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Abstract

We introduce the R package ContaminatedMixt, conceived to disseminate the use of
mixtures of multivariate contaminated normal distributions as a tool for robust clustering
and classification under the common assumption of elliptically contoured groups. Thir-
teen variants of the model are also implemented to introduce parsimony. The expectation-
conditional maximization algorithm is adopted to obtain maximum likelihood parameter
estimates, and likelihood-based model selection criteria are used to select the model and
the number of groups. Parallel computation can be used on multicore PCs and com-
puter clusters, when several models have to be fitted. Differently from the more popular
mixtures of multivariate normal and ¢ distributions, this approach also allows for auto-
matic detection of mild outliers via the maximum a posteriori probabilities procedure. To
exemplify the use of the package, applications to artificial and real data are presented.

Keywords: mixture models, EM algorithm, contaminated normal distribution, outlier detec-
tion, robust clustering, robust estimates.

1. Introduction

Finite mixtures of distributions are commonly used in statistical modeling as a powerful device
for clustering and classification by often assuming that each mixture component represents a
cluster (or group or class) in the original data (see McLachlan and Basford 1988, Fraley and
Raftery 1998, Bohning 2000 and McNicholas 2016).

For continuous multivariate random variables, attention is commonly focused on mixtures
of multivariate normal distributions because of their computational and theoretical conve-
nience. However, real data are often “contaminated” by outliers, i.e., observations that do
not comply with the model assumed and affect the estimation of the component means and
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covariance matrices (see, e.g., Barnett and Lewis 1994, Becker and Gather 1999, Bock 2002,
and Gallegos and Ritter 2009). Outliers are “mild” (also referred to as bad points herein, in
analogy with Aitkin and Wilson 1980) when they can be modeled by means of more flexible
distributions, usually elliptically symmetric and endowed with heavy tails (Ritter 2015, p. 79).
These distributions offer the flexibility needed for achieving mild outlier robustness, whereas
the multivariate normal distribution, often used as the reference distribution for the good
observations, lacks sufficient fit; for a discussion about the concept of reference distribution,
see Davies and Gather (1993) and Hennig (2002). In this context, the multivariate ¢ distribu-
tion (see, e.g., Lange, Little, and Taylor 1989), the heavy-tailed versions of the multivariate
power exponential distribution (see, e.g., Gémez-Villegas, Gémez-Sanchez-Manzano, Main,
and Navarro 2011), and the multivariate leptokurtic-normal distribution (Bagnato, Punzo,
and Zoia 2017), represent possible alternatives. When used as mixture components, these
distributions respectively yield mixtures of multivariate ¢ distributions (McLachlan and Peel
1998 and Peel and McLachlan 2000), mixtures of multivariate power exponential distribu-
tions (Zhang and Liang 2010 and Dang, Browne, and McNicholas 2015), and mixtures of
multivariate leptokurtic-normal distributions (Bagnato et al. 2017). Although these methods
robustify the estimation of the component means and covariance matrices with respect to
mixtures of multivariate normal distributions, they do not allow for automatic detection of
bad points. To overcome this problem, Punzo and McNicholas (2016) introduce mixtures
of multivariate contaminated normal distributions. The multivariate contaminated normal
distribution, which dates back to the seminal work of Tukey (1960), is a further common
and simple elliptically symmetric generalization of the multivariate normal distribution hav-
ing heavier tails for the occurrence of bad points; it is a two-component normal mixture in
which one of the components, with a large prior probability, represents the good observations
(reference distribution), and the other, with a small prior probability, the same mean, and
an inflated covariance matrix, represents the bad observations (Aitkin and Wilson 1980). For
further recent uses of this distribution in model-based clustering, see Punzo, Blostein, and
McNicholas (2017); Punzo and McNicholas (2017), Punzo and Maruotti (2016), and Maruotti
and Punzo (2017).

In this paper we present the R (R Core Team 2018) package ContaminatedMixt (Punzo,
Mazza, and McNicholas 2018), which is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=ContaminatedMixt. The package al-
lows for model-based clustering and classification by means of a family, proposed by Punzo
and McNicholas (2016), of fourteen parsimonious variants of mixtures of multivariate contam-
inated normal distributions. Parsimony is attained by applying the eigen-decomposition of
the component scale matrices, in the fashion of Banfield and Raftery (1993) and Celeux and
Govaert (1995). Fitting is performed via the expectation-conditional maximization (ECM)
algorithm (Meng and Rubin 1993) and likelihood-based model selection criteria are adopted
to select both the number of mixture components and the parsimonious model.

