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Abstract
The paper deals with the regularity criteria for the weak solutions to the 3DBoussinesq
equations in terms of the partial derivatives in Besov spaces. It is proved that the weak
solution (u, θ) becomes regular provided that

(∇hũ,∇hθ) ∈ L1(0, T ; ·
B
0

∞,∞(R3))

Our results improve and extend the well-known result of Dong and Zhang (Nonlinear
Anal 11:2415–2421, 2010) for the Navier–Stokes equations.

Keywords Boussinesq equations · Regularity criterion · Weak solutions ·
Besov space

Mathematics Subject Classification 35Q35 · 76D03

1 Introduction andMain Result

This paper is devoted to the study of the Cauchy problem for the Boussinesq equations
in R3 × (0, T ):
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂t u − �u + u · ∇u + ∇π = θe3,
∂tθ − �θ + u · ∇θ = 0,
∇ · u = 0,
u (x, 0) = u0 (x) , θ (x, 0) = θ0 (x) ,

(1.1)

where u = u(x, t) is the velocity of the fluid, θ = θ(x, t) is the scalar temperature
variation in a gravity field, in which case the forcing term θe3 in the momentum
equation (1.1) describes the action of the buoyancy force on fluid motion, π = π(x, t)
is the scalar pressure, while u0 and θ0 are given initial velocity and initial temperature
with ∇ · u0 = 0 in the sense of distributions. e3 = (0, 0, 1)T denotes the vertical unit
vector.

The Cauchy problem (1.1) for the Boussinesq equation has been studied extensively
by many authors (see, for example, Alghamdi et al. 2017; Abidi and Hmidi 2007;
Brandolese and Schonbek 2012; Cannon and Dibenedetto 1980; Chae and Nam 1997;
Chae et al. 1999; Dong et al. 2012; Fan and Ozawa 2009; Fan and Zhou 2009; Gala
2011; Gala et al. 2017; Gala and Ragusa 2016b; Gala et al. 2014; Guo and Gala 2012;
Hou and Li 2005; Ishimura and Morimoto 1999 and references therein).

When θ = 0, (1.1) is the well-known Navier–Stokes equations, which the global
regularity is an outstanding open problem, as well as the famous millennium prize
problem. Since the global existence of weak solutions is well-known and strong solu-
tions are unique and smooth in (0, T ), it is an interesting problem on the regularity
criterion of the weak solutions if some partial derivatives of the velocity satisfy certain
growth conditions (see, e.g. Berselli 2002; Dong and Zhang 2010; Gala 2009; Chen
and Gala 2011; Gala and Ragusa 2016a; Kukavica and Zinae 2007; Skalák 2015;
Zhou 2005; Zhou and Pokorny 2010). One of the most significant achievements in
this direction is the celebrated Dong–Zhang criterion (Dong and Zhang 2010). More
precisely, they showed that a weak solution with H1-data is a strong solution provided
that

∇hũ ∈ L1(0, T ; ·
B
0

∞,∞(R3)), (1.2)

where ∇h = (∂1, ∂2) denotes the horizontal gradient operator, ũ = (u1, u2, 0) and
·
B
0

∞,∞ denotes the homogeneous Besov space.
Motivated by the reference mentioned above, our aim of the present paper is to

extend the above regularity criterion (1.2) to the Boussinesq equations (1.1).
Our main result reads as follows.

Theorem 1.1 Suppose T > 0, (u0, θ0) ∈ H1(R3) with div u0 = 0 in R
3, in the sense

of distributions. Let (u, θ) be a weak solution of (1.1) in (0, T ). Assume that

(∇hũ,∇hθ) ∈ L1(0, T ; ·
B
0

∞,∞(R3)), (1.3)

then the solution (u, θ) is regular on R
3 × (0, T ].
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Remark 1.1 If we set θ = 0 in the Boussinesq system, the above theorem reduces to
the well-known Dong and Zhang result (Dong and Zhang 2010) for the Navier–Stokes
equations.

We start by recalling the basic existence result of weak solutions to the system (1.1),
see (Brandolese and Schonbek 2012).

