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Abstract: The focusing capabilities of an inward cylindrical travel-
ing wave aperture distribution and the non-diffractive behaviour of its
radiated field are analyzed. The wave dynamics of the infinite aperture
radiated field is clearly unveiled by means of closed form expressions,
based on incomplete Hankel functions, and their ray interpretation. The
non-diffractive behaviour is also confirmed for finite apertures up to a
defined limited range. A radial waveguide made by metallic gratings over
a ground plane and fed by a coaxial feed is used to validate numerically
the analytical results. The proposed system and accurate analysis of non-
diffractive Bessel beams launched by inward waves opens new opportunities
for planar, low profile beam generators at microwaves, Terahertz and optics.
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1. Introduction

The spreading of the transverse profile of a propagating wave is an all-present phenomenon
known as diffraction. The possibility to limit diffraction spreading over a limited region has
been an interesting area of research since the introduction of the so-called non-diffractive Bessel
beams [1]. Ideal Bessel beams are solutions to the scalar wave equation that remain confined
and do not undergo diffractive spreading but carry infinite power, therefore being nonphysical.
Several approaches have been proposed to experimentally generate Bessel beams over finite
apertures achieving a non-diffractive behaviour in a limited distance known as non-diffractive
range [2]-[8]. During the years, other invariant solutions of the Helmholtz equation have been
also proposed and generalized to the polychromatic case [9]-[10]. In addition a series of works
[9]-[16] have also highlighted the fact that Bessel beams are cylindrical standing waves gen-
erated by the interference of two cylindrical traveling waves, or Hankel beams, one traveling
outward and the other inward over the radiating aperture. The combination of the two traveling
waves is generally obtained on a small frequency band resulting in a resonant aperture field dis-
tribution [12]. The properties of ideal Bessel beams are well established in literature. However,
few works have been focusing on their composing cylindrical traveling waves [10] and relative
non-diffractive behaviour [11].

Here, the field radiated by inward cylindrical waves traveling over a radiating infinite aper-
ture is expressed in terms of incomplete Hankel functions. The radiated field is split into two
main contributions: Geometrical Optics (GO) and Space Wave (SW) arising at the aperture
center. Closed form expressions clearly show that the GO contribution creates a non-diffractive
Bessel beam radiation close to the axis of symmetry of the generating aperture, where the SW is
negligible. Therefore, non-diffractive radiation is not only generated by resonant apertures hav-
ing a Bessel-like distribution given by a combination of inward and outward cylindrical waves,
thus simplifying the beam generator synthesis. In contrast, the case of outward cylindrical wave
infinite aperture distribution is also treated by showing that it cannot provide a non-diffractive
beam generation. The finite aperture case is then considered for an inward aperture illumination,
showing that the non-diffractive Bessel beam is still generated within a given a non-diffractive
range, as it happens for finite size Bessel distributions. Finally, to implement the proposed con-
cept, a radial waveguide loaded by metallic gratings and fed by a coaxial feed is used as a
beam generator device with an inward cylindrical aperture distribution at microwave frequen-
cies. The coaxial feed within the radial waveguide launches an outward cylindrical wave. The
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Fig. 1. Schematic view of the considered configuration. The aperture field distribution is a
cylindrical inward wave with radial propagation constant kρa. The non-diffractive zone is
limited by the cone with angle θa = sin−1(kρa/k), where k is the free space wavenumber.

position and size of the metallic gratings are properly chosen to sample the outward feeding
wave launched by the feed for synthesizing the required inward aperture distribution.

Note that this structure is different from the one proposed in [6], where an incident field
generated by an external horn antenna was used to illuminate a subwavelength annular aperture
on the back side of a radial waveguide loaded with metallic gratings of same size and peri-
odically placed over the aperture. The presented approach for the analysis and generation of
non-diffractive Bessel beams and the proposed simple structure may find several applications
in optics and at radio frequencies [5] or for the generation of surface plasmon polaritons [17].

