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LOCAL EQUILIBRIUM AND OFF-EQUILIBRIUM
PHENOMENA IN SILICON QUANTUM WIRES

VINCENZA DI STEFANO a AND ORAZIO MUSCATO a ∗

ABSTRACT. Charge transport phenomena can been tackled in silicon quantum wires using
a subband hydrodynamic model. This has been formulated by closing the moment system
derived from the Schrödinger-Poisson-Boltzmann equations on the basis of the Maximum
Entropy Principle. The model can be used to deal with thermoelectric effects in Local
equilibrium and off-equilibrium regimes.

1. Introduction

In the last decades nanotechnologies made possible the production of innovative devices,
such as silicon nanowires (SiNWs) which are largely investigated for the central role
assumed by silicon in semiconductor industry. SiNWs have been assembled as field-effect
transistors (FETs) Singh et al. 2006; Guerfi and Larrieu 2016, logic devices Mongillo
et al. 2012, thermoelectric coolers Pennelli and Macucci 2013; Pennelli 2014, nanosensors
Cao et al. 2014, light-emitting diodes and lasers. When the physical size of the system
becomes small enough, quantum effects on electronic properties become important and
then a description via quantum mechanics is required. These quantum effects arise in
systems which confine electrons to regions of dimensions comparable to their de Broglie
wavelength. In a nanowire (NW) the electronic states become subject to quantization in
the two-dimensional transversal section, and the transport is due to the one-dimensional
electron gas in the longitudinal dimension. Under extreme scaling of the device’s dimensions
(diameters even down to 3 nm), the atoms in the cross section will be countable, and crystal
symmetry, bond orientation, and quantum mechanical confinement will matter. Proper
atomistic modeling is therefore essential in understanding the electronic band structure
of these ultra-scaled cross section nanowire devices Nehari et al. 2006. Moreover, if the
longitudinal dimension is smaller than 10 nm, tunneling phenomena play an important role
necessitating full quantum transport simulations based on the Non-Equilibrium Green’s
function formalism Aldegunde et al. 2011 or the quantum-kinetic Wigner transport equation
Yamada et al. 2009; Muscato and Wagner 2016; Nedjalkov et al. 2018. But, if the scaling
is not aggressive, then transport can essentially be described semiclassically, using multi-
subband Boltzmann transport equations (MBTEs) combined with Poisson and Schrödinger
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A5-2 V. DI STEFANO AND O. MUSCATO

equation solvers for the description of charge and the confining potential Jin et al. 2008.
Numeric solutions of the MBTEs can be obtained either by using deterministic solvers
Ossig and Schürrer 2008 or by Monte Carlo solvers Ramayya and Knezevic 2010 at the
expense of large computational effort and statistical noise Muscato et al. 2010, 2011,
2013; Romano et al. 2015. In this paper we shall pursue another route, i.e. from the
MBTEs we shall introduce a consistent, physics-based hydrodynamic model derived from
the Maximum Entropy Principle of Extended Thermodynamics. Moreover we shall prove
that Thermoelectric Effects (TE) can be conveniently analyzed from a hydrodynamic point-
of-view, where the main advantages are i) a consistent thermodynamic framework, ii) an
easy inclusion of hot electron effects, iii) the determination of the transport coefficients
from first principles. The description of TE, at nanoscale, is very important: in fact the
Seebeck effect in nanowires has been recently investigated with the future aim of building
thermoelectric devices based on nanowire arrays for energy harvesting and using them in
low-power portable electronics and autonomous sensor systems Dimaggio and Pennelli
2018. The plan of the paper is as follows. In Section 2 Transport physics in SiNWs is
introduced; in section 3 the Extended hydrodynamic model is described. Low-field transport,
Thermoelectric effects and Off-equilibrium regime are respectively dealt with in sections 4,
5 and 6. Finally conclusions are drawn in section 7.

