnani, Gianluca Morelli	124
Modelling consumers' qualitative perceptions of inflation Marcella Corduas, Rosaria Simone, Domenico Piccolo	128
Noise resistant clustering of high-dimensional gene expression data Pietro Coretto, Angela Serra, Roberto Tagliaferri	132
Classify X-ray images using convolutional neural networks	136

A compositional analysis approach assessing the spatial distribution of trees in Guadalajara, Mexico Marco Antonio Cruz, Maribel Ortego, Elisabet Roca	140
Joining factorial methods and blockmodeling for the analysis of affiliation networks Daniela D'Ambrosio, Marco Serino, Giancarlo Ragozini	142
A latent space model for clustering in multiplex data Silvia D'Angelo, Michael Fop	146
Post processing of two dimensional road profiles: variogram scheme application and sectioning procedure Mauro D'Apuzzo, Rose-Line Spacagna, Azzurra Evangelisti, Daniela Santilli, Vittorio Nicolosi	150
A new approach to preference mapping through quantile regression Cristina Davino, Tormod Naes, Rosaria Romano, Domenico Vistocco	154
On the robustness of the cosine distribution depth classifier Houyem Demni, Amor Messaoud, Giovanni C. Porzio	158
Network effect on individual scientific performance: a longitudinal study on an Italian scientific community Domenico De Stefano, Giuseppe Giordano, Susanna Zaccarin	162
Penalized vs constrained maximum likelihood approaches for clusterwise linear regression modelling Roberto Di Mari, Stefano Antonio Gattone, Roberto Rocci	166
Local fitting of angular variables observed with error Marco Di Marzio, Stefania Fensore, Agnese Panzera, Charles C. Taylor	170
Quantile composite-based path modeling to estimate the conditional quantiles of health indicators Pasquale Dolce, Cristina Davino, Stefania Taralli, Domenico Vistocco	174
AUC-based gradient boosting for imbalanced classification Martina Dossi, Giovanna Menardi	178
How to measure material deprivation? A latent Markov model based approach Francesco Dotto	182
Decomposition of the interval based composite indicators by means of biclustering <i>Carlo Drago</i>	186
Consensus clustering via pivotal methods Leonardo Egidi. Roberta Pappadà. Francesco Pauli. Nicola Torelli	190

Robust model-based clustering with mild and gross outliers Alessio Farcomeni, Antonio Punzo	194
Gaussian processes for curve prediction and classification Sara Fontanella, Lara Fontanella, Rosalba Ignaccolo, Luigi Ippoliti, Pasquale Valentini	198
A new proposal for building immigrant integration composite indicator	199
Venera Tomaselli, Mario Fordellone, Maurizio Vichi	
Biodiversity spatial clustering Francesca Fortuna, Fabrizio Maturo, Tonio Di Battista	203
Skewed distributions or transformations? Incorporating skewness in a cluster analysis Michael Gallaugher, Paul McNicholas, Volodymyr Melnykov, Xuwen Zhu	207
Robust parsimonious clustering models Luis Angel Garcia-Escudero, Agustin Mayo-Iscar, Marco Riani	208
Projection-based uniformity tests for directional data Eduardo García-Portugués, Paula Navarro-Esteban, Juan Antonio Cuesta-Albertos	212
Graph-based clustering of visitors' trajectories at exhibitions Martina Gentilin, Pietro Lovato, Gloria Menegaz, Marco Cristani, Marco Minozzo	214
Symmetry in graph clustering Andreas Geyer-Schulz, Fabian Ball	218
Bayesian networks for the analysis of entrepreneurial microcredit: evidence from Italy Lorenzo Giammei, Paola Vicard	222
The PARAFAC model in the maximum likelihood approach Paolo Giordani, Roberto Rocci, Giuseppe Bove	226
Structure discovering in nonparametric regression by the GRID procedure Francesco Giordano, Soumendra Nath Lahiri, Maria Lucia Parrella	230
A microblog auxiliary part-of-speech tagger based on bayesian networks Silvia Golia, Paola Zola	234
Recent advances in model-based clustering of high dimensional data Isobel Claire Gormley	238
Tree embedded linear mixed models Anna Gottard, Leonardo Grilli, Carla Rampichini, Giulia Vannucci	239