2. Analytical derivation: infinite case

The geometry of the problem is shown in Fig. 1. The origin of the reference system is at the
aperture center with the z-axis normal to the aperture. For the sake of convenience, the obser-
vation point is expressed either in cylindrical (ρ , φ , z) or in spherical (r, θ , φ ) coordinates;
vectors are bold and a hat denotes a unit vector. In the following discussion, Transverse Mag-
netic (TM) modes with respect to the z-direction will only be considered. However, a similar
procedure can be applied to Transverse Electric (TE) modes. An inward cylindrical wave is
assumed for the tangential electric field on the radiating aperture: Et(ρ ,φ ,z = 0) = Et(ρ ,z =
0)ρ̂ρρ =H(1)

1 (kρaρ)ρ̂ρρ . A time dependence e jωt , ω = 2π f being the angular frequency, is assumed
and suppressed. The electric field radiated by the aperture is given by [18]

E(ρ ,z) =
1

4π

∫ +∞

∞e− jπ

[
kρ

kz
H(2)

0 (kρ ρ)ẑzz+ jH(2)
1 (kρ ρ)ρ̂ρρ

]
Ẽt(kρ)e

− jkzzkρdkρ , (1)

Ẽt(kρ) =−2π j
∫ +∞

0
Et(ρ ,z = 0)J1(kρ ρ)ρdρ , (2)

where kρ , and kz =
√

k2 − k2
ρ are the transverse and longitudinal spectral variables, k is the

wavenumber in free space, whereas Jn() and H(i)
n () are the n-th order Bessel and Hankel func-

tions of the i-th kind, respectively. Equation (2) is the Hankel-transform of the tangential field
distribution over the aperture and, for the assumed inward cylindrical wave distribution, it is
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(a)

(b)

Fig. 2. Ray interpretation of the GO field for an infinite aperture. (a) Inward Hankel aperture
distribution: the GO field comprises an inward Hankel beam ray (in red), present throughout
the space, and an outward Hankel beam ray (in green) bounded inside the cone θ < θa;
the superposition of the two rays inside the cone (yellow area) creates a Bessel beam. (b)
Outward Hankel aperture distribution: the GO field comprises only an outward Hankel
beam ray (in green) bounded outside the cone θ < θa.

given by

Ẽt(kρ) =
−4kρ

kρa(k2
ρ − k2

ρa)
. (3)

After some mathematical manipulations (refer to the Appendix for more details), the radiated
field is exactly expressed as the superposition of the GO and SW contributions

E(r) = EGO(r)+ESW (r), (4)

with

EGO(r) = 2

[
kρa

jkza
J0(kρaρ)ẑzz+ J1(kρaρ)ρ̂ρρ

]
e− jkzazU(θa −θ)

+

[
kρa

jkza
H(1)

0 (kρaρ)ẑzz+H(1)
1 (kρaρ)ρ̂ρρ

]
e− jkzazU(θ −θa), (5)

ESW (r) = − kρa

jkza

[
sgn(w−

0 )H
(2)
0 (kρaρ , |w−

0 |)e− jkzaz −H(2)
0 (kρaρ ,w+

0 )e
jkzaz

]
ẑzz

−
[
sgn(w−

0 )H
(2)
1 (kρaρ , |w−

0 |)e− jkzaz +H(2)
1 (kρaρ ,w+

0 )e
jkzaz

]
ρ̂ρρ

− 2
jπkρa

(ẑzz+ cotθρ̂ρρ)
e− jkr

r
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∼ 2sinθ
jπkρa(cos2 θ − cos2 θa)

e− jkr

r
θ̂θθ , (6)

with kza =
√

k2 − k2
ρa denoting the Bessel beam normal propagation constant. In Eq. (6),

H(i)
n (Ω,w0) are the n-th order incomplete Hankel functions of i-th kind with the second argu-

ment w±
0 = tanh−1 cosθ ± tanh−1 cosθa [19], whereas sgn() and U() are the sign and Heaviside

step function, respectively.