2. Transport physics in SiNWs

In the physics of nanowires, we have to take into account two characteristic dimensions,
the longitudinal (channel) and transversal lengths. If the transversal dimension is greater
than 5 nm, the Effective Mass Approximation is probably valid Zheng et al. 2005. More-
over, the main quantum transport phenomena in SiNWs at room temperature, such as the
source-to-drain tunneling, and the conductance fluctuation induced by the quantum interfer-
ence, become significant only when the longitudinal lengths of SiNWs are smaller than 10
nm Wang and Lundstrom 2002. Therefore for longer longitudinal lengths, semiclassical
formulations based on the 1-D Boltzmann Transport Equation can give reliable terminal
characteristics when it is solved self-consistently by adding the Schrödinger-Poisson equa-
tions in the transversal direction. Regarding to the band structure, in SiNWs it is altered
with respect to the bulk case depending on the wire cross-section dimension, the atomic
configuration, and the crystal orientation Neophytou et al. 2008. In this paper, for the sake
of simplicity, we shall consider a single valley model, with an effective mass m∗. For a
quantum wire with linear expansion in z-direction, and confined in the x− y plane, the
normalized electron wave function φ(x,y,z) can be written in the form

φ(x,y,z) = χαz(x,y)
eikzz
√

Lz
(1)

where χαz(x,y) is the wave function of the α-th subband and the term eikzz/
√

Lz describes an
independent plane wave in z-direction confined to the normalization length, with z ∈ [0,Lz]
and kz is the wave vector number. In the z cross section, the wave function χαz satisfy the
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Schrödinger equation in the Effective Mass Approximation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H[V ]χ

µ

αz[V ] = εαz[V ]χ
µ

αz[V ]

H[V ] =− h̄2

2m∗

(︃
∂

2

∂x2 + ∂
2

∂y2

)︃
+U(x,y)− eV (x,y,z)

(2)

where U(x,y) is the confining potential, e the absolute value of the electronic charge, εαz
are the subband energies representing the energies admitted in the confined x−y plane. The
total electron energy is

Eαz = εαz +E (kz)+Ec

where Ec is the bottom of the conduction band and, in the parabolic band approximation,
we have

E (kz) =
h̄2k2

z

2m∗ .

The electrostatic potential V satisfies the Poisson equation

∇ · [ε0εr∇V (x,y,z)] =−e(ND −NA −n) (3)

where ε0 is the absolute dielectric constant, εr is the relative dielectric constant, and
ND,NA are the assigned doping profiles (due to donors and acceptors) and n(x,y,z, t) is the
electron density, which depends on χαz

n(x,y,z, t) = ∑
α

ρ
α(z, t)|χαz(x,y, t)|2 (4)

where ρα is the 1-D density in the α-subband

ρ
α(z, t) =

2
2π

∫︂
fα(z,kz, t)dkz . (5)

Equations (2), (3) must be coupled to the MBTEs for the electron distribution functions
fα(z,kz, t) in each α-th subband Ferry et al. 2009

∂ fα

∂ t
+ vz(kz)

∂ fα

∂ z
− e

h̄
Ee f f ∂ fα

∂kz
= ∑

α ′
∑
η

Cη [ fα , fα ′ ] (6)

where

vz =
1
h̄

∂Eαz

∂kz
=

h̄kz

m∗ , Ee f f =
1
e

∂Eαz

∂ z
=

1
e

∂εαz

∂ z
(7)

are respectively the electron group velocity and the effective electric field. In the low
density approximation (not-degenerate case), the collisional operator reads

Cη [ fα , fα ′ ] =
Lz

2π

∫︂
dk′z
{︁

wη(k
′,k) fα ′(k′z)−wη(k,k

′) fα(kz)
}︁

(8)

where wη(k,k
′) = wη(α,kz,α

′,k′z) is the η-th scattering rate. When α = α ′ we have
an intra-subband scattering, otherwise we have an inter-subband scattering. Scattering
mechanisms in SiNWs must comprise acoustic phonon scattering, non-polar optical phonon
scattering, surface scattering, scattering with ionized impurities, as well as surface roughness
scattering: the details of such mechanisms can be found in Muscato et al. 2019.
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A5-4 V. DI STEFANO AND O. MUSCATO

