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a b s t r a c t

This paper presents an approach for generating class-specific image segmentation. We introduce two
novel features that use the quantized data of the Discrete Cosine Transform (DCT) in a Semantic Texton
Forest based framework (STF), by combining together colour and texture information for semantic
segmentation purpose. The combination of multiple features in a segmentation system is not a
straightforward process. The proposed system is designed to exploit complementary features in a
computationally efficient manner. Our DCT based features describe complex textures represented in the
frequency domain and not just simple textures obtained using differences between intensity of pixels as
in the classic STF approach. Differently than existing methods (e.g., filter bank) just a limited amount of
resources is required. The proposed method has been tested on two popular databases: CamVid and
MSRC-v2. Comparison with respect to recent state-of-the-art methods shows improvement in terms of
semantic segmentation accuracy.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction and motivations

Nowadays a wide range of applications including medical,
robotics and automotive, require the ability to automatically
understand the real world. Examples of these applications are a
smart cars able to recognize and eventually help a careless driver,
to detect a pedestrian crossing the street. Another example is a
smart system that during a surgery operation is able to drive the
surgeon on the localization of the tumour area and steer him in
the removal process of that area. Last but not least a surveillance
system that can analyze and recognize automatically what is going
in the world from a recorded video. Electronic devices with the
ability to understand the real world from images are called intel-
ligent systems with semantic segmentation. The semantic seg-
mentation, can be thought as an extension of the popular scene
classification problem where the entity to classify is not anymore
the whole image but single group of pixels [1]. It aims at pixel-
wise classification of images according to semantically meaningful
regions (e.g., objects). A precise automated image segmentation is
still a challenging and an open problem. Among others, local
structures, shape, colour and texture are the common features
ber@surrey.ac.uk (M. Bober),
ra@st.com (M. Guarnera),
deployed in the semantic segmentation task. Colour or gray level
information is essential core features used to segment images into
regions [2,3]. An efficient and computationally light descriptor to
build on colour features is the colour histogram. The histogram
ignores the spatial organization of the pixels, which is generally an
advantage as it supports rotation and scale invariance. When
spatial organization is required a second order statistics can be
used. An example is image correlograms [4] that describes the
correlation of the image colours as a function of their spatial dis-
tance. Local structures (i.e., edges, corners, and T-Junctions) are
also useful features that are detected by differential operators
commonly applied to the luminance information. The shape is one
of the most important characteristic of an object and allows us to
discriminate different objects. Finally texture is a visual cue that
describes the luminosity fluctuations in the image, which let us
interpret a surface as a whole part. Textures can be characterized
using properties such as regularity, coarseness, contrast and
directionality and contain also important information about the
structural arrangement of the surface. It also describes the rela-
tionship of the surface to the surrounding environment. One
immediate application of image texture is the recognition of image
regions using texture properties. Texture features can be extracted
by using various methods. Gray-level occurrence matrices
(GLCMs) [5], Gabor Filter [6], and Local Binary Pattern (LBP) [7] are
examples of popular methods to extract texture features. Other

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2015.10.021
http://dx.doi.org/10.1016/j.patcog.2015.10.021
http://dx.doi.org/10.1016/j.patcog.2015.10.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2015.10.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2015.10.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2015.10.021&domain=pdf
mailto:ravi@dmi.unict.it
mailto:m.bober@surrey.ac.uk
mailto:gfarinella@dmi.unict.it
mailto:mirko.guarnera@st.com
mailto:battiato@dmi.unict.it
http://dx.doi.org/10.1016/j.patcog.2015.10.021


D. Ravì et al. / Pattern Recognition 52 (2016) 260–273 261
methods to obtain texture features are the fractals representation
[8] and Textons [9].

The key step to obtain a reliable semantic segmentation system
is the selection and design of robust and efficient features that are
capable of distinguishing the predefined pixels' classes, such as
grass, car, and people. The following criteria should be taken into
account while considering the design of a system and the related
features extraction method:

� Similar low-level features response can represent different
objects as part of objects. Each single feature cannot be hence
adequate for segmenting, in a discriminative way, the object
that they belong to. A spatial arrangement of low-level features
increases the object discrimination.

� A semantic segmentation approach cannot be generic because is
strongly related to the involved application both in terms of
requirements and input data types. Some examples of different
domains include the segmentation of images obtained from
fluorescence microscope, video surveillance cameras and photo
albums. Another important parameter that is application
dependent is for example the detail coarseness of required
segmentation.

