THE EFFECT OF DOPING AND LASER IRRADIATION ON THE PHOTOCATALYTIC WATER SPLITTING OVER TiO, NANOPARTICLES

<u>R. Fiorenza^{a*}</u>, S. Scirè^a, G. Compagnini^a, L. D'Urso^a, M.E. Fragalà^a, S. Filice^b

^aDip. Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 Catania (Italy) <u>*rfiorenza@unict.it</u>

^bCNR-IMM, Ottava Strada 5, 95125Catania (Italy)

-6 April 2016

ROYAL SOCIETY OF CHEMISTRY

London, UK

INTRODUCTION

Photocatalysis with TiO₂ was applied successfully to several processes, including hydrogen production and decomposition of organic pollutants in air or in water¹.

• Recently, photocatalytic water splitting has attracted large attention because of its great potential for low-cost and clean hydrogen production².

EXPERIMENTAL

- TiO₂ (Degussa P25)-Mixed Oxides catalysts (TiO₂-CeO₂ and TiO₂-CuO) were prepared by wet impregnation. The slurry was stirred for 4 h, dried at 120°C and calcined at 350°C for 4 h in air. The deposition-precipitation with KOH was used for synthesizing Au and Ag (1 wt.%)/support catalysts using HAuCl₄ and $AgNO_3$ as precursors.
- Laser modified TiO₂ P25 sample was obtained starting by a colloidal solution of

Loading of noble metals on TiO₂, doping with another oxide or modification by irradiation are some strategies for decreasing the band-gap of TiO₂ and enhancing its photoactivity³.

• Here we report the effect of doping with CeO₂ or CuO and of laser modification in affecting the activity of TiO_2 towards the water splitting under UV or Vis irradiation.

• The role of different phases of TiO_2 and the presence of metal nanoparticles (Au or Ag), was also evaluated.

TiO_2 in water subjected to a laser irradiation with a fluence of 300 mJ/cm², under continuous stirring. The second harmonic (532 nm) radiation of a Nd:YAG pulsed laser system was used.

• Photocatalytic tests were carried out in a Pyrex reactor irradiated by a UV or Vis lamp. An inverted water-filled burette in a water-filled vessel was used to monitor the evolved H₂. Catalyst was placed inside the photoreactor, with 100 mL of deionized water under stirring. The suspension was purged with a nitrogen flow for 30 min before irradiation in order to remove dissolved air.

RESULTS

- Photoactivity data (Fig. 1A) pointed out that the use of different TiO₂ phases and the presence of Au or Ag nanoparticles only slightly affect the performance.
- The doping with CeO₂ and, at higher extent, CuO (Fig. 1B) has a moderately positive effect in the H_2 production rate.

• The photoactivity strongly increases by laser modification: up to three times under UV irradiation (Figs. 1A-B) and two times under VIS irradiation (Fig. 1C).

Fig. 1. Photocatalytic H₂ production: (A) Comparison under UV irradiation; (B) H₂ generation rate under UV irradiation over best catalysts; (C) Comparison under Vis irradation.

- The morphology and the structure of laser modified TiO₂ P25 was characterized by SEM and TEM (Figs. 2-3).
- The SEM imagine (Fig. 2) show two different groups of spherical particles that present a bimodal distribution centered at 25 and 200 nm.
- TEM analysis suggests the existence of amorphous phase due to the presence of defined contour and to the absence of internal order of the spherical particles (Fig. 3A).

 Another effect of laser irradiation is shown in Fig. 3B: after the laser process, crystals are more indented respect to the initial well-defined squared shape of the commercial product, as the crystals were evolving towards a nanorod structures. It is also evident an increasing of the porosity of TiO₂ nanoparticles that can be ascribed to the high pressure condition of the laser irradiation process.

Fig. 2 SEM Image of TiO₂ laser modified sample.

Tab. 1 XPS analysis of TiO₂ and TiO₂ laser sample.

Catalysts	State	Species	Binding Energy (eV)	Atomic (%)
TiO ₂ P25	Ti 2p _{3/2}	Ti ²⁺	455.7	0.8
		Ti ³⁺	457.3	6.0
		Ti ⁴⁺	458.2	93.2
TiO ₂ laser	Ti 2p _{3/2}	Ti ²⁺	455.7	1.3
		Ti ³⁺	457.1	8.6
		Ti ⁴⁺	458.3	90.1

Fig. 3. TEM images of TiO₂ laser modified sample: (A) Amorphous phase, (B) Formation of nanorods.

• The major presence of Ti³⁺ defects in the TiO₂ laser modified sample in comparison to bare TiO₂ was detected by XPS measurements (Tab. 1) and was related to the blue color of laser-treated sample.

REFERENCES

¹Hernandez-Alonso, M.D.; Fresno, F.; Suarez, S.; Coranado, J.M., *Energy Environ. Sci.* **2009**, 2, 1231-1257.

² Pei, Z.; Weng, S.; Liu, P. Appl. Catal. B: Environ. 2016, 180, 463-470.

³Fiorenza, R.; Bellardita, M.; Palmisano, L.; Sciré, S. J. Mol. Catal. A: Chem. 2016, 415, 56-64. ⁴ Chen, X.; Zhao, D.; Liu K.;, Wang C.; Liu, L.; Li, B; Zhang, Z.; Shen D. ACS Appl. Mater. Interfaces 2015, 7, 16070-16077.

CONCLUSIONS

- The TiO_o laser modified sample is the most active system both under UV and Vis irradiation.
- ✓ The doping with metal NPs or another oxide does not change significantly the surface structure and the chemico-physical properties of TiO_{2} , whereas the laser treatment leads to deep modifications in the TiO_{2} structure and morphology.
- \checkmark Major effects of laser irradiation are the formation of Ti³⁺ defects and the improvement of porosity (Fig.4).
- ✓ The enhancement of photocatalytic performance is related to the presence of Ti³⁺ and disorder on the surface of TiO₉ nanorods with formation of midgap states between the VB and the CB of TiO_{o}^{4} .