Proposition 1.2 Let (u0, θ0) ∈ L2(R3) × L2(R3) with div u0 = 0 in R
3, in the sense

of distributions. There exists a weak solution (u, θ) of the Boussinesq system (1.1)
with data (u0, θ0) continuous fromR

+ to L2 with the weak topology, such that for any
T > 0

(u, θ) ∈ L∞(0, T ; L2(R3)) ∩ L2(0, T ; H1(R3)).

Such a solution satisfies, for all t ∈ [0, T ], the energy inequalities

‖θ(·, t)‖2L2 + 2
∫ t

0
‖∇θ(·, τ )‖2L2 dτ ≤ ‖θ0‖2L2 ,

and

‖u(·, t)‖2L2 + 2
∫ t

0
‖∇u(·, τ )‖2L2 dτ ≤ C(‖u0‖2L2 + t2 ‖θ0‖2L2),

for all t ≥ 0 and some constant C > 0.

Next, we recall some tools from the theories of the Besov spaces, for details see
(Triebel 1983). By S(R3) we denote the class of rapidly decreasing functions. Given
f ∈ S(R3), its Fourier transform ̂f = F( f ) is defined by

̂f (ω) =
∫

R3

f (x)e−2π i x ·ωdx

and for any given g ∈ S(R3), its inverse Fourier transform ˜f = F−1( f ) is defined
by

˜f (x) =
∫

R3

f (ω)e2π i x ·ωdω.

Let us choose a nonnegative radial function ϕ ∈ S(R3) such that

0 ≤ ϕ̂(ω) ≤ 1 and ϕ̂(ω) =
{

1, if |ω| ≤ 1,
0, if |ω| ≥ 2,

and let

ψ(x) = ϕ(x) − 2−3ϕ
( x

2

)

, ϕ j (x) = 23 jϕ(2 j x), ψ j (x) = 23 jψ(2 j x), j ∈ Z

For j ∈ Z, the Littlewood–Paley projection operators S j and � j are respectively
defined by
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S j f = ϕ j ∗ f ,

� j f = ψ j ∗ f .

Informally, � j is a frequency projection to the annulus
{|ω| ∼ 2 j

}

, while S j is a
frequency projection to the ball

{|ω| � 2 j
}

. Observe that � j = S j − S j−1. Also, if f
is an L2 function then S j f → 0 in L2 as j → −∞ and S j f → f in L2 as j → +∞
(this is an easy consequence of Parseval’s theorem). By telescoping the series, we thus
have the Littlewood–Paley decomposition

f =
+∞
∑

j=−∞
� j f

for all f ∈ L2, where the summation is in the L2 sense. Notice that

� j f =
l= j+2
∑

l= j−2

�l(� j f ) =
l= j+2
∑

l= j−2

ψl ∗ ψ j ∗ f ,

then from the Young inequality, it follows that

∥

∥� j f
∥

∥

Lq ≤ C23 j(
1
p − 1

q )
∥

∥� j f
∥

∥

L p , (1.4)

where 1 ≤ p ≤ q ≤ ∞, C is a constant independent of f , j .
With the introduction of � j , we recall the definition of the homogeneous Besov

space.

Definition 1.3 The homogeneous Besov space
·
B
s

p,q(R
3) is defined by

·
B
s

p,q(R
3) =

{

f ∈ S ′(R3)\P(R3) : ‖ f ‖ ·
B
s

p,q

< ∞
}

,

for s ∈ R and 1 ≤ p, q ≤ ∞. where

‖ f ‖ ·
B
s

p,q

=

⎧

⎪

⎨

⎪

⎩

∑

j∈Z
(

2 jsq
∥

∥� j f
∥

∥

q
L p

)
1
q , if 1 ≤ q < ∞,

sup
j∈Z

2 js
∥

∥� j f
∥

∥

L p , if q = ∞,

and S ′(R3), P(R3) are the spaces of all tempered distributions on R
3 and the set of

all scalar polynomials defined on R
3, respectively.

It is of interest to note that the homogeneous Besov space
·
B
s

2,2(R
3) is equivalent

to the homogeneous Sobolev space
·
H

s
(R3), which is equipped with the norm:
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‖ f ‖2·
H

s =
∑

j∈Z
22 js

∥

∥� j f
∥

∥

2
L2 .

1.1 Proof of Theorem 1.1

In this section, we shall give the proof of Theorem 1.1, we first need to prove the
following lemma.