Several CRAN packages are available supporting model-based clustering and classification via
mixtures of elliptically contoured distributions. A list of them may be found in the CRAN
Task View “Cluster Analysis & Finite Mixture Models” (Leisch and Griin 2018). One of
the most flexible packages for clustering via mixtures of multivariate normal distributions
is package mclust (Fraley and Raftery 2007 and Fraley, Raftery, Scrucca, Murphy, and Fop
2017); from version 5.0.0, it provides all of the fourteen parsimonious mixtures of multi-
variate normal distributions of Celeux and Govaert (1995), obtained via a slightly different
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normalization of the component eigenvalues matrices used by Banfield and Raftery (1993),
it implements an EM algorithm for model fitting, and it uses the Bayesian information cri-
terion (BIC, Schwarz 1978) to determine the number of components. Instead, the packages
Rmixmod (Lebret, Iovleff, Langrognet, Biernacki, Celeux, and Govaert 2015) and mixture
(Browne, ElSherbiny, and McNicholas 2018) fit the fourteen parsimonious models of Celeux
and Govaert (1995). Mixtures of multivariate normal distributions, with alternative parsimo-
nious covariance structures, are also implemented by the packages bgmm (Biecek, Szczurek,
Vingron, and Tiuryn 2012) and pgmm (McNicholas, ElSherbiny, McDaid, and Murphy 2018).
The teigen package (Andrews, Wickins, Boers, and McNicholas 2018) allows to fit a family
of fourteen parsimonious mixtures of multivariate ¢ distributions (with eigen-decomposed
component scale matrices as in Celeux and Govaert 1995) from a clustering or classification
point of view (see Andrews, McNicholas, and Subedi 2011 and Andrews and McNicholas
2012 for details). Finally, although not available on CRAN, the MPE package, available
at http://onlinelibrary.wiley.com/doi/10.1111/biom.12351/suppinfo, allows to fit a
family, introduced by Dang et al. (2015), of eight parsimonious variants of mixtures of mul-
tivariate power exponential distributions (with eigen-decomposed component scale matrices
as in Celeux and Govaert 1995).

The paper is organized as follows. Section 2 retraces the models implemented in the Contami-
natedMixt package, Section 3 outlines the ECM algorithm for maximum likelihood parameters
estimation, and Section 4 illustrates some further computational /practical aspects. The rele-
vance of the package is shown, via real and artificial data sets, in Section 5, and conclusions
are finally given in Section 6.

2. Methodology

2.1. The general model

For a random vector X, taking values in RP, a finite mixture of multivariate contaminated
normal distributions (Punzo and McNicholas 2016) can be written as

G
p(z;v) = Z Tg {Ofgﬁf) (:1:; Ky, 2g> +(1—ag) ¢ (CBQ l‘/gvngzg)} ) (1)
g=1

where, for the gth component, 7, is its mixing proportion, with 7, > 0 and Zngl Ty =
1, ayg € (0,1) is the proportion of good observations, and 7, > 1 denotes the degree of
contamination. In (1), @ contains all of the parameters of the mixture while ¢ (x; u,X)
represents the distribution of a p-variate normal random vector with mean g and covariance
matrix 3. As a special case, when ay — 17 and n, — 17, for each g = 1,..., G, we obtain
classical mixtures of multivariate normal distributions.

2.2. Parsimonious variants of the general model

Because there are p (p + 1) /2 free parameters for each component scale matrix 3, it is usually
necessary to introduce parsimony in model (1) in order to avoid situations where the number
of parameters is greater than, or however close to, the number of observations. Following
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Family Model Volume  Shape Orientation X, # of free parameters in 3,
Spherical EII Equal Spherical - by 1
VII Variable Spherical - Agl G
Diagonal EEI Equal Equal Axis-Align  M\A P
VEI Variable Equal Axis-Align =~ A\ A G+p-—1
EVI Equal Variable — Axis-Align  AA, 1+G(p-1)
VVI Variable Variable Axis-Align = AjA, Gp
General EEE  Equal Equal Equal ACATT pp+1)/2
VEE  Variable Equal Equal MTATT  G4p—1+pp—1)/2
EVE  Equal Variable  Equal ATA,TT 1+Gp—-1)+pp-1)/2
EEV  Equal Equal Variable )\1"gA1"gT p+Gp(p—1)/2
VVE  Variable Variable Equal ANTA,TT  Gp+p(p—1)/2

VEV  Variable Equal Variable NI AT, G4+p—1+Gp(p—1)/2
EVV ~ Equal Variable  Variable )\I‘gAgl";]r 1+Gp-1)+Gp(p—1)/2
VVV  Variable Variable Variable )\gI‘gAgl"gT Gp(p+1)/2

Table 1:  Nomenclature, covariance structure, and number of free parameters in X, for
each member of the family of parsimonious mixtures of multivariate contaminated normal
distributions.