So in principle, one has to solve a complicate system formed by two blocks, the
Schrödinger-Poisson equations and the MBTEs. The coupling between the two blocks is
due to the subband energies εαz (from which one can evaluate the effective field (7)2 ),
the wave functions χαz (which enter in the definition of the electron density (4) and in the
scattering mechanisms), as well as the linear density (5).

3. The Extended hydrodynamic model

From the MBTEs one can obtain hydrodynamic-like equations. By multiplying the
MBTEs by the weight functions ψA = {1,vz,E ,E vz}, and integrating in the kz space, one
obtains the following hyperbolic system of PDEs Muscato and Di Stefano 2012a

∂ρα

∂ t
+

∂ (ραV α)

∂ z
= ρ

α
∑
α ′

Cαα ′
ρ (9)

∂ (ραV α)

∂ t
+

2
m∗

∂ (ραW α)

∂ z
+

e
m∗ ρ

α Ee f f = ρ
α
∑
α ′

Cαα ′
V (10)

∂ (ραW α)

∂ t
+

∂ (ρα Sα)

∂ z
+ρ

α eEe f fV α = ρ
α
∑
α ′

Cαα ′
W (11)

∂ (ρα Sα)

∂ t
+

∂ (ρα Fα)

∂ z
+3

e
m∗ ρ

α Ee f fW α = ρ
α
∑
α ′

Cαα ′
S (12)

in the unknowns (called moments) ρα (1-D density), V α (mean velocity), W α (mean
energy) and Sα (mean energy-flux), and

Fα =
2

(2π)

1
ρα

∫︂
fαE v2

z dkz

Cαα ′
ρ =

2
(2π)

1
ρα ∑

η

∫︂
Cη [ fα , fα ′ ]dkz

Cαα ′
V =

2
(2π)

1
ρα ∑

η

∫︂
Cη [ fα , fα ′ ]vzdkz

Cαα ′
W =

2
(2π)

1
ρα ∑

η

∫︂
Cη [ fα , fα ′ ]εzdkz

Cαα ′
S =

2
(2π)

1
ρα ∑

η

∫︂
Cη [ fα , fα ′ ]εzvzdkz.

The above moment system is not closed: there are more unknowns than equations. The
Maximum Entropy Principle (MEP) leads to a systematic way for obtaining constitutive
relations on the basis of the information theory, as already proved in the simulation of 3D
electron transport in sub-micrometric devices in the case in which the lattice phonons are
considered as a thermal bath with constant temperature Mascali and Romano 2017b or
when the phonons are off-equilibrium Muscato and Di Stefano 2008, 2011a,b,c,d, 2012b;
Mascali 2015; Muscato and Di Stefano 2015; Mascali 2016; Mascali and Romano 2017a,
in 2D nanoscale structures Camiola et al. 2012, 2013; Mascali 2017. We define the entropy
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of the electron system as Mascali and Romano 2010

Se = ∑
α

|χα(x,y, t)|2Sα
e (13)

Sα
e = − 2

(2π)
kB

∫︂
R
( fα log fα − fα)dkz. (14)

According to the MEP, if a given number of moments Mα
A are known, the distribution

function f̂
α

, which can be used to evaluate the unknown moments, correspond to the
extremum of the total entropy density under the constraint that they yield the known
moments, i.e.

2
(2π)

∫︂
R

ψA f̂ α dkz = Mα
A . (15)

If we introduce a set of Lagrange multipliers λA, the problem to maximize Se under the
constraints (15) is equivalent to maximize

S′ = Se −∑
α

∑
A

λ
α
A |χα(x,y, t)|2

[︃
2

(2π)

∫︂
R

ψA f̂ α dkz −Mα
A

]︃
.