� The information needed for the labelling of a given pixel may
come from very distant pixels. The category of a pixel may
depend on relatively short-range information (e.g., the presence
of a human face generally indicates the presence of a human
body nearby), as well as on very long-range dependencies [10].

� The hardware miniaturization has reached impressive levels of
performance stimulating the deployment of new devices such
as smart-phones and tablets. These devices, though powerful,
do not have yet the performance of a typical desktop computer.
These devices require algorithms that perform on board com-
plex vision tasks including the semantic segmentation. For
these reasons, the segmentation algorithms and related features
should be designed to ensure good performance for computa-
tionally limited devices [11].

The first contribution of this paper is the design of new texture
features pipeline, which combine colour and texture clues in more
efficient manner with respect to other methods in literature (e.g.,
convolutional network). Secondly, we propose texture features
based on DCT coefficients selected through a greedy fashion
approach and suitably quantized. These DCT features have been
exploited in [12] and successfully applied for the scene classifica-
tion task making use of their capability to describe complex tex-
tures in the frequency domain maintaining a low complexity.
Other approaches usually compute similar features using bank of
filter responses that drastically increases the execution time. As in
[12] our texture information is extracted using the DCT module
that is usually integrated within the digital signal encoder (JPEG or
MPEG based). The proposed features are then used to feed a
Semantic Texton Forest [13] that has been showed to be a valid
baseline approach for the semantic segmentation task.

The rest of the paper is organized as follows: Section 2 dis-
cusses the state-of-the-art approaches, whereas Section 3
describes the random forest algorithm and how to add the novel
features in the STF system. Section 4 presents the pipeline of the
proposed approach. Section 5 introduces the extraction pipelines
for each proposed features. Section 6 describes the experimental
settings and the results. Finally, Section 7 concludes the paper.
2. Related works

To address the challenges described above, different segmenta-
tion methods were proposed in literature. Some basic approaches
segment and classify each pixel in the image using a region-based
methodology as in [14–22]. Other approaches use a multiscale
scanning window detector such as Viola-Jones [23] or Dalal-Triggs
[24], possibly augmented with part detectors as in Felszenszwalb
et al. [25] or Bourdev et al. [26]. More complex approaches as in
[27,28] unify these paradigms into a single recognition architecture,
and leverage on their strengths by designing region-based specific
object detectors and combining their outputs. By referring to the
property that the final label of each pixel can be dependent by the
labels assigned to other pixels in the image, different methods use
probabilistic models such as the Markov Random Field (MRF) and
the Conditional Random Fields (CRF) that are suitable to address
label dependencies. As example, the nonparametric model pro-
posed in [29] requires no training and can easily scaled to datasets
with tens of thousands of images and hundreds of labels. It works
by scene-level matching with global image descriptors, followed by
superpixel-level matching with local features and efficient MRF
based optimization for incorporating neighbourhood context. In
[30], instead, a framework is presented for semantic scene parsing
and object recognition based on dense depth maps. Five view
independent 3D features that vary with object class are extracted
from dense depth maps at a superpixel level for training a rando-
mized decision forest. The formulation integrates multiple features
in the MRF framework to segment and recognize different object
classes. The results of this work highlight a strong dependency of
accuracy from the density of the 3D features. In the TextonBoost
technique [31] the segmentation is obtained by implementing a CRF
and features that automatically learn layout and context informa-
tion. Similar features were also proposed in [32], although Textons
were not used, and responses were not aggregated over a spatial
region. In contrast with these techniques, the shape context tech-
nique in [14] uses a hand-picked descriptor. In [33] a framework is
presented for pixel-wise object segmentation of road scenes that
combines motion and appearance features. It is designed to handle
street-level imagery such as that on Google Street View and
Microsoft Bing Maps. The authors formulate the problem in the CRF
framework in order to probabilistically model the label likelihoods
and a prior knowledge. An extended set of appearance-based fea-
tures is used, which consists of Textons, colour, location and His-
togram of Gradients (HOG) descriptors. A novel boosting approach
is then applied to combine the motion and appearance-based fea-
tures. The authors also incorporate higher order potentials in the
CRF model, which produce segmentations with precise object
boundaries. In [34] a novel formulation is proposed for the scene-
labelling problem capable to combine object detections with pixel-
level information in the CRF framework. Since object detection and
multi-class image labelling are mutually informative dependent
problems, pixel-wise segmentation can benefit from the powerful
object detectors and vice versa. The main contribution of [34] lies in
the incorporation of top-down object segmentations as generalized
robust potentials into the CRF formulation. These potentials present
a principled manner to convey soft object segmentations into a
unified energy minimization framework, enabling joint optimiza-
tion and thus mutual benefit for both problems. A probabilistic
framework is presented in [35] for reasoning about regions, objects,
and their attributes such as object class, location, and spatial extent.
The proposed CRF is defined on pixels, segments and objects. The
authors define a global energy function for the model, which
combines results from sliding window detectors and low-level
pixel-based unary and pairwise relations. It addresses the pro-
blems of what, where, and how many by recognizing objects,
finding their locations and spatial extent and segmenting them.
Although the MRF and the CRF are adequate models to deal with
the semantic segmentation problem in terms of performance, they
represent a bottleneck in the computation, because the inference is
a highly resources consuming process. A powerful approach with
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good performance, while preserving high efficiency, is based on the
random forest. For example in [13], the authors show that one can
build rich Texton codebooks without computing expensive filter-
banks or descriptors, and without performing costly k-means
clustering and nearest-neighbour assignments. Specifically, the
authors propose the bag of Semantic Textons that is an extension of
the Bag of Word Model [36] obtained by combining a histogram of
the hierarchical visual word with a region prior category. In this
paper we build on the semantic texton forest (STF) approach
(detailed in Section 3) by proposing a new semantic segmentation
pipeline which exploits features extracted on the DCT domain. The
exploitation of contextual and structural information have been
recently proposed in [37,38] to improve the performances of ran-
dom forests for semantic image labelling. In particular, the random
forest approach has been augmented in order to consider topolo-
gical distribution of object classes in a given image. A novel splitting
function has been also introduced to allow the random forest to
work with the structured label space. Recent trends also consider
Convolutional Neural Network for the semantic segmentation. In
[39] the authors adapt state-of-the-art classification networks (i.e.,
AlexNet, the VGG net, and GoogLeNet) into fully convolutional
networks and transfer their learned representations to the seg-
mentation task. A novel architecture that combines semantic
information of the different layers is proposed to produce the final
semantic segmentation of images.
3. Random forests and semantic texton forest