Celeux and Govaert (1995), Punzo and McNicholas (2016) consider the eigen-decomposition
Xy = A\TyA,T, (2)

where A\, = \Eg|1/p, A, is the scaled (|A4| = 1) diagonal matrix of the eigenvalues of 3, sorted
in decreasing order, and I'y is a p X p orthogonal matrix whose columns are the normalized
eigenvectors of X/, ordered according to their eigenvalues. Each element in the right-hand
side of (2) has a different geometric interpretation: Ay determines the size (or volume) of the
cluster, A, its shape, and I'y its orientation.

Following Banfield and Raftery (1993), Celeux and Govaert (1995), and Dang, Punzo, Mc-
Nicholas, Ingrassia, and Browne (2017), among others, Punzo and McNicholas (2016) impose
constraints on the three components of (2) resulting in a family of fourteen parsimonious
mixtures of multivariate contaminated normal distributions (Table 1). Sufficient conditions
for the identifiability of the models in this family are given in Punzo and McNicholas (2016).

2.3. Modeling framework: Model-based classification

Model-based classification, also known as semi-supervised classification (Chapelle, Scholkopf,
and Zien 2010), is receiving renewed attention (see, e.g., Dean, Murphy, and Downey 2006,
McNicholas 2010, Andrews et al. 2011, Browne and McNicholas 2012, and Subedi, Punzo,
Ingrassia, and McNicholas 2013, 2015). However, despite being a more general framework, it
remains the “poor cousin” of model-based clustering within the literature.

Consider the random sample {x;};; from model (1). Without loss of generality, suppose
that the first m observations are known to belong to one of G groups; these are the so-called
labeled observations. Let z; be the G-dimensional component-label vector in which the gth
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element is z;; = 1 if «; belongs to component g and z;, = 0 otherwise, g = 1,...,G. If the ith
observation is labeled, denote with z; = (Z;1,. .., Zig) its component-membership indicator.
In model-based classification, we use all n observations to estimate the parameters of the
mixture; the fitted model is adopted to classify each of the n — m unlabeled observations
through the corresponding maximum a posteriori (MAP) probability. Note that

MAP (z;4) = {1 if maxy{z;n} occurs in component g,

0 otherwise.

Using this notation, the model-based classification likelihood can be written as

m G ~ n
L () = H1 H1 {79 [0g9 (@is g Zg) + (1= ag) & (@i yeme Dy )|} 1] P@ae).
i=1g= 1=m-+

We obtain the model-based clustering scenario as a special case when m = 0 (see, e.g., Punzo
2014).

3. Maximum likelihood estimation

3.1. An ECM algorithm

To fit the models in Table 1, Punzo and McNicholas (2016) illustrate the expectation-
conditional maximization (ECM) algorithm of Meng and Rubin (1993). The ECM algorithm
is a variant of the classical expectation-maximization (EM) algorithm (Dempster, Laird, and
Rubin 1977), which is a natural approach for maximum likelihood estimation when data are
incomplete. In our case, there are two sources of missing data: one arises from the fact that
we do not know the component labels {z;};", ., and the other arises from the fact that
we do not know whether an observation in group g is good or bad. To denote this second
source of missing data, we use {v;};",, with v; = (vi1,...,viq), where v;y = 1 if observa-
tion 7 in group g is good and v;y = 0 if observation ¢ in group g is bad. By working on the
complete-data likelihood

G Vig (1-vig) Zig
L ("»b) = 1_[1 ]T[l {779 {O‘g(b (mi; Hg, Egﬂ {(1 - ag) ] (:13,'; Ky ngzgﬂ }
i=1g=

Zig

n e vig (1—vig)
o H H {Wg [agqb (iBi; Iy, Zg)} [(1 —og) ¢ (:Bi; Mg, 77929)} } (3)

i=m+1g=1

the ECM algorithm iterates between three steps — an E-step and two CM-steps — until conver-
gence (which is evaluated via the Aitken acceleration criterion; see Aitken 1926 and Lindsay
1995). The only difference from the EM algorithm is that each M-step is replaced by two sim-

G
pler CM-steps. They arise from the partition ¥ = {1, 5}, where ¢, = {ﬂ'g, Qg, P, Zg} )
g:

and 1y = {779}5(;;:1' In particular, for the most general model VVV, the (r 4 1)th iteration
of the ECM algorithm can be summarized/simplified as follows (see Punzo and McNicholas
2016 for details on the model-based clustering paradigm):
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E-step: The values of z;, and v;4 in (3) are respectively replaced by