Lemma 1.4 Let (u, θ) be a smooth solution to (1.1). Then, there exists a positive
universal constant C such that the following a priori estimates hold:

∫

R3
(u · ∇)u · �udx +

∫

R3
(u · ∇)θ · �θdx

≤ C
∫

R3
|∇hũ| |∇u|2 dx + C

∫

R3
|∇hũ| |∇θ |2 dx

+C
∫

R3
|∇hθ | |∇u| |∇θ | dx, (1.5)

Proof Due to the divergence-free condition ∇ · u = 0, one shows that

3
∑

i, j,k=1

∫

R3
ui∂i∂ku j∂ku j dx = 1

2

3
∑

i, j,k=1

∫

R3
ui∂i (∂ku j )

2dx

= −1

2

∫

R3

(

3
∑

i=1

∂i ui

)

⎛

⎝

3
∑

j,k=1

(∂ku j )
2

⎞

⎠ dx = 0,

and

3
∑

i, j,k=1

∫

R3
ui∂i∂kθ∂kθdx = 0.

As a consequence, we obtain

∫

R3
(u · ∇)u · �udx +

∫

R3
(u · ∇)θ · �θdx

= −
∫

R3
∇(u · ∇)u · ∇udx −

∫

R3
∇(u · ∇)θ · ∇θdx

= −
3

∑

k=1

∫

R3
∂ku · ∇u · ∂kudx −

3
∑

k=1

∫

R3
∂ku · ∇θ · ∂kθdx

= −
3

∑

i, j,k=1

∫

R3
∂kui∂i u j∂ku j dx −

3
∑

i,k=1

∫

R3
∂kui∂iθ∂kθdx

= L1 + L2.
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To estimate L1, we write the integrand explicitly

L1 = −
2

∑

i, j,k=1

∫

R3
∂kui∂i u j∂ku j dx −

2
∑

i, j=1

∫

R3
∂3ui∂i u j∂3u jdx

−
2

∑

i,k=1

∫

R3
∂kui∂i u3∂ku3dx −

2
∑

i=1

∫

R3
∂3ui∂i u3∂3u3dx

−
2

∑

j,k=1

∫

R3
∂ku3∂3u j∂ku j dx −

2
∑

j=1

∫

R3
∂3u3∂3u j∂3u jdx

−
2

∑

k=1

∫

R3
∂ku3∂3u3∂ku3dx

=
7

∑

m=1

L1m

Taking advantage of the definition of ∇hũ, we have

∣

∣

∣

∣

∣

4
∑

m=1

L1m

∣

∣

∣

∣

∣

≤ C
∫

R3
|∇hũ| |∇u|2 dx . (1.6)

Since ∂3u3 = −∂1u1 − ∂2u2, it readily follows that

∣

∣

∣

∣

∣

7
∑

m=5

L1m

∣

∣

∣

∣

∣

≤ C
∫

R3
|−∂1u1 − ∂2u2| |∇u|2 dx

≤ C
∫

R3
|∇hũ| |∇u|2 dx .

Thus, we get

∫

R3
(u · ∇)u · �udx ≤ C

∫

R3
|∇hũ| |∇u|2 dx .

Following the same line as L1, we see that

L2 = −
3

∑

i,k=1

∫

R3
∂kui∂iθ∂kθdx

= −
2

∑

i,k=1

∫

R3
∂kui∂iθ∂kθdx −

2
∑

i=1

∫

R3
∂3ui∂iθ∂3θdx
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−
2

∑

k=1

∫

R3
∂ku3∂3θ∂kθdx

≤ C
∫

R3
|∇hũ| |∇θ |2 dx + C

∫

R3
|∇u| |∇hθ | |∇θ | dx . (1.7)

Then, it follows from (1.6) and (1.7) that estimate (1.5 ) is established.
This completes the proof of Lemma 1.4. �
We are ready to present the proof of Theorem 1.1.