Before presenting our approach, we briefly review the rando-
mized decision forest algorithms [40]. Random forests are an
ensemble of separately trained binary decision trees. Decision
trees are trained to solve the classification problem separately and
the results are predicted combining all the partial results obtained
by each tree. This process leads to a significantly better general-
ization and avoids overfitting to the data. Maximizing the infor-
mation gain and minimizing the information entropy are the goals
of the training to optimally separate the data points for classifi-
cation problems or to predict a continuous variable. The decision
tree concept was described for the first time in [41] and later more
and more computer vision applications used an ensemble of ran-
domly trained decision trees. Complex computer vision tasks
exploiting random forests were presented in [42–44] for a shape
classification system, automatic handwriting recognition and
medical imaging. A Random Forest can solve different problems
like predict class label, estimate value of a continuous variable,
learn probability density function and manifold. The Random
Fig. 1. Integration of texture fe
Forest uses weak classifiers in each node of the trees to solve the
classification or regression problem. A weak classifier (called
decision stump) is specialized on a sub problem and is sig-
nificantly faster compared to a strong classifier (e.g., SVM [45]),
which is usually designed to tackle complex problems. Every
Random Forest can be described by the number T of the trees used,
the maximum depth D and the type of weak learner model used in
each node. The STF model is a complex system that ensembles
2 randomized decision forests in cascade. The randomized deci-
sion forests obtains semantic segmentation acting directly on
image pixels with simple features (e.g., differences between pixels)
and therefore do not need the expensive computation of filter-
bank responses or local descriptors. They are extremely fast for
both training and testing. Specifically, the first randomized deci-
sion forest in the STF uses only simple pixel comparisons on local
image patches of size d� d pixels. The split function f1 in this first
forest can directly take the pixel value pðx; y; bÞ at pixel location (x,
y) in the colour channel b or computes some other functions
defined on two different locations p1ðx1; y1; b1Þ and p2ðx2; y2; b2Þ
selected within the square patches dxd. Given, for each pixel i the
leaf nodes Li ¼ ðl1;…; lT Þi and inferred class distribution Pðcj LiÞ, one
can compute over an image region r a non-normalized histogram
Hr(n) that concatenates the occurrences of tree nodes n across the
different T trees, and a prior over the region given by the average