O A G A O e Gt O Kl G e )

N P (iBz‘; ¢(T)>

and

o af,r)gé (m“ uér), Egr))
W a6 (e 50) & (1= a) 0 (w5

CM-step 1: With fixed ¢y = zbgr), the parameters in 1, are updated as

Sg 779T i=m+1 Mg
and )
r+1 r
g
where
Z%JF Z zzg’
i=m-+1
(r) n (r)
~ 1 KA T T 1 /UZ
)= F g+t |+ X A (o —at )
i=1 Ng i=m+1 Mg
and

CM-step 2: With fixed ¢, = (TH) , the parameters in 1, are updated as

b
né”'l) = max {1.001, g} )
bag

where

ag—z,zlg< vig)—f—Azn: i(;) (1—115;))
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and
r+1). 7"+1 r) r+1). y(r+1
g*Z*’*’w( ig)5<wull«é ; )—l— Z (1—v )5(@-,#5} ),Eé )),
i=m-+1
with § (wl, M§r+l)’ Zé’“‘*‘”) denoting the squared Mahalanobis distance between x; and
ug’"“) (with covariance matrix E(TH))

As it is well-documented in Punzo and McNicholas (2016), the weights

(r)
1 —
vg) + (:);g
Mg

in (5) and (6) reduce the impact of bad points in the estimation of the component means g,
and the component scale matrices 3, thereby providing robust estimates of these parameters.
For a discussion on down-weighting for the multivariate contaminated normal distribution,
see also Little (1988).

The ECM algorithm for the other parsimonious models changes only with respect to the
way the terms of the decomposition of X, are obtained in the first CM-step. In particular,
these updates are analogous to those given by Celeux and Govaert (1995) for their normal
parsimonious clustering (GPC) models (corresponding to mixtures of multivariate normal
distributions with eigen-decomposed covariance matrices). The only difference is that, on the
(r 4+ 1)th iteration of the algorithm, Wg”rl) is used instead of the classical scattering matrix

i%g (wl _ N§r+1)) (a:z _ r+1)) + Z ( (r+1)) ( ug«ﬂ))T.
i=1

4. Further aspects

4.1. Initialization

Many initialization strategies have been proposed for the EM algorithm applied to mixture
models (see, e.g., Biernacki, Celeux, and Govaert 2003, Karlis and Xekalaki 2003, and Bagnato
and Punzo 2013). The ContaminatedMixt package implements the following initializations,
all based on providing the initial quantities z( ), 'U(O), and 175(,0) = 1.001, s = 1,...,n and

(2

g=1,...,G, to the first CM-step of the ECM algorithm.

"random.post": Each z( ) is substituted by a single observation randomly generated — via
the rmultinom() function of the stats package — from a multinomial distribution with
probabilities (1/G,...,1/G). The values UZ-(;)), i=1,....,nand g = 1,...,G, are, by
default, fixed to one, but they can be also provided by the user.

(0)

"random.clas": The G values in z;’ are randomly generated by a uniform distribution —
via the runif () function of the stats package — and then normalized in order to sum
to 1. The values v(g), i=1,...,nand g =1,...,G, are, by default, fixed to one, but
they can be also provided by the user.



8 ContaminatedMixt: Mixtures of Contaminated Normal Distributions in R

(0)

"kmeans": Hard values for z; 7,7 = 1,...,n, are provided by a preliminary run of the k-means
algorithm, as implemented by the kmeans () function of the stats package.

"mixt": For each parsimonious model, the n values zgo) are substituted with the posterior

probabilities arising from the fitting of the corresponding parsimonious mixture of mul-
tivariate normal distributions; the latter is estimated by the gpcm() function of the
(0)

mixture package. The values v; ", i=1,...,nand g=1,...,G, are fixed to one.

(0)

%

(0)

"manual": The (soft or hard) values of z;’, as well as the values of ’UZ-O

user.

, are provided by the

4.2. Automatic detection of bad points

For a mixture of multivariate contaminated normal distributions, the classification of an
observation @; means:

Step 1. Determine its cluster membership.

Step 2. Establish if it is either a good or a bad observation in that cluster.

Let Z; and ©; denote, respectively, the expected values of z; and v; arising from the ECM
algorithm, i.e., Z;, is the value of zg) at convergence and ;4 is the value of UZ-(T) at convergence.
To determine the cluster membership of x;, we use the MAP classification, i.e., MAP (Z;).
We then consider v;;,, where h is selected such that MAP (Z;;) = 1, while x; is considered
good if Uy, > 0.5 and «; is considered bad otherwise. The resulting information can be used
to eliminate the bad points, if such an outcome is desired (Berkane and Bentler 1988). The
remaining data may then be treated as effectively being distributed according to a mixture

of multivariate normal distributions, and the clustering results can be reported as usual.