Proof Since the initial data (u0, θ0) ∈ H1(R3) with div u0 = 0 in R
3, there exists

a unique local strong solution (u, θ) of the 3D Boussinesq equations on (0, T ) (see
Abidi and Hmidi 2007; Chae and Nam 1997; Chae et al. 1999; Hou and Li 2005). By
using a standard method, we only need to show the following a priori estimate

sup
0≤t≤T

(‖u(·, t)‖2H1 + ‖θ(·, t)‖2H1) ≤ (e + ‖∇u0‖2L2 + ‖∇θ0‖2L2 + CT )eCR(t),

(1.8)

where we set

R(t) =
∫ T

0
(‖∇hũ(τ )‖ ·

B
0

∞,∞
+ ‖∇hθ(τ )‖ ·

B
0

∞,∞
)dτ.

Taking the L2−inner product of the first equation and the second equation in
(1.1) with (− �u) and (− �θ), respectively, and integrating by parts, we obtain
by Lemma 1.4

1

2

d

dt
(‖∇u(t)‖2L2 + ‖∇θ(t)‖2L2) + ‖�u(t)‖2L2 + ‖�θ(t)‖2L2

=
∫

R3
(u · ∇)u · �udx +

∫

R3
(u · ∇)θ · �θdx −

∫

R3
θe3 · �udx

≤ C
∫

R3
|∇hũ| |∇u|2 dx + C

∫

R3
|∇hũ| |∇θ |2 dx

+C
∫

R3
|∇hθ | |∇u| |∇θ | dx + ‖�u‖L2 ‖θ‖L2

≤ CI1 + CI2 + CI3 + 1

4
‖�u‖2L2 + C, (1.9)

where

I1 =
∫

R3
|∇hũ| |∇u|2 dx, I2 =

∫

R3
|∇hũ| |∇θ |2 dx and I3

=
∫

R3
|∇hθ | |∇u| |∇θ | dx .
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In the following, we will estimate each term on right-hand side of (1.9 ) separately.
Invoking the homogeneous Littlewood-Paley decomposition, we decompose ∇hũ and
∇hθ into the three parts in the phase variables as follows

{ ∇h ũ = ∑+∞
j=−∞ � j (∇hũ) = ∑

j<−N � j (∇h ũ) + ∑N
j=−N � j (∇h ũ) + ∑

j>N � j (∇h ũ),

∇hθ = ∑+∞
j=−∞ � j (∇hθ) = ∑

j<−M � j (∇hθ) + ∑M
j=−M � j (∇hθ) + ∑

j>M � j (∇hθ),

(1.10)

where N and M are positive integers that will be chosen later. Substituting this into
I1, one has

I1 ≤
∑

j<−N

∫

R3

∣

∣� j (∇hũ)
∣

∣ |∇u|2 dx +
N

∑

j=−N

∫

R3

∣

∣� j (∇hũ)
∣

∣ |∇u|2 dx

+
∑

j>N

∫

R3

∣

∣� j (∇hũ)
∣

∣ |∇u|2 dx

= I11 + I12 + I13.

For I11, from the Hölder inequality, (1.4) and Cauchy inequalities, we obtain that

I11 ≤ ‖∇u‖2L2

∑

j<−N

∥

∥� j (∇hũ)
∥

∥

L∞

≤ C ‖∇u‖2L2

∑

j<−N

2
3
2 j

∥

∥� j (∇hũ)
∥

∥

L2

≤ C ‖∇u‖2L2

⎛

⎝

∑

j<−N

23 j

⎞

⎠

1
2
⎛

⎝

∑

j<−N

∥

∥� j (∇hũ)
∥

∥

2
L2

⎞

⎠

1
2

≤ C2− 3
2 N ‖∇u‖3L2 . (1.11)

For I12, by the Hölder inequality, (1.4) and the definition of Besov space, we have

I12 ≤ C ‖∇u‖2L2

N
∑

j=−N

∥

∥� j (∇hũ)
∥

∥

L∞ ≤ CN ‖∇u‖2L2 ‖∇hũ‖ ·
B
0

∞,∞
.