Weighted likelihood estimation of mixtures Luca Greco, Claudio Agostinelli	243
A canonical representation for multiblock methods Mohamed Hanafi	247
An adequacy approach to estimating the number of clusters Christian Hennig	251
Classification with weighted compositions Karel Hron, Julie Rendlova, Peter Filzmoser	255
MacroPCA: an all-in-one PCA method allowing for missing values as well as cellwise and rowwise outliers Mia Hubert, Peter J. Rousseeuw, Wannes Van den Bossche	256
Marginal effects for comparing groups in regression models for ordinal outcome when uncertainty is present Maria Iannario, Claudia Tarantola	258
A multi-criteria approach in a financial portfolio selection framework Carmela Iorio, Giuseppe Pandolfo, Roberta Siciliano	262
Clustering of trajectories using adaptive distances and warping Antonio Irpino, Antonio Balzanella	266
Sampling and learning Mallows and generalized Mallows models under the Cayley distance: short paper Ekhine Irurozki, Borja Calvo, Jose A. Lozano	270
The gender parity index for the academic students progress Aglaia Kalamatianou, Adele H. Marshall, Mariangela Zenga	274
Some asymptotic properties of model selection criteria in the latent block model Christine Keribin	278
Invariant concept classes for transcriptome classification Hans Kestler, Robin Szekely, Attila Klimmek, Ludwig Lausser	282
Clustering of ties defined as symbolic data Luka Kronegger	283
Application of data mining in the housing affordability analysis Viera Labudová, Ľubica Sipková	284
Cylindrical hidden Markov fields	288

Comparing tree kernels performances in argumentative evidence classification Davide Liga	292
Recent advancement in neural network analysis of biomedical big data <i>Pietro Liò</i> , <i>Giovanna Maria Dimitri</i> , <i>Chiara Sopegno</i>	296
Bias reduction for estimating functions and pseudolikelihoods Nicola Lunardon	297
Large scale social and multilayer networks Matteo Magnani	301
Uncertainty in statistical matching by BNs Daniela Marella, Paola Vicard, Vincenzina Vitale	305
Evaluating the recruiters' gender bias in graduate competencies Paolo Mariani, Andrea Marletta	309
Dynamic clustering of network data: a hybrid maximum likelihood approach Maria Francesca Marino, Silvia Pandolfi	313
Stability of joint dimension reduction and clustering Angelos Markos, Michel Van de Velden, Alfonso Iodice D'Enza	317
Hidden Markov models for clustering functional data Andrea Martino, Giuseppina Guatteri, Anna Maria Paganoni	321
Composite likelihood inference for simultaneous clustering and dimensionality reduction of mixed-type longitudinal data Antonello Maruotti, Monia Ranalli, Roberto Rocci	325
Bivariate semi-parametric mixed-effects models for classifying the effects of Italian classes on multiple student achievements Chiara Masci, Francesca Ieva, Tommaso Agasisti, Anna Maria Paganoni	329
Multivariate change-point analysis for climate time series Gianluca Mastrantonio, Giovanna Jona Lasinio, Alessio Pollice, Giulia Capotorti, Lorenzo Teodonio, Carlo Blasi	333
A dynamic stochastic block model for longitudinal networks Catherine Matias, Tabea Rebafka, Fanny Villers	337
Unsupervised fuzzy classification for detecting similar functional objects Fabrizio Maturo, Francesca Fortuna, Tonio Di Battista	339
Mixture modelling with skew-symmetric component distributions Geoffrey McLachlan	343