4.3. Constraints for detection of bad points

It may be required that in the gth cluster, g = 1,..., G, the proportion of good data is at
least equal to a pre-determined value ay. In this case, it is easy to show that the update for
Qg is

m n
o = max o, 5 [ Yomgel) + 3 Al
Ng i=1 i=m-+1

Note that the ContaminatedMixt package also allows to fix ay a priori. This is somewhat
analogous to the trimmed clustering approach implemented by the tclust package (Fritz,
Garcia-Escudero, and Mayo-Iscar 2012), where one must specify the proportion of outliers
(the so-called trimming proportion) in advance. However, pre-specifying the proportion of
bad points a priori may not be realistic in many practical scenarios.

4.4. Model selection criteria

Thus far, the number of components G and the covariance structure (cf. Table 1) have been
treated as a priori fixed. However, in most practical applications, they are unknown, so it is
common practice to select them by evaluating a convenient (likelihood-based) model selection
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Criterion Definition Reference

AIC 21 (?p) —2g Akaike (1973)

AICs 2 (17;) ~3q Bozdogan (1994)

AICc AIC — 273(_q+_1)1 Hurvich and Tsai (1989)

AICu AICc —nln Z—Z—l McQuarrie, Shumway, and Tsai (1997)

AWE 21 (fb) —2q (g +1In n) Banfield and Raftery (1993)

BIC 21 (17;) —g¢lnn Schwarz (1978)

CAIC 21 (;ﬁ) —q(l1+1Inn) Bozdogan (1987)

ICL BIC +2 z”: f: MAP (Z;4)InZ;;, Biernacki, Celeux, and Govaert (2000)
i=m+1g=1

Table 2: Definition and key reference for the implemented model selection criteria.

criterion over a reasonable range of possible options (for the alternative use of likelihood-ratio
tests to select either the parsimonious model or the number of components for a normal mix-
ture, see Punzo, Browne, and McNicholas 2016). The ContaminatedMixt package supports
the information criteria listed in Table 2, where [ (1?;) is the observed-data log-likelihood and
q is the number of free parameters.

Specifically for the model-based classification setting, the package provides three further cri-
teria: (k-fold) cross-validation (CV), Bayesian entropy criterion (BEC; Bouchard and Celeux
2006) and AIC.ong (Vandewalle, Biernacki, Celeux, and Govaert 2013); details about the CV
criterion can be found in Lebret et al. (2015).

5. Package description and illustrative example

In this section we provide a description of the main capabilities of the ContaminatedMixt
package along with some illustrations.

5.1. Package description

The R package ContaminatedMixt is developed in an object-oriented design, using the stan-
dard S3 paradigm. For the sake of speed, most parts of the underlying code have been written
using the C programming language. Parallel computation can be used on multicore PCs and
computer clusters, when several models have to be fitted. Its main function, CNmixt (), fits
the model(s) in Table 1 (if required, the function also fits the corresponding parsimonious
mixtures of normal distributions) and returns a ‘ContaminatedMixt’ class object; the ar-
guments of this function, along with their description, are listed in Table 3. Four further
functions are available in the package, and they are detailed in Table 4. Finally, the package
contains several methods that allow for data extraction and visualization.

Extractors for ‘ContaminatedMixt’ class objects are illustrated in Table 5. When several
models have been fitted, extractor functions consider the best model according to the in-
formation criterion in criterion (refer to Table 2), within the subset of estimated models



10 ContaminatedMixt: Mixtures of Contaminated Normal Distributions in R

Arguments Description

X Matrix of dimension n x p.

G Vector containing the numbers of groups to be tried.

contamination  Optional Boolean indicating if the model(s) to be fitted have to be
contaminated or not. If NULL, then both types of models are fitted.

model Vector indicating the models ("EII", "VII", "EEI", "VEI", "EVI",
"yvI", "EEE", "VEE", "EVE", "EEV", "VVE", "VEV", "EVV", "VVV") to
be used. If model = NULL (default), then all 14 models are fitted.

initialization Initialization strategy for the ECM algorithm. Possible values are
"random.post", "random.clas", "kmeans", "mixt", and "manual"
(see Section 4.1 for details). Default is initialization = "mixt".

alphafix Vector, of dimension GG, with fixed a priori values for ay, ..., aq. If the
length of alphafix is different from G, its first element is replicated G
times. If alphafix = NULL (default), then a,...,aq are estimated.