So doing we shall obtain the following distribution function:

f̂ α = exp(−Σ
α) , Σ

α =
1
kB

∑
A

ψAλA (16)

ψA = (1,vz,E ,E vz) , λA = (λ α ,kBλ
α
V ,kBλ

α
W ,kBλ

α
S ) (17)

By inserting the previous equations in (15), we obtain

Mα
A = Mα

A (λA)

which define implicitly the Lagrange multipliers as functions of the basic moments. However
such a procedure requires a numerical inversion, which is not practical for numerical
simulations of electron devices, since it must be performed at each time or iteration step. In
order to invert the above relations, one assumes a small anisotropy in the distribution function
Mascali and Romano 2010; Camiola et al. 2012; Mascali 2016; Mascali and Romano 2017b
by introducing the smallness parameter τ . We shall assume that the multipliers are analytic
in τ and expand them around τ = 0 up to the second order and, taking into account the
representation theorem for isotropic function, we have

λ
α = λ̂

α
+O(τ2), λ

α
W = λ̂

α

W +O(τ2) (18)

λ
α
V = τ λ̂

α

V +O(τ2), λ
α
S = τ λ̂

α

S +O(τ2) (19)

therefore, up to the first order in τ , we obtain

f̂ α = exp

(︄
− λ̂

α

kB
− λ̂

α

W E

)︄{︂
1− τ

(︂
λ̂

α

V vz + λ̂
α

S E vz

)︂}︂
+O(τ2). (20)

We remark that, for τ = 0, the eq.(20) looks like the equilibrium distribution function,
supposing to have

λ̂
α

W |E =
1

kBT α
e

(21)
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where T α
e is the electron temperature. However λ̂

α
, λ̂

α

W are not the equilibrium part of
λ α ,λ α

W , but the part arising in the case f̂ α is isotropic. The Lagrange multiplyers are
determined by imposing the constraint (15), and we get

λ̂
α

kB
=− log

ρα h̄π
1
2

√
4m∗W α

, λ̂
α

W =
1

2W α
(22)

τ λ̂
α

V =− 5m∗

4W α
V α +

m∗

4(W α)2 Sα , τ λ̂
α

S =
m∗

4(W α)2 V α − m∗

12(W α)3 Sα . (23)

By using the distribution function (20), the higher-order flux term Fα has been evaluated

Fα =
6(W α)2

m∗ (24)

as well as the production terms Cαα ′
ρ ,Cαα ′

V ,Cαα ′
W ,Cαα ′

S . In particular the right-hand-sides
of equations (10), (12) can be written as

ρ
α
∑
α ′

Cαα ′
V = A (ρα ,W α)Jα +B(ρα ,W α)Jα

W (25)

ρ
α
∑
α ′

Cαα ′
S = A ⋆(ρα ,W α)Jα +B⋆(ρα ,W α)Jα

W (26)

where Jα = ραV α , Jα
W = ρα Sα . In the stationary regime the eqs. (10), (12) with (25),

(26) can be solved in terms of Jα and Jα
W obtaining

Jα = a11(ρ
α ,W α)

∂ρα

∂ z
+a12(ρ

α ,W α)
∂W α

∂ z
+a13(ρ

α ,W α)
∂εαz

∂ z
(27)

Jα
W = a21(ρ

α ,W α)
∂ρα

∂ z
+a22(ρ

α ,W α)
∂W α

∂ z
+a23(ρ

α ,W α)
∂εαz

∂ z
(28)

and the coefficients ai j can be found in Castiglione and Muscato 2017. Finally we want
to stress that the above Extended Hydrodynamic Model has been closed by using first
principles, and it is free of any fitting parameters.