New developments in applications of pairwise overlap Volodymyr Melnykov, Yana Melnykov, Domenico Perrotta, Marco Riani, Francesca Torti, Yang Wang	344
Modelling unobserved heterogeneity of ranking data with the bayesian mixture of extended Plackett-Luce models Cristina Mollica, Luca Tardella	346
Issues in nonlinear time series modeling of European import volumes <i>Gianluca Morelli, Francesca Torti</i>	350
Gaussian parsimonious clustering models with covariates and a noise component Keefe Murphy, Thomas Brendan Murphy	352
Illumination in depth analysis Stanislav Nagy, Jiří Dvořák	353
Copula-based non-metric unfolding on augmented data matrix Marta Nai Ruscone, Antonio D'Ambrosio	357
A statistical model for software releases complexity prediction Marco Ortu, Giuseppe Destefanis, Roberto Tonelli	361
Comparison of serious diseases mortality in regions of V4 Viera Pacáková, Lucie Kopecká	365
Price and product design strategies for manufacturers of electric vehicle batteries: inferences from latent class analysis Friederike Paetz	369
A Mahalanobis-like distance for cylindrical data Lucio Palazzo, Giovanni C. Porzio, Giuseppe Pandolfo	373
Archetypes, prototypes and other types Francesco Palumbo, Giancarlo Ragozini, Domenico Vistocco	377
Generalizing the skew-t model using copulas Antonio Parisi, Brunero Liseo	381
Contamination and manipulation of trade data: the two faces of customs fraud Domenico Perrotta, Andrea Cerasa, Lucio Barabesi, Mario Menegatti, Andrea Cerioli	385
Bayesian clustering using non-negative matrix factorization Michael Porter Ketong Wang	389

Exploring gender gap in international mobility flows through a network analysis approach Ilaria Primerano, Marialuisa Restaino	393
Clustering two-mode binary network data with overlapping mixture model and covariates information Saverio Ranciati, Veronica Vinciotti, Ernst C. Wit, Giuliano Galimberti	395
A stochastic blockmodel for network interaction lengths over continuous time Riccardo Rastelli, Michael Fop	399
Computationally efficient inference for latent position network models <i>Riccardo Rastelli, Florian Maire, Nial Friel</i>	403
Clustering of complex data stream based on barycentric coordinates Parisa Rastin, Basarab Matei, Guénaël Cabanes	407
An INDSCAL based mixture model to cluster mixed-type of data <i>Roberto Rocci, Monia Ranalli</i>	411
Topological stochastic neighbor embedding Nicoleta Rogovschi, Nistor Grozavu, Basarab Matei, Younès Bennani, Seiichi Ozawa	415
Functional data analysis for spatial aggregated point patterns in seismic science Elvira Romano, Jonatan González Monsalve, Francisco Javier Rodríguez Cortés, Jorge Mateu	419
ROC curves with binary multivariate data Lidia Sacchetto, Mauro Gasparini	420
Silhouette-based method for portfolio selection Marco Scaglione, Carmela Iorio, Antonio D'Ambrosio	424
Item weighted Kemeny distance for preference data Mariangela Sciandra, Simona Buscemi, Antonella Plaia	428
A fast and efficient modal EM algorithm for Gaussian mixtures Luca Scrucca	432
Probabilistic archetypal analysis Sohan Seth	436
Multilinear tests of association between networks	438

Use of multi-state models to maximise information in pressure ulcer prevention trials Linda Sharples, Isabelle Smith, Jane Nixon	442
Partial least squares for compositional canonical correlation Violetta Simonacci Massimo Guarino, Michele Gallo	445
Dynamic modelling of price expectations Rosaria Simone, Domenico Piccolo, Marcella Corduas	449
Towards axioms for hierarchical clustering of measures Philipp Thomann, Ingo Steinwart, Nico Schmid	453
Influence of outliers on cluster correspondence analysis Michel Van de Velden, Alfonso Iodice D'Enza, Lisa Schut	454
Earthquake clustering and centrality measures Elisa Varini, Antonella Peresan, Jiancang Zhuang	458
Co-clustering high dimensional temporal sequences summarized by histograms Rosanna Verde, Antonio Irpino, Antonio Balzanella	462
Statistical analysis of item pre-knowledge in educational tests: latent variable modelling and optimal statistical decision Chen Yunxiao, Lu Yan, Irini Moustaki	466
Evaluation of the web usability of the University of Cagliari portal: an eye tracking study Gianpaolo Zammarchi, Francesco Mola	468
Application of survival analysis to critical illness insurance data David Zapletal, Lucie Kopecka	472