alphamin Vector with values of,...,af (see Section 4.3). If the length of
alphamin is different from G, its first element is replicated G times. If
alphamin = NULL, then «j,...,aq are estimated without constraints,
as in (4). Default value is 0.5.

seed Seed for the random number generator, when random initializations are
used; if NULL (default), current seed is not changed.

start.z n X G matrix with values ZZ(;)), when initialization = "manual".

start.v n x G matrix with values vi(g). If start.v = NULL (default), then Ui(g) =
1,i=1,...,nandg=1,...,G.

start When initialization = "mixt", the initialization used for the
gpem() function of the mixture package (see Browne et al. 2018, for
details).

label Vector of n integers. It indicates the membership group of each ob-
servation. Use O when membership is not known. Use NULL when
membership is unknown for all observations.

AICcond When TRUE, AIC.nq and BEC are computed (see Section 4.4).

iter.max Maximum number of iterations in the ECM algorithm. Default is 1000.

threshold Threshold for Aitken’s acceleration procedure. Default is 1.0e-03.

eps Smallest value for the eigenvalues of 31,...,Xq. It is used to prevent
the estimation algorithms to be affected by local maxima or degener-
acy of the likelihood (Hathaway 1986 and Ingrassia 2004). Default is
1e-100.

parallel When TRUE, the package parallel is used for parallel computation. The
number of cores to use may be set with the global option cl.cores;
default value is detected using detectCores().

k Number of (approximately) equal-sized subsamples used in the (k-fold)

cross-validation.

Table 3: List of arguments for the function CNmixt ().
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Functions Description

dcN() Density of observations based on the multivariate contaminated normal
distribution.

rCN(Q) Generates random deviates from the multivariate contaminated normal dis-
tribution.

CNmixtCV()  List with the CV error rate estimated for each fitted model (see Section 4.4).

CNpredict() Cluster prediction for observations based on a uncontami-
nated/contaminated normal mixture model whose parameters are
specified by the user.

Table 4: Functions included in the ContaminatedMixt package in addition to CNmixt ().

Extractors Description
getBestModel() A ‘ContaminatedMixt’ class object containing the best model only.

getPosterior() Estimated posterior probabilities Z;y, ¢ = 1,...,nand g =1,...,G.

getSize() Estimated groups sizes (from the hard classification induced by the
MAP operator).

getCluster() Classification vector.

getDetection() Matrix with two columns: the first gives the MAP group memberships
whereas the second specifies if the observations are either good or bad
(see Section 4.2).

getPar () Estimated parameters (i.e., ).

getIC() Values for the considered criteria in criteria.

getCV () Values for the CV criterion.

whichBest () Position of the model, in the ‘ContaminatedMixt’ class object, for the

criteria specified in criteria.
whichBestCV() Position of the best model, in the ‘ContaminatedMixt’ class object,
according to the CV criterion.

Table 5: Extractors for ‘ContaminatedMixt’ class objects.

having a number of components among those in G, a parsimonious model among those in
model, and being contaminated or not as specified in contamination. Note that getIC()
and whichBest () have an argument criteria, in substitution to criterion, which allows
to select more than one criterion.

The package also includes some methods for ‘ContaminatedMixt’ class objects; they are:
plot () and pairs(), to display clustering/classification results in terms of scatter plots (in
the cases p = 2 and p > 2, respectively), summary (), to visualize the estimated parameters
and further inferential/clustering details, print (), to print at video the selected model(s) ac-
cording to the information criteria in Table 2, agree () to evaluate the agreement of a given
partition with respect to the partition arising from a fitted model, and predict () which pro-
vides the cluster prediction of observations based on a fitted uncontaminated/contaminated
normal mixture model which is selected according to getBestModel(). As usual, further
details can be found in the functions’ help pages.

11
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Figure 1: Scatterplot of the artificial data of Section 5.2. Bad points are represented by
green bullets.

5.2. Artificial data

To illustrate the use of the package, we begin with an artificial data set from a mixture of
G = 2 bivariate normal distributions, of equal size, with an EEI structure for the component
covariance matrices. Ten bad points are also added from a uniform distribution over the range
—20 to 20 on each variable. The data are generated by the following commands.

R> library("ContaminatedMixt")

R> library("mnormt")

R>p <=2

R> set.seed(16)

R> n1 <- n2 <- 200

R> X1 <- rmnorm(n = nl, mean = rep(2, p), varcov = diag(c(5, 0.5)))

R> X2 <- rmnorm(n = n2, mean = rep(-2, p), varcov = diag(c(5, 0.5)))

R> bad <- matrix(runif(n = 20, min = -20, max = 20), nrow = 10, ncol = 2)
R> X <- rbind(X1, X2, bad)

The scatterplot of these data, in Figure 1, is obtained via the following commands.