For I13, from the Hölder inequality, (1.4) and the Gagliardo–Nirenberg inequality, it
follows that

I13 ≤ ‖∇u‖2L3

∑

j>N

∥

∥� j (∇hũ)
∥

∥

L3

≤ C ‖∇u‖L2 ‖�u‖L2

∑

j>N

2
j
2
∥

∥� j (∇hũ)
∥

∥

L2
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≤ C ‖∇u‖L2 ‖�u‖L2

⎛

⎝

∑

j>N

2− j

⎞

⎠

1
2
⎛

⎝

∑

j>N

22 j
∥

∥� j (∇hũ)
∥

∥

2
L2

⎞

⎠

1
2

≤ C2− N
2 ‖∇u‖L2 ‖�u‖2L2 .

Combining the above inequalities I11, I12 and I13 and inserting into I1, we obtain

I1 ≤ C2− 3
2 N ‖∇u‖3L2 + CN ‖∇u‖2L2 ‖∇hũ‖ ·

B
0

∞,∞
+ C2− N

2 ‖∇u‖L2 ‖�u‖2L2 .

Following similar computations as in I1, the term I2 can be bounded as

I2 ≤ C2− 3
2 N ‖∇u‖L2 ‖∇θ‖2L2 + CN ‖∇θ‖2L2 ‖∇hũ‖ ·

B
0

∞,∞

+C2− N
2 ‖∇θ‖L2 ‖�u‖L2 ‖�θ‖L2

≤ C2− 3
2 N ‖∇u‖L2 ‖∇θ‖2L2 + CN ‖∇θ‖2L2 ‖∇hũ‖ ·

B
0

∞,∞

+C2− N
2 ‖∇θ‖L2 (‖�u‖2L2 + ‖�θ‖2L2).

Now we turn to estimate I3. Using the decomposition (1.10)2, I3 can be written as

I3 ≤
∑

j<M

∫

R3

∣

∣� j (∇hθ)
∣

∣ |∇u| |∇θ | dx +
M

∑

j=−M

∫

R3

∣

∣� j (∇hθ)
∣

∣ |∇u| |∇θ | dx

+
∑

j>M

∫

R3

∣

∣� j (∇hθ)
∣

∣ |∇u| |∇θ | dx

= I31 + I32 + I33.

Then by the same procedure leading to I1, we get

I31 ≤ ‖∇u‖L2 ‖∇θ‖L2

∑

j<M

∥

∥� j (∇hθ)
∥

∥

L∞

≤ C ‖∇u‖L2 ‖∇θ‖L2

∑

j<M

2
3
2 j

∥

∥� j (∇hθ)
∥

∥

L2

≤ C2− 3
2 M ‖∇u‖L2 ‖∇θ‖2L2 .

I32 ≤ C ‖∇u‖L2 ‖∇θ‖L2

M
∑

j=−M

∥

∥� j (∇hθ)
∥

∥

L∞

≤ CM ‖∇u‖L2 ‖∇θ‖L2 ‖∇hθ‖ ·
B
0

∞,∞
.
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I33 ≤ ‖∇u‖L6 ‖∇θ‖L2

∑

j>M

∥

∥� j (∇hθ)
∥

∥

L3

≤ C ‖∇θ‖L2

∥

∥

∥∇2u
∥

∥

∥

L2

∑

j>M

2
j
2
∥

∥� j (∇hθ)
∥

∥

L2

≤ C ‖∇θ‖L2 ‖�u‖L2

⎛

⎝

∑

j>M

2− j

⎞

⎠

1
2
⎛

⎝

∑

j>M

22 j
∥

∥� j (∇hθ)
∥

∥

2
L2

⎞

⎠

1
2

≤ C2− M
2 ‖∇θ‖L2 ‖�u‖L2 ‖�θ‖L2

≤ C2− M
2 ‖∇θ‖L2 (‖�u‖2L2 + ‖�θ‖2L2).

Substituting I31, I32 and I33 into I5, we obtain

I3 ≤ C2− 3
2 M ‖∇u‖L2 ‖∇θ‖2L2 + CM ‖∇u‖L2 ‖∇θ‖L2 ‖∇hθ‖ ·

B
0

∞,∞

+C2− M
2 ‖∇θ‖L2 (‖�u‖2L2 + ‖�θ‖2L2).