A NEW PROPOSAL FOR BUILDING IMMIGRANT INTEGRATION COMPOSITE INDICATOR

Venera Tomaselli¹, Mario Fordellone² and Maurizio Vichi²

¹ Department of Political and Social Sciences, University of Catania, (e-mail: venera.tomaselli@unict.it)

(e-mail: mario.fordellone@uniromal.it, maurizio.vichi@uniromal.it)

ABSTRACT: Integration consists in a multidimensional process, which can take place in different ways and in different times in relation to each single economic, social, cultural, and political dimension. In this paper, we aim at providing a methodological proposal based on PLS-SEM to build a composite immigrant integration indicator.

KEYWORDS: partial least squares, immigrant integration, composite indicator, structural equation modelling.

1 Measuring immigrant integration

Integration consists in a multidimensional process, which can take place in different ways and in different times in relation to each single economic, social, cultural, and political dimension. It aims at pursuing mutual respect of ethno-cultural differences and peaceful coexistence among populations within a historical and social reality. Its goal cannot be reached once for all but must be continuously pursued distinguishing different integration processes at economic, cultural, social, and political level. A high economic integration level may be quickly achieved, indeed, along with scarce or no social or political integration. Each single dimension, diachronically positioned over time, generates different integration levels. Hence, examining each single dimension is important as well as building composite indexes simultaneously comprehensive of all dimensions in order to obtain a full description of a complex phenomenon and to convey a suitable set of information.

According to the literature (Entzinger, 2000), the concept of integration can be broken down into different dimensions. Firstly, the socio-economic dimension refers to housing conditions, work conditions and income. Including mostly the theme of citizenship, also the legal-political dimension takes into account two sub-dimensions. The other sub-dimension concerns the rights of political participation from the freedom of association to the voting right - which in some countries can be used at local government elections even without having achieved the citizenship status of the host country. Finally, the cultural and social dimension considers

² Department of Statistical Sciences, Sapienza University of Rome,

several elements, among which knowledge of the Italian language, free times activities and access to information.

In this paper, we aim at providing a methodological proposal to build a composite immigrant integration indicator, able to measure the different aspects related to integration, such as employment, education, social inclusion, and active citizenship. With this in mind, we analyse the data collected from European Social Survey (ESS), Round 8, on immigration by the Partial Least Squares Path Modelling (PLSPM) approach (Tenenhaus et al., 2005). The PLSPM models are Structural Equation Modelling suitable to estimate interaction and main effects among multiple sets of latent variables. In the present study we use a simultaneous non-hierarchical clustering and Partial Least Squares Modelling, named Partial Least Squares K-Means (PLS-KM), recently proposed by Fordellone and Vichi (2017). In this model, centroids are laying the reduced space of the latent variables, ensuring the optimal partition of the statistical units on the best latent hyperplane. Estimating the measurement relations by the SEM pre-specified model, the latent structure is defined.