class distribution Pðcj rÞ ¼ 1
j rj

Pj r j
i ¼ 1 Pðcj LiÞ (see the STF block in

Fig. 1). The second randomized decision forest in the STF uses the
category region prior Pðcj rÞ and the Semantic Texton Histogram
Hr(n) to achieve an efficient and accurate segmentation. Specifi-
cally, the split node functions f2 of the second forest evaluate
either the numbers Hrþ1ðn0Þ of a generic semantic Textons n0 or the
probability Pðcj rþ iÞ within a translated rectangle r relative to the
ith pixel that we want to classify. The categorization module
determines finally the image categories to which an image
belongs. This categorization is obtained by exploiting again the
Semantic Texton Histogram Hr(n) computed on the whole image
using a non-linear support vector machine (SVM) with a pyramid
match kernel. The STF runs separately the categorization and the
segmentation steps, producing an image-level prior (ILP) dis-
tribution P(c) and a per-pixel segmentation distribution Pðcj iÞ
respectively. The ILP is used to emphasize the likely categories and
discourage unlikely categories:

P0ðcj iÞ ¼ 1
Z
Pðcj iÞPðcÞa ð1Þ

using parameter a to soften the prior and where 1
Z is a normal-

ization constant such that P0ðcj iÞ sum up to one. As previous
mentioned, our approach combines texture and colour clues
atures in the STF system.
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within a STF (see Fig. 1). Adding the texture features in the first
random forest allows us either to catch the semantic segmentation
output after performing entirely the STF system (point B in Fig. 1)
or after perform just the first random forest (point A in Fig. 1). The
last solution is preferred for real time applications, when the
execution time is crucial with respect to the accuracy. In Section 6,
we show that including the proposed DCT features, the accuracy
increases in both the semantic segmentation steps.
4. Proposed approach

The workflow of our method is shown in Fig. 2. Each image is
first converted into a grayscale channel and then upsampled. A
8�8 block based DCT transformation is applied and just the most
NF discriminative DCT coefficients are selected (generating NF dif-
ferent DCT channels). The DCT data are then quantized using a
non-uniform clustering. The quantization extracts NF new DCT
index channels that will be aggregated with a subsampled version
of the colour data. The 3 colour channels and the NF DCT index
channels are finally used to generate suitable colour and texture
features for each node of the decision random forest in the STF
system. Next section explains the functionality of each block of the
system, whereas Section 5 describes the detail of the “DCT based
features extraction” block.
Fig. 2. Pipeline of the proposed approach. For further deta

Fig. 3. Laplace distributions of DCT coefficients for natural images. Left: image under con
different DCT distributions related to the 64 DCT basis reported in the middle, obtained
4.1. DCT transform and DCT frequencies selection

One of the most popular standard for lossy compression of
images is JPEG [46]. JPEG is an hardware/software codec engine
present in all the consumer devices such as digital cameras, and
smartphones. Moreover, the great majority of the images on
Internet are stored in JPEG format. DCT features that can be
extracted directly in the compressed domain reducing the features
extraction cost. These are desirable features for the image seg-
mentation engine. The JPEG algorithm divides the image into non-
overlapping blocks of size 8�8 pixels, then each block is trans-
formed using the discrete cosine transform (DCT) followed by
quantization and entropy coding. The DCT has been extensively
studied and hence there is a very good understanding of the sta-
tistical distributions of the DCT coefficients and their quantization.
The coefficient that scales the constant basis function of the DCT is
called the DC coefficient, while the other coefficients are called AC
coefficients. Different statistical models for AC coefficients were
proposed including Gaussian [47], Cauchy, generalized Gaussian
and sum of Gaussian distributions [48–52]. The knowledge of the
statistical distribution of the DCT coefficient is useful in quantizer
design and noise mitigation for image enhancement. In our model
we assume that the distribution of the AC coefficients resembles
the Laplace distribution (See Fig. 3). This guess has been demon-
strated through a rigorous mathematical analysis in [53,54]. The
probability density function of a Laplace distribution can be
ils on the Semantic Texton Forest block refer to Fig. 1.

sideration; Middle: the 64 basis related to the 8�8 DCT transformation; Right: the
considering the image at left.
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written as:

Fðxjμ; bÞ ¼ 1
2b

exp �j x�μj
b

� �
ð2Þ

where μ and b are the parameters of the Laplace distribution.
Given N independent and identically distributed samples x1; x2;…
; xN ; (i.e., the DCT coefficients related to a specific frequency) an
estimator μ̂ of μ is the sample median and the maximum like-
lihood estimator of the slope b is:

b̂ ¼ 1
N

XN
i ¼ 1

jxi� μ̂ j ð3Þ

A recent work [12] describes how to use these parameters to
classify the scene in real time. In Section 4.2, instead, we show
how to use the Laplace distribution to quantize properly the DCT
coefficient and use them to extract texture features for the image
segmentation problem. As shown in [33] the most prominent
patterns composing images are edges. Some of the DCT basis are
related to the reconstruction of edges of an 8�8 image block (i.e.,
first row and first column of Fig. 3(b)), whereas the others are
more related to the reconstruction of the textured blocks. More-
over, high frequencies are usually affected by noise and could be
not useful to segment the image. For this reason, we have per-
formed an analysis to understand which of the AC DCT basis really
can contribute in our pipeline. One more motivation to look only
for the most important frequencies is that we can reduce the
complexity of the overall system. To select the most important
frequencies we used a greedy fashion approach. Our analysis
suggested that a good compromise between segmentation accu-
racy and computational complexity (i.e., the number of AC DCT
frequencies to be included in the pipeline to fit with required
computational time and memory resources) is the one which
considers the AC DCT components related the DCT basis of Fig. 4
(a). According to this schema only 25 frequencies out of 64 are
selected to compute features useful for the segmentation. We will
refer to this set of frequencies as F and the related cardinality as NF

(see [12] for more details on the frequency selection).

4.2. Quantization

Two important observations regarding the DCT data should be
taken into account when these data are used as features. The first
16 11
12 12
14 13
14 17
18 22
24 35
49 64
72 92

Fig. 4. Left: Schema used to select the DCT frequen

Table 1
Probability table PDCT obtained from the standard JPEG quantization table.

0 0.078 0.086 0.054 0.036 0.022 0.017 0.014
0.072 0.072 0.061 0.045 0 0 0.014 0
0.061 0.066 0 0 0 0.015 0 0
0.061 0.051 0 0 0.017 0 0 0
0.048 0 0 0.015 0 0 0 0
0.036 0 0.016 0 0 0 0 0
0.018 0.013 0 0 0 0 0 0
0.012 0 0 0 0 0 0 0
one has been disclosed in the previous paragraph: the DCT data
can be summarized by Laplace distributions. The second one states
that, in the real world, the human vision is more sensitive to some
frequencies rather than others [55–57].

These observations convey the fact that before using the DCT
data, they need to be properly processed. In our process, to take
into account the HVS (human vision system) sensitivity to the
different frequencies, we replace the uniform random function
used to select the features in each node of the 1st random forest
(see STF block in Fig. 1), with a probability selection function PDCT.
The PDCT steers the learning process towards using more fre-
quently the DCT coefficients that are more important for the
human vision system. For this purpose we exploit the standard
quantization Table (Fig. 4(b)) used in the JPEG compression [55].
This table has been developed to achieve good image compression
and avoiding visible distortions. Due to variations in the contrast
sensitivity of the human visual system as a function of spatial
frequency, different DCT coefficients are quantized with different
factors [58]. More specifically, the standard JPEG suggests to use
these perceptual criteria to quantize the corresponding DCT coef-
ficients amplitudes that cause perceptible differences to a human
observer. Eq. (4) allows us to convert each quantization value into
a selection probability that is high for the most important fre-
quencies (i.e., low values in the quantization table) and low for the
frequencies that are less important (i.e., high values in the quan-
tization table) satisfying in this way our modelling. The standard
quantization table is hence transformed in a probability table that
we refer with the symbol PDCT (see Table 1). Each element PDCT(i) in
this table is formally defined as follows:

PDCT ðiÞ ¼

1
qiP
jA F

1
qj

if iAF

0 otherwise

8>>>>><
>>>>>:

ð4Þ

where qi, qj are quantization values of the standard JPEG
quantization table (Fig. 4(b)), and F is the set of selected DCT
coefficients (see Section 4.1). These priors are used in the learning
process to increase the probability to discover good features that
maximize the information gain of the data, in each node of the 1st
random forest of the STF system [13].

In order to cater our first observation stating that DCT data can
be summarized by Laplace distributions, we propose a quantiza-
tion step that is capable to generate more centroids in the DCT
space where the data distribution is more dense (all the value that
are near to the center of the Laplace distribution) and less in the
areas where only a few DCT data fall in. The aim is to produce
centroids that follow the natural distribution of the considered
DCT data. Usually K-means is used to quantize the features space.
The centroids provided by K-means codebooks are highly depen-
dent on the sample distribution in the space, degrading as this
becomes more non-uniform. K-means works well for data
10 16 24 40 51 61
14 19 26 58 60 55
16 24 40 57 69 56
22 29 51 87 80 62
37 56 68 109 103 77
55 54 81 104 113 92
78 87 103 121 120 101
95 98 112 100 103 99

cies. Right: Standard JPEG