Fig. 3. Electric field radiated by an infinite aperture. |Ez| (1st column), |Eρ | (2nd column)
and total electric field amplitude |EEE| (3rd column). Standard Bessel beam reference field
(1st row), field radiated by an inward Hankel distribution (2nd row), and field radiated by
an outward Hankel distribution (3rd row). The axes are normalized with respect to the
wavelength (λ ) at the operating frequency f . The dashed line marks the GO boundary
θ = θa.

The GO contribution exhibits the well-known Bessel beam shape (first term in Eq. (5)) within
the cone θ < θa where U(θa −θ) = 1, whereas becomes an inward Hankel beam outside such
a cone where U(θa − θ) = 0. By considering the Bessel function as the superposition of two

Hankel functions 2Jn = H(1)
n +H(2)

n , GO is interpreted as the superposition of two ray contribu-
tions; namely, an inward Hankel beam conical wave is associated to a ray arising from a point
on the aperture, and an outward Hankel beam conical wave associated to a ray arising from a
point on the aperture which is diametrally opposite with respect to the observation point. In-
deed, the launched inward conical wave becomes an outward conical wave beyond the caustic
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at the z-axis. While the former ray reaches the observation point regardless its location, the
latter exists only when observing inside the cone θ < θa (Fig. 2(a)). At the GO discontinuity
cone θ = θa, the SW contribution (Eq. (6)) exhibits an opposite abrupt discontinuity which
renders the total field smooth and continuous. Such a transitional behaviour is described by
the sign and incomplete Hankel functions when w−

0 → 0. Outside the transition region near
the discontinuity cone, the SW contribution exhibits a ray-optical behaviour which is derived
from the asymptotic expression of incomplete Hankel functions for large arguments [19], and
reported in the last line of Eq. (6). Indeed, the SW is a transverse (i.e., θ̂θθ polarized) spherical
wave associated to a ray launched at the aperture center (origin of the reference system in Fig.
1), with a radiation null on the aperture symmetry axis θ = 0.

Fig. 4. Electric field radiated by an finite aperture with radius of a = 7λ . |Ez| (1st column),
|Eρ | (2nd column) and total electric field amplitude |EEE| (3rd column). Standard Bessel beam
reference field (1st row), and field radiated by an inward Hankel distribution (2nd row). The
axes are normalized with respect to the wavelength (λ ) at the operating frequency f . The
dashed line marks the GO boundaries.

As an example, Fig. 3 shows the amplitude of the z (1st column) and ρ (2nd column) compo-
nents and the total electric field (3rd column) radiated by an inward cylindrical wave (2nd row)
with kρa = 0.6k in the vertical z−ρ plane. As clear from the previous results, the non diffractive
behaviour of the radiated field can be appreciated within the cone with angle θa ≈ 37◦ (dotted
line) where the various components of the electric field recover the respective components of a
standard Bessel beam (1st row).

On the other hand, by repeating the same formulation for the case of an outward traveling

wave over the radiating aperture Et(ρ ,φ ,z= 0)=H(2)
1 (kρaρ)ρ̂ρρ , the radiated field is found again

as in Eq. (4) with the following expression for the GO contribution

EGO(r) =

[
kρa

jkza
H(2)

0 (kρaρ)ẑzz+H(2)
1 (kρaρ)ρ̂ρρ

]
e− jkzazU(θ −θa), (7)

and a SW contribution which is the negative of that in Eq. (6). In Eq. (7), differently from
Eq. (5), the GO field contribution is constituted by only a single outward Hankel beam conical
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wave, which however vanishes within the cone delimited by θ < θa. Its ray interpretation is
shown in Fig. 2(b). Again, the SW contribution discontinuity perfectly matches the GO jump
at the shadow boundary cone, thus providing a smooth continuous total field. Therefore, it is
apparent that an outward Hankel distribution cannot produce a Bessel beam, as also clear from
Fig. 3(c).