2 ESS data

The data from the eighth iteration of the survey for ESS are until now available from 18 of the 24 countries, which undertook fieldwork in 2016. The 18 countries included in this initial release are: Austria, Belgium, Czech Republic, Estonia, Finland, France, Germany, Iceland, Ireland, Israel, Norway, Netherlands, Poland, Russia, Slovenia, Sweden, Switzerland and United Kingdom. The included questions asked in every round since 2002 on topics including crime, democracy and politics, human values, immigration, media consumption, national and ethnic identity, perceived discrimination, religion, social exclusion, social trust/trust in institutions, subjective wellbeing and socio-demographics and public attitudinal data towards welfare, climate change and energy security, personal norms, efficacy and trust and energy preferences. The data must be weighted to adjust for different selection probabilities, for sampling error and non-response bias as well as different selection probabilities. The table 1 shows the topics covered by the survey in the collection of questions, classified into two main parts: a core section and a rotating section. The core module contains items measuring a range of topics of enduring interest to the social sciences as well as the most comprehensive set of sociostructural variables of any cross-national survey. The rotating modules are carried out by multi-national teams of researchers selected to contribute to the design of survey.

Table 1 - *Topics and items of ESS.*

Items	Topics
Core A1-A6	Media use; internet use; social trust
	, ,
Core B1-B43	Politics, including: political interest, trust, electoral and
	other forms of participation, party allegiance, socio-
	political orientations, immigration
Core C1-C44	Subjective wellbeing, social exclusion, crime, religion,
	perceived discrimination, national and ethnic identity,
	test questions (sect. I), refugees
Rotating D1-D32	Climate change and energy, including: attitudes,
	perceptions module and policy preferences
Rotating E1-E42	Welfare, including attitudes towards welfare provision,
	size of module claimant groups, attitudes towards service
	delivery and likely future dependence on welfare, vote
	intention in EU referendum
Core F1-F61	Socio-demographic profile, including household
	composition, sex, age, marital status, type of area,
	education and occupation, partner, parents, union
	membership, income and ancestry
Core Section H	Human values scale
Core Section 1	Test questions

Source: www.europeansocialsurvey.org.

The ESS sampling strategy is based on the design and implementation of workable and equivalent sampling plans in all participating countries, following key principles:

samples must be representative of all persons aged 15 and over (no upper age limit) resident within private households in each country, regardless of their nationality, citizenship or language

individuals are selected by strict random probability methods at every stage sampling frames of individuals, households and addresses may be used

all countries must aim for a minimum 'effective achieved sample size' of 1,500 or 800 in countries with ESS populations of less than 2 million after discounting for design effects

quota sampling is not permitted at any stage

substitution of non-responding households or individuals (whether 'refusals', 'non-contacts' or 'ineligibles') is not permitted at any stage.

In the present paper, we use ESS Multilevel Data resource in order to analyse the ESS-respondents with reference to the context they live in. The resource contains data about:

individuals (the ESS respondents) regions (mainly data collected from EUROSTAT) countries (data collected from different sources)

3 Methodology

Given the $n \times J$ data matrix **X**, the $n \times K$ membership matrix **U**, the $K \times J$ centroids matrix **C**, the $J \times P$ loadings matrix $\mathbf{\Lambda} = [\mathbf{\Lambda}_H, \mathbf{\Lambda}_L]$, and the errors matrices **E**, **Z**, **D**, the Partial Least Squares Structural Equation Modelling *K*-Means approach can be written as follows (Fordellone and Vichi, 2017; Fordellone et al., 2018):

$$\begin{split} & \mathbf{H} = \mathbf{H}\mathbf{B}^{\mathrm{T}} + \mathbf{\Xi}\mathbf{\Gamma}^{\mathrm{T}} + \mathbf{Z}, \\ & \mathbf{X} = \mathbf{\Xi}\boldsymbol{\Lambda}_{\mathrm{H}}^{\mathrm{T}} + \mathbf{H}\boldsymbol{\Lambda}_{\mathrm{L}}^{\mathrm{T}} + \mathbf{E}, \\ & \mathbf{X} = \mathbf{U}\mathbf{C}\boldsymbol{\Lambda}\boldsymbol{\Lambda}^{\mathrm{T}} = \mathbf{U}\mathbf{C}\boldsymbol{\Lambda}_{\mathrm{H}}\boldsymbol{\Lambda}_{\mathrm{H}}^{\mathrm{T}} + \mathbf{U}\mathbf{C}\boldsymbol{\Lambda}_{\mathrm{L}}\boldsymbol{\Lambda}_{\mathrm{L}}^{\mathrm{T}} + \mathbf{D}, \end{split} \tag{1}$$