R> group <- rep(c(1, 2, 3), times = c(nl, n2, 10))
R> plot (X, col = group, pch = c(3, 4, 16) [group], asp = 1,
+ xlab = expression(X[1]), ylab = expression(X[2]))

Model-based clustering

We start with a model-based clustering analysis by considering both contaminated and uncon-
taminated normal components, all the fourteen models in Table 1, and a number G of clusters
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ranging from 1 to 3, resulting in 84 different models. The following command performs the
fitting of the models and returns an object of class ‘ContaminatedMixt’.

R> options(cl.cores = 4)
R> resl <- CNmixt(X, G = 1:3, parallel = TRUE, seed = 2)

With G = 1, some models are equivalent, so only one model from each set of
equivalent models will be run.

Using 4 cores

Best model according to AIC, AIC3, AICc, AICu is uncontaminated, with G = 3
group(s), and parsimonious structure VVI

Best model according to BIC, CAIC, AWE, ICL is contaminated, with G = 2
group(s), and parsimonious structure EEI

Because several models have to be fitted, parallel computation is convenient; it is set with
the argument parallel = TRUE. The number of CPU cores used is printed at video and it
is followed, after a few seconds, by a description of the best model according to each of the
8 criteria in Table 2. Here, we can note that some of the considered criteria, namely BIC,
CAIC, AWE, and ICL agree in suggesting a contaminated model with G = 2 clusters and the
true but unknown parsimonious structure EEI. To find out more about the model selected
by the BIC, which is the most commonly used criterion in this context, we run the following
command.

R> summary(res1i)

log.likelihood n par BIC
-1699.2 410 11 -3464.7

Clustering table:
1 2
205 205

Prior: = 0.50032, = 0.49968
Model: Contaminated EEI (diagonal, equal volume and shape) with 2 components

Variables

Means:

group 1 group 2
1 2.0953 -1.9185

X.
X.2 2.0732 -1.9338
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Variance-covariance matrices:
Component 1
X.1 X.2
X.1 5.0545 0.0000
X.2 0.0000 0.4356
Component 2
X.1 X.2
X.1 5.0545 0.0000
X.2 0.0000 0.4356

Alpha
[1] 0.97135 0.97326

Eta
[1] 113.11 103.84

As we can note from the estimates 7; = 113.11 and 72 = 103.84, there is a large enough
degree of contamination in the two clusters, which together contribute to capture the added
bad points (see also the estimates a; = 0.97135 and as = 0.97326). In order to evaluate the
agreement of the obtained clustering with respect to the true one, we can adopt the agree ()
function, included in the package, in the following way.

R> agree(resl, givgroup = group)

groups
givgroup 1 2 bad points
1200 O 0
2 0 200 0
3 0 ©0 10

The obtained classification is totally in agreement with the true one. A plot of the clustering
results for the best BIC model is displayed with the following command (Figure 2).

R> plot(resl, contours = TRUE, asp = 1, xlab = expression(X[1]),
+ ylab = expression(X[2]))

Isodensities are also displayed (contours = TRUE). Clustering results in Figure 2 look anal-
ogous to those in Figure 1.

Model-based classification

On the same data, we can also suppose to know the cluster membership of some of the
available observations and evaluate the classification of the remaining ones. Via the following
commands we first randomly select twenty good observations to be considered as labeled, and
then we fit the EEI model (model = "EEI") with G = 2 clusters, in both its uncontaminated
and contaminated version, assuming the groups membership of these observations as known
in advance.
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Figure 2: Clustering results from the model selected by the BIC on the artificial data of
Section 5.2. Isodensities of the model are superimposed on the plot.

R> indlab <- sample(1:400, 20)

R> lab <- numeric(nrow(X))

R> lab[indlab] <- group[indlab]

R> res2 <- CNmixt(X, G = 2, model = "EEI", label = lab, AICcond = TRUE,
+ parallel = TRUE, seed = 2)

Using 4 cores

Best model according to AIC, BIC, AIC3, AICc, AICu, CAIC, AWE, ICL, BEC,
AICcond is contaminated, with G = 2 group(s), and parsimonious structure EEI

The position of the labeled observations is contained in the object indlab, while their group
membership is given in the object 1ab. Being a model-based classification analysis, we can
add the AIConq (see Section 4.4) among the criteria considered to select the best model; this
is done via the argument AICcond = TRUE, which implicitly activates the BEC too. From
the results printed at video, we can note how all the considered criteria are in agreement
in suggesting the uncontaminated version of the fitted model. To find out more about the
selected model, we run the following command.