Fig. 5. Ray interpretation of the GO field for an finite aperture. The dashed lines indicated
the GO boundaries. The GO contribution is limited in a triangular region with a side cor-
responding to the finite aperture. The GO field comprises an inward Hankel beam ray (in
red), present throughout this triangular region, and an outward Hankel beam ray (in green)
bounded inside the cone θ < θa; the superposition of the two rays creates a Bessel beam
inside a zone with rhomboidal cross section (yellow area).

3. Finite case

Once established the capabilities of generating a non-diffractive wave for theoretical infinite
apertures, the field radiated by a finite aperture with an inward cylindrical traveling wave dis-
tribution has been then considered for assessing the practical finite case. Equation (1) is still
valid once the Hankel-transform of the tangential field distribution over the finite aperture is
considered:

Ẽt(kρ) =
−4

k2
ρ − k2

ρa

[
kρ

kρa
+

πa
2 j

(
kρH(1)

1 (kρaa)J0(kρa)− kρaH(1)
0 (kρaa)J1(kρa)

)]
. (8)

Since for the finite aperture case a closed form field expression is not available, the electric field
is then evaluated numerically through Eq. (1). As an example, the field map for an aperture of
radius a = 7λ (refer to Fig. 1) is shown in Fig. 4. Analogously to Fig. 3, z, ρ components and
total electric field are arranged in the 1st, 2nd, and 3rd column, respectively; while the results for
a Bessel, and inward Hankel aperture distributions are arranged in the 1st, 2nd row, respectively.
In both cases ka is equal to 0.6k. In the present finite case additional GO shadow boundaries
(dotted lines) arise from the aperture rim and limit the GO contribution in a conical region
above the aperture with vertex on the z-axis at a distance z = acotθa � 9.33λ , as shown in
Fig. 5; hence the non-diffractive behaviour is limited up to this distance for both the reference
Bessel [1] and the inward Hankel distributions. In the latter case the Bessel beam is generated
in the region between the two conical boundaries which exhibits a rhomboidal cross section, in
contrast to the well known triangular cross section of the reference case.
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Fig. 6. Radial waveguide loaded with metallic gratings and fed by a coaxial fed.

Table 1. Geometrical sizes of the Bessel beam launcher: radial positions (ρi) and widths
(wi) of the annular slots. The PPW is filled with a dielectric with permittivity 2.2 and
thickness h1 = 3.175 mm.

Slot ρi wi Slot ρi wi

[mm] [mm] [mm] [mm]

1 1.5 0.55 7 110 2.3
2 29.8 0.94 8 126.5 2.6
3 45.7 1.1 9 143 3
4 61.5 1.5 10 159.5 3.5
5 76.4 1.2 11 175.4 3.8
6 94.1 3 12 192.4 4

However the depth of focus of the two distributions, i.e the non-diffractive range, is the same,
and the shape of the realized beam close to the z-axis is very similar. This demonstrates that the
capability of an inward Hankel aperture distribution of launching a Bessel beam is practically
equivalent to that of the standard Bessel distribution.

4. Proposed structure: radial waveguide loaded with metallic gratings

The practical implementation of a Bessel beam launcher exploiting an inward traveling wave
aperture distribution, is shown in Fig. 6. The structure is made by a parallel-plate waveguide
(PPW) with annular slots etched on the top plate (Fig. 6). A coaxial feed at the center excites
an outward cylindrical radial wave inside the PPW. An in-house Method of Moments (MoM)
and the design procedure proposed in [8], [20], [21] was used to tailor the tangential field
distribution over the top plate in the shape of an inward cylindrical wave. This is accomplished
by controlling the positions along the radial direction ρi and sizes wi of the circular slots (refer
to Fig. 6). Indeed, slots are positioned at those points where the phase of the outward cylindrical
feeding wave inside the PPW matches that of the target inward cylindrical aperture distribution,
according to an holographic criterion. The slot width is used to modulate the amplitude of the
aperture distribution. In addition the design procedure assures that the total energy launched by
the coaxial feed in the PPW is radiated, thus avoiding any spurious radiation by the edges of
the structure. The geometrical details of the structure are provided in Table 1.