Inserting the above estimates into (1.9), we have

1

2

d

dt
(‖∇u(·, t)‖2L2 + ‖∇θ(·, t)‖2L2) + ‖�u‖2L2 + ‖�θ‖2L2

≤ C(2− 3
2 N + 2− 3

2 M )(‖∇u‖3L2 + ‖∇θ‖3L2)

+C(N + M)(‖∇hũ‖ ·
B
0

∞,∞
+ ‖∇hθ‖ ·

B
0

∞,∞
)(‖∇u‖2L2 + ‖∇θ‖2L2)

+C(2− N
2 + 2− M

2 )(‖∇u‖L2 + ‖∇θ‖L2)(‖�u‖2L2 + ‖�θ‖2L2). (1.12)

Now we choose N and M in (1.12) sufficiently large so that

C2− N
2 (‖∇u‖L2 + ‖∇θ‖L2) ≤ 1

4
and C2− M

2 (‖∇u‖L2 + ‖∇θ‖L2) ≤ 1

4
,

that is,

N ≥ 2 log+(C(‖∇u‖L2 + ‖∇θ‖L2))

log 2
+ 4

and

M ≥ 2 log+(C(‖∇u‖L2 + ‖∇θ‖L2))

log 2
+ 4,
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where log+ t = log t for t > e and log+ t = 1 for 0 < t ≤ e. Then (1.12) implies
that

d

dt
(‖∇u(t)‖2L2 + ‖∇θ(t)‖2L2) + ‖�u(t)‖2L2 + ‖�θ(t)‖2L2

≤ C(‖∇u‖2L2 + ‖∇θ‖2L2)

(

‖∇hũ‖ ·
B
0

∞,∞
+ ‖∇hθ‖ ·

B
0

∞,∞

)

× log(e + ‖∇u‖2L2 + ‖∇θ‖2L2) + C . (1.13)

for all 0 < t < T . Integrating in time and applying the Gronwall inequality, we infer
that

‖∇u(t)‖2L2 + ‖∇θ(t)‖2L2 ≤ C(‖∇u0‖2L2 + ‖∇θ0‖2L2 + CT )

× exp

(

C
∫ t

0
(‖∇h ũ(τ )‖ ·

B
0

∞,∞
+ ‖∇hθ(τ )‖ ·

B
0

∞,∞
) log(e + ‖∇u(τ )‖2L2 + ‖∇θ(τ )‖2L2 )dτ

)

.

(1.14)

Defining

Z(t) = log(e + ‖∇u(·, t)‖2L2 + ‖∇θ(·, t)‖2L2),

Substitute the function Z(t) into (1.14), it follows that

Z(t) ≤ log(e + ‖∇u0‖2L2 + ‖∇θ0‖2L2 + CT )

× exp

(

C
∫ t

0
(‖∇hũ(τ )‖ ·

B
0

∞,∞
+ ‖∇hθ(τ )‖ ·

B
0

∞,∞
)dτ

)

, (1.15)

Thus, (1.14) yields

sup
0≤t≤T

(‖∇u(·, t)‖2L2 + ‖∇θ(·, t)‖2L2)

≤ (e + ‖∇u0‖2L2 + ‖∇θ0‖2L2 + CT )
exp

(

C
∫ T
0 (‖∇h ũ(τ )‖ ·

B
0
∞,∞

+‖∇hθ(τ )‖ ·
B
0
∞,∞

)dτ

)

.

(1.16)

On the other hand, (u, θ) satisfies the energy inequality, i.e.

‖u(t)‖2L2 + ‖θ(t)‖2L2 + 2
∫ t

0
(‖∇u(τ )‖2L2 + ‖∇θ(τ )‖2L2)dτ ≤ ‖u0‖2L2 + ‖θ0‖2L2 ,

∀0 ≤ t ≤ T . (1.17)

From (1.16) and (1.17), we obtain the desired estimate (1.8). Therefore, by the standard
arguments of continuation of local solutions, it is easy to conclude that the estimate
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(1.8) implies that the solution (u(x, t), θ(x, t)) can be smoothly extended beyond T .
This completes the proof of Theorem 1.1. �
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