R> summary(res2, criterion = "AICcond")

log.likelihood n par AICcond
-1699.3 410 11 -0.049517

15
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Clustering table:
1 2
205 205

Prior: = 0.50025, = 0.49975
Model: Contaminated EEI (diagonal, equal volume and shape) with 2 components

Variables
Means:

group 1 group 2
X.1 2.0955 -1.9185
X.2 2.0734 -1.9336

Variance-covariance matrices:
Component 1
X.1 X.2
X.1 5.0548 0.00000
X.2 0.0000 0.43557
Component 2
X.1 X.2
X.1 5.0548 0.00000
X.2 0.0000 0.43557

Alpha
[1] 0.97148 0.97325

Eta
[1] 113.39 104.05

The agreement between the obtained classification and the true classification of the unlabeled
observations only can be evaluated via the following command.

R> agree(res2, givgroup = group)

groups
givgroup 1 2 bad points
1190 O 0
2 0190 0
3 0 0 10

Naturally, the comparison is automatically focused on the unlabeled observations only. As
we can see, the classification results are optimal in this case too.
5.3. The wine dataset

This second tutorial uses the wine data set included in the ContaminatedMixt package
and available at the UCI Machine Learning Repository http://archive.ics.uci.edu/ml/
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Figure 3: Wine data: Scatterplot matrix with clustering induced by the three cultivars.

datasets/Wine. These data are the results of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars (Barbera, Barolo, and Grignolino).
The analysis determined the quantities of p = 13 constituents (continuous variables) found in
each of the three types of wine. Data are loaded with:

R> data("wine", package = "ContaminatedMixt")

This command loads a data frame with the first column being a factor indicating the type
of wine and the others containing the measurements about the 13 constituents. The plot of
these data, displayed in Figure 3, is obtained by:

R> group <- wine[, 1]
R> pairs(wine[, -1], cex = 0.6, pch = c(1, 2, 3)[group],
+ col = c(2, 3, 4)[group], gap = 0, cex.labels = 0.6)

17
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Figure 4: Wine data: Classification results from the model selected by BIC and ICL. Bad
points are represented by black bullets.

The following command fits all the fourteen models, in their contaminated and uncontami-
nated version (contamination = NULL), for G € {1,2, 3,4}, for a total of 112 models.

R> options(cl.cores = 12)
R> res3 <- CNmixt(wine[, -1], contamination = NULL, G = 1:4,
+ initialization = "random.post", seed = 138, parallel = TRUE)

With G = 1, some models are equivalent, so only one model from each set of
equivalent models will be run.

Using 12 cores

Best model according to AIC is contaminated, with G = 3 group(s), and
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parsimonious structure EVV

Best model according to BIC, AIC3, CAIC, ICL is contaminated, with G = 3
group(s), and parsimonious structure VVE

Best model according to AWE is contaminated, with G = 3 group(s), and
parsimonious structure EEI

Best model according to AICc, AICu is contaminated, with G = 3 group(s), and
parsimonious structure EVI

In this case, a random initialization of the posterior probabilities is used (initialization
= "random.post") with a pre-specified seed of random generation (seed = 138). The best
model, for the most commonly used criteria BIC and ICL, is the VVE contaminated model
with G = 3 clusters. The classification performance of this model can be seen via the following
command.

R> agree(res3, givgroup = group)

groups
givgroup 1 2 3 bad points
Barbera 47 0 O 1
Barolo 057 O 2
Grignolino 0 0 61 10

As we can note, there are no misclassified wines; however, 13 wines are recognized as bad, 10
of which arise from the Grignolino cultivar. The graphical representation of the classification
from the selected model can be obtained via the following command (see Figure 4).

R> pairs(res3, cex = 0.6, gap = 0, cex.labels = 0.6)

6. Conclusions

In this paper, we have introduced ContaminatedMixt, a package for the R software environ-
ment, specifically conceived for fitting and disseminating parsimonious mixtures of multivari-
ate contaminated normal distributions. Although these models have been originally proposed
for clustering applications (Punzo and McNicholas 2016), their use has been here extended
to model-based classification, where information about the group membership of some of the
observations is available. The package is also meant to be a user-friendly tool for an au-
tomatic detection of mild outliers (also referred to as bad points herein). Computation can
take advantage of parallelization on multicore PCs and computer clusters, when a comparison
among different models is needed. This is handy when, as it is often the case in practical
applications, the number of clusters and/or the covariance structure of the model is not a
priori known. We believe our package may be a practical tool supporting academics and
practitioners who are involved in robust cluster/classification analysis applications.
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