COMSOL Multiphysics has been used to analyze the structure. Field maps of the electric
field above the launcher are shown in Fig. 7, which are found very similar to their theoretical
counterparts in Fig. 4. To allow a clearer quantitative comparison, we also show in Fig. 8 the
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Fig. 7. Electric field radiated by the launcher prototype in Fig. 6, calculated using COMSOL
Multiphysics. From left to right, |Ez|, |Eρ | and |EEE|. The axes are normalized with respect
to the wavelength (λ ) at the operating frequency f = 10 GHz. The dashed line marks the
GO boundaries and the dotted line refers to the field scan shown in Fig. 8.

Fig. 8. Normalized |Ez| component of the electric field at z = 4.667λ for the structure in
Fig. 6 simulated with COMSOL Multiphysics. The field radiated by a truncated inward
Hankel distribution is shown for comparison.

Ez component of the electric field at the distance z = 4.667λ from the aperture, correspond-
ing to the maximum transverse extension of the rhomboidal region where the Bessel beam is
created (dashed line in Fig. 7), compared to the ideal truncated (a = 7λ ) inward Hankel aper-
ture distribution. The good agreement reveals the accuracy of the launcher design. It is worth
noting that the traveling nature of the synthesized aperture distribution guarantees a wide-band
operation as a difference with resonant Bessel designs [2], [13], [15].

5. Conclusion

In this letter, we have shown that Bessel beams can be created by radiating apertures taking on
tangential inward Hankel distributions. The non-diffractive behaviour of such Hankel beams
have been investigated theoretically by evaluating the GO and SW field contributions to the
total radiated field. In particular, incomplete Hankel functions have been adopted to represent
in closed form the SW term. Finally, a Bessel beam launcher based on an inward Hankel dis-
tribution was designed to further validate the proposed solution. Future work will consider an
experimental validation of the proposed structure in the millimeter wave range. The proposed
solution for generating non-diffractive Bessel beams may find application in areas such as near-
field communication, radiometry, and non-destructive evaluation.
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Appendix

As first step we consider an outward aperture cylindrical wave distribution Et(ρ ,z = 0) =

H(2)
1 (kρaρ). Equation (1) is recast in the following form

E(r) =
[(

k2 +
∂ 2

∂ z2

)
ẑ+

∂ 2

∂ρ∂ z
ρ̂ρρ
]

S(r) (9)

in which the electric field is obtained in terms of a Transverse Magnetic (TM) scalar potential

S(r) =
1

4π

∫ +∞

∞e− jπ
Ẽt(kρ)H

(2)
0 (kρ ρ)

e− jkzz

kz
dkρ . (10)

The Hankel-transform of the tangential field distribution over the aperture for the assumed
outward cylindrical wave is the negative of the one in Eq. (3). By expressing the poles of
Ẽt(kρ) in an integral form

1
k2

ρ − k2
ρa

=
1

2 jkza

(∫ 0

−∞
e j(kz−kza)ζ dζ −

∫ 0

−∞
e j(kz+kza)ζ dζ

)
, (11)

after interchanging the order of the integrals, the spectral kρ -integral is closed analytically by
means of

1
2π

∫ ∞

−∞

1
4 j

kρ

kz
H(2)

0 (kρ ρ)e− jkzzdkρ =
e− jk

√
ρ2+z2

4π
√

ρ2 + z2
, (12)

resulting in the spatial representation

S(r) =
4

kρakza

(∫ 0

−∞
e− jkzaζ e− jk

√
ρ2+(z−ζ )2

4π
√

ρ2 +(z−ζ )2
dζ −

∫ 0

−∞
e jkzaζ e− jk

√
ρ2+(z−ζ )2

4π
√

ρ2 +(z−ζ )2
dζ

)
. (13)

Finally, the change of integration variable

w = sinh−1
(

z−ζ
ρ

)
∓ tanh−1

(
kza

k

)
(14)

is used with the upper/lower sign in the first/second integral of Eq. (13), so that the TM scalar
potential reduces to

S(r) =
1

jπkρakza

[
H(2)

0 (kρaρ ,w−
0 )e

− jkzaz −H(2)
0 (kρaρ ,w+

0 )e
jkzaz

]
, (15)

namely the sum of two zero order, second kind incomplete Hankel functions [19]

H(2)
0 (Ω,w0) =

j
π

∫ +∞

w0

e− jΩcoshwdw, (16)

whose second arguments are

w±
0 = tanh−1 cosθ ± tanh−1 cosθa, (17)

with sinθa = kρa/k and cosθa = kza/k. In the case of an inward cylindrical wave distribution

the tangential aperture field can be represented as Et(ρ ,z = 0) = H(1)
1 (kρaρ) = 2J1(kρaρ)−
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H(2)
1 (kρaρ). By noting that the Bessel aperture distribution simply radiates a Bessel beam and

by using Eq. (15), it is straightforward to derive the scalar potential as

S(r) =
1

jπkρakza

[
2J0(kρaρ ,w−

0 )e
− jkzaz −H(2)

0 (kρaρ ,w−
0 )e

− jkzaz +H(2)
0 (kρaρ ,w+

0 )e
jkzaz

]
.

(18)
Now, since θ ,θa ∈ [0,π/2], then w+

0 ≥ 0 and the second incomplete Hankel function is asymp-
totically dominated only by its end-point contribution for any observation point. The same
holds for the first incomplete Hankel function only when observing for θ ≤ θa and w−

0 ≥ 0.
Conversely, when θ > θa, then w−

0 < 0 and the first incomplete Hankel function asymptotically
comprises also a saddle point contribution. To isolate such a contribution one can exploit [19]

H(2)
0 (Ω,w0) = H(2)

0 (Ω)U(w0)+ sgn(w0)H
(2)
0 (Ω, |w0|),w0 ∈ R (19)

and rearrange the expression for the scalar potential S as the sum of a GO and a SW contribu-
tions

S(r) = SGO(r)+SSW (r), (20)

with

SGO(r) =
1

jkρakza

[
2J0(kρaρ)U(θa −θ)+H(1)

0 (kρaρ)U(θ −θa)
]

e− jkzaz, (21)

SSW (r) =− 1
jkρakza

[
sgn(w−

0 )H
(2)
0 (kρaρ , |w−

0 |)e− jkzaz −H(2)
0 (kρaρ ,w+

0 )e
jkzaz

]
. (22)

It is worth noting that although Eq. (18) is already an exact compact closed form for the poten-
tial, its exact rearrangement in Eq. (20) better highlights the wave constituents of the total field.
Indeed the GO contribution is asymptotically dominated only by the saddle point, whereas the
SW is asymptotically dominated only by the end point at any observation aspect. As a matter
of fact, the non-uniform asymptotic expression [19]

H(2)
0 (Ω,w0)∼ e− jΩcoshw0

πΩsinhw0
,(Ω → ∞,w0 > 0) (23)

reveals the spherical wave nature of the SW arising from the aperture center (spatial end point)

SSW (r)∼ 2
jπk3 sinθa (cos2 θ − cos2 θa)

e− jkr

r
,(kρaρ → ∞,θ 
= θa). (24)

A transition region around the shadow boundary at θ = θa is present, where the non-uniform
asymptotic expression (24) fails. By differentiating the TM potential according to Eq. (9), the
electric field expressions Eqs. (4)–(6) are finally obtained. The same calculations can be re-
peated for the field radiated by an infinite aperture distribution taking on an outward Hankel
function using the scalar potential in Eq. (15), obtaining the result in Eq. (7).
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