under constraints: (i) $\mathbf{\Lambda}^T \mathbf{\Lambda} = \mathbf{I}$; and (ii) $\mathbf{U} \in \{0,1\}$, $\mathbf{U} \mathbf{1}_K = \mathbf{1}_n$. Where, H is the n×L matrix of the endogenous LVs with generic element $\eta_{i,l}$, \mathbf{E} be the $n \times H$ matrix of the exogenous LVs with generic element $\xi_{i,h}$, \mathbf{B} is the $L \times L$ matrix of the path coefficients $\beta_{l,l}$ associated to the endogenous latent variables, $\mathbf{\Gamma}$ is the $L \times H$ matrix of the path coefficients $\gamma_{l,h}$ associated to the exogenous latent variables, Λ_H is the $J \times H$ loadings matrix of the exogenous latent constructs with generic element $\lambda_{i,h}$, and Λ_L is the $J \times L$ loadings matrix of the endogenous latent constructs with generic element $\lambda_{i,l}$. Thus, the PLS-SEM-KM model includes the SEM estimated via Partial Least Squares (PLS) and the clustering equations. The simultaneous estimation of the three sets of equations will produce the estimation of the pre-specified SEM describing relations among variables and the corresponding best partitioning of units

There is a relevant aspect to considerate in the application of PLS-SEM-KM procedure: when we applying PLS-SEM-KM, the number of groups is unknown and the identification of an appropriate number of K clusters is not straightforward. Then, often you need to rely on some statistical criterion. In particular, the PLS-SEM-KM algorithm includes the choice of the number of clusters K classes according the *gap method* criterion (Fordellone and Vichi, 2017).

References

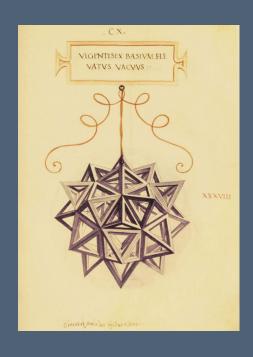
ENTZINGER, H. 2000. The Dynamics of Integration Policies: A Multidimensional Model. Challenging Immigration and Ethnic Relations Politics. *R. Koopmans and P. Statham, Oxford: University Press.*

FORDELLONE, M., VICHI, M. 2017. Partial Least Squares Modelling and simultaneous clustering. Cladag 2017 Book of Short Papers. Universitas Studiorum.

FORDELLONE, M., TOMASELLI V., AND VICHI M. 2018. From Tandem to Simultaneous Dimensionality Reduction And Clustering Of Tourism Data. *Rivista Italiana di Economia Demografia e Statistica 72.1*.

TENENHAUS, M., VINZI, E.V., CHATELIN, Y.M., LAURO, N.C. 2005. PLS path modeling. *Computational Statistics & Data Analysis. Vol. 48 No. 1, pp. 159*—205.

CLADAG 2019 Cassino (ITALY) 11–13 September, 2019


The CLAssification and Data Analysis Group of the Italian Statistical Society (SIS) promotes advanced methodological research in multivariate statistics with a special vocation in Data Analysis and Classification.

CLADAG supports the interchange of ideas in these fields of research, including the dissemination of concepts, numerical methods, algorithms, computational and applied results.

CLADAG is a member of the International Federation of Classification Societies (IFCS).

Among its activities, CLADAG organizes a biennial international scientific meeting, schools related to classification and data analysis, publishes a newsletter, and cooperates with other member societies of the IFCS to the organization of their conferences.

Founded in 1985, the IFCS is a federation of national, regional, and linguistically-based classification societies. It is a non-profit, nonpolitical scientific organization, whose aims are to further classification research.