4. Low-field transport

When the electric field is small, the system formed by the electrons and the lattice is in
Local Thermal Equilibrium (LTE), i.e. the system under study can be split into a collection
of sub-systems sufficiently large to allow them to be treated as macroscopic thermodynamic
subsystems, but sufficiently small that equilibrium is very close to being realized in each
sub-system. The Extended hydrodynamic model can describe the electron system in such
regime, supposing to set the smallness parameter τ = 0 and using eq.(21), with the main
advantage that the transport coefficients are completely determined without any fitting
procedure. In this case , we can obtain the following Gibbs relation (see Appendix A for the
details)

T α
e dSα

e = d(ραW α)− ν̄
α dρ

α (29)

where ν̄
α is the chemical potential for the electrons with respect to the energy of the α-th

subband (see eq.(??)). From the thermodynamic point-of-view, the lattice can be seen as a
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rigid-body endowed with an internal energy density WL, energy-flux Ji
WL

, and temperature
TL. The lattice energy balance equation writes

∂WL

∂ t
+

∂Ji
WL

∂xi = HL (30)

where HL denotes the production of internal energy.
Let be SL the lattice entropy then, in LTE, the Gibbs relation holds

TLdSL = dWL. (31)

The key point is that, having Gibbs relations, one can define the entropy-fluxes

Jαi
Se =

1
T α

e
(Jα

W − ν̄
α Jα)zi, Ji

SL
=

1
TL

Ji
WL

(32)

where zi is the unit vector in the z-direction, and the quantity

Jiα
h = T α

e Jiα
Se (33)

is known as electron heat flux density.
If we define the total entropy and its flux as

Stot = Se +SL, Ji
Stot = ∑

α

Jαi
Se |χα |2 + Ji

SL
(34)

then, from the moment system, one can write down the total entropy balance equation
Muscato 2001

∂Stot

∂ t
+

∂Ji
Stot

∂xi = PS, PS = ∑
α

Pα
S |χα |2 (35)

Pα
S =

Jα zi

T α
e

∂ φ̂
α

∂xi +(Jα
W − ν̄

α Jα)zi ∂

∂xi

(︃
1

T α
e

)︃
−∑

α ′

ρα

T α
e

ν̄
αCαα ′

ρ (36)

where the electro-chemical potential is

φ̂
α
=−ν̄

α + εαz. (37)

Now we shall suppose that the electrons and the lattice are in local thermal equilibrium
with the same temperature TL i.e.

T α
e = TL (38)

and, from equation (36), we can identify the thermodynamic forces Xα and the corre-
sponding generalized fluxes Jα i.e.

XA =

{︄
1
TL

∂ φ̂
α

∂xi ,
∂

∂xi

(︃
1
TL

)︃
,− ν̄

α

TL

}︄
(39)

JA =

{︄
Jα zi,∑

α

(Jα
W − ν̄

α Jα)zi,ρα
∑
α ′

Cαα ′
ρ

}︄
. (40)
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It is known empirically that, for a large class of irreversible phenomena and under a wide
range of experimental conditions, the fluxes are linear functions of the thermodynamical
forces Lebon et al. 2008, i.e.

JA = LABXB (41)

and the corresponding phenomena belong to the realm of Linear Irreversible Thermody-
namics. In this context, the property of microscopic reversibility for any statistical system
near thermal equilibrium give rises to the Onsager Reciprocity Principle (ORP), which
states the symmetry of the constitutive matrix i.e.

LAB = LBA . (42)

Close to local thermal equilibrium, we shall suppose that the electron kinetic energy can
be neglected respect to the thermal one

W α ≃ 1
2

kBT α
e =

1
2

kBTL.

In this case, from eqs.(27),(28) we can obtain the following relations as function of the
variables (φ̂

α
,TL)

Jα = b11(ρ
α ,W α)

∂ φ̂
α

∂ z
+b12(ρ

α ,W α)
∂

∂ z
(kBTL) (43)

Jα
W = b21(ρ

α ,W α)
∂ φ̂

α

∂ z
+b22(ρ

α ,W α)
∂

∂ z
(kBTL) (44)

where the coefficients bi j are known functions Muscato and Di Stefano 2012a. The
previous equations can be rewritten in terms of the thermodynamic fluxes and forces

Jα = TLb11
1
TL

∂ φ̂
α

∂ z
− kBT 2

L b12
∂

∂ z

(︃
1
TL

)︃
(45)

Jα
h = Jα

W −ν
ᾱ Jα =

TL(b21 − ν̄b11)
1
TL

∂ φ̂
α

∂ z
− kBT 2

L (b22 −ν
ᾱ b12)

∂

∂ z
1
TL

. (46)

Now from the definitions (39),(40) and the eqs.(45), (46) we can identify

L11 = TLb11, L12 =−kB(TL)
2b12

L21 = TL(b21 −ν
ᾱ b11), L22 =−kB(TL)

2(b22 −ν
ᾱ b12)

and the ORP (42) implies

−kBTLb12 = b21 −ν
ᾱ b11 (47)

which must be verified numerically taking into account the structure of the wire.
Finally from the previous equations (45),(46) we can identify the electrical conductivity

σα and the electronic thermal conductivity κα
e for the α-th subband with

σ
α = e2b11, κ

α
e =−(b22 −ν

ᾱ b12)kB. (48)
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5. Thermoelectric effects

The coupling between temperature gradients and electrical potential gradients gives rise
to the Seebeck and Peltier thermoelectric effects. When a small temperature difference ∆TL
is applied to a conductor or semiconductor, the electrons in the hot part have more energy
with respect to those of the cold part. As in a neutral gas the charges will diffuse from
the hot to the cold part but, since they are charged, this movement produces a current in
the material and hence an electric field which opposes to the diffusion. The Thermopower
S (or Seebeck coefficient) is a measure of the voltage produced in the presence of this
small temperature difference under the hypothesis of open circuit (i.e. Jα = 0), and for each
subband is defined as

S α =
∆φ̂

α

∆TL

⃓⃓⃓⃓
⃓
Jα=0

. (49)

Then from eq.(27) we have

S α =
∆φ̂

α

∆TL

⃓⃓⃓⃓
⃓
Jα=0

=−kB
b12

b11
(50)

and we can define the average Thermopower as

S =
∑α ραS α

∑α ρα
. (51)

When a small current (or particle flux) passes into an isothermal conductor or semicon-
ductor, a heat current is carried per unit charge through the material. The Peltier coefficient
measures this heat current and, for each subband, is defined as

Π
α =

∂Jα
h

∂Jα

⃓⃓⃓⃓
∇TL=0

. (52)

The eqs. (45), (46) for ∇TL = 0 reduce to

Jα = b11
∂ φ̂

α

∂ z
, Jiα

h =
b21 − ν̄b11

b11
Jα zi (53)

and since Jiα
h = (0,0,Jα

h ) then the Peltier coefficient is

Π
α =

b21(ρ
α ,W α)

b11(ρα ,W α)
− ν̄

α . (54)

Moreover, the average Peltier coefficient is

Π =
∑α ρα Πα

∑α ρα
=

∑α ρα

[︂
b21
b11

− ν̄
α

]︂
∑α ρα

. (55)

Another consequence of the Linear Irreversible Thermodynamics is the Kelvin relation,
which relates the Thermopower and the Peltier coefficient by the following relation

Π
α = S α TL. (56)
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A5-10 V. DI STEFANO AND O. MUSCATO

This relation is easily verified for our model.
In fact, if we substitute (50), (54) into the previous equation, we obtain the eq.(47) and

the Kelvin relation is a consequence of the ORP. Hence we have proved that the Extended
Hydrodynamic model is able to capture LTE phenomena, without any tuning parameters.
In the bulk case, these phenomena are usually described either using phenomenological
models or using the Boltzmann transport equation in the relaxation time approximation,
where the obtained coefficients weakly depend on the scattering mechanism.

6. Off-equilibrium regime

If the system is not in Local Thermal Equilibrium (i.e. τ ̸= 0) the previous results are no
more valid. In fact we cannot introduce Gibbs relations in the form (29), and consequently
the definitions (32). In this regime we have to use the flux equations (27), (28), and we need
another definition for the electro-chemical potential, and the electron heat flux density. That
can be achieved by using the Extended Gibbs relation (??) (see Appendix A), which reads

1

kBλ̂
α

W

dSα
e =

λ̂
α

kBλ̂
α

W

dρ
α +d(ραW α)+ τ

λ̂
α

V

λ̂
α

W

d(ραV α)+ τ
λ̂

α

S

λ̂
α

W

d(ρα Sα). (57)

The coefficient of dρα , in analogy to the LTE case (29), can be understood as the
off-equilibrium chemical potential and, using the closure eqs.(22), it reads

ν̄
α⋆ =− λ̂

α

kBλ̂
α

W

= 2W α log

[︄
ρα h̄π

1
2

√
4m∗W α

]︄
(58)

and

φ̂
α⋆

=−ν̄
α⋆+ εαz. (59)

Moreover, if we identify 1
kBλ̂

α

W
dSα

e with the heat, then the corresponding off-equilibrium

heat flux J⋆iα
h (up to first order in τ) is

Jiα⋆
h =

{︄
λ̂

α

kBλ̂
α

W

ρ
αV α +ρ

α Sα + τ
λ̂

α

V

λ̂
α

W

2ρα

m∗ W α + τ
λ̂

α

S

λ̂
α

W

ρ
α Fα

}︄
zi (60)

and, by using the closure relations (22), (23), (24), we get

Jiα⋆
h = {Jα

W − (ν̄α⋆+2W α
τ)Jα}zi. (61)

Using the off-equilibrium chemical potential (58) and eq.(59), we can rewrite eqs. (27),
(28) as

Jα = b11
∂ φ̂

α⋆

∂ z
+b12

∂W α

∂ z
(62)

Jα
W = b21

∂ φ̂
α⋆

∂ z
+b22

∂W α

∂ z
(63)
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therefore we shall be able to define the off-equilibrium Peltier coefficient. If ∇W α = 0,
then from eqs.(62), (63) we get

Jα
W =

b21

b11
Jα . (64)

If we insert this equation into (61), we obtain

Jiα⋆
h = Jα⋆

h zi, Jα⋆
h =

[︃
b21

b11
− (ν̄α⋆+2W α

τ)

]︃
Jα (65)

from which we can define the off-equilibrium Peltier coefficient

Π
α⋆ =

∂Jα⋆
h

∂Jα

⃓⃓⃓⃓
∇TL=0

=
b21

b11
− (ν̄α⋆+2W α

τ) . (66)

We notice that this coefficient reduces to (54) if τ = 0. Thus our Extended Thermody-
namic model is able to define an off-equilibrium Peltier coefficient, in a larger neighborhood
of LTE.

7. Conclusions

We have introduced an Extended hydrodynamic model to be coupled to the Schrödinger-
Poisson system, describing transport phenomena in SiNWs. This model is valid in a larger
neighborhood of LTE and it is free of any fitting parameters. When the electric field is small,
the system formed by the electrons and the lattice is in LTE and the model is able to capture
Thermoelectric effects with the main advantage that the transport coefficients are completely
determined. Moreover if the system is no more in LTE, taking advantage of Extended Gibbs
relations, one can define an off-equilibrium Peltier coefficient. The next step will be the
determination of these transport coefficients for realistic SiNWs structures, for which it
must take into account the inclusion of the main scattering mechanisms, finite confining
potentials, and atomistic calculations for the electronic structure. From the numerical point-
of-view the main difficulty is the solution of the Schrödinger-Poisson system (2),(3),(4) that
can be tackled according to the guideline in Muscato et al. 2018, 2019. These issues are
under current investigation and will be the subject of forthcoming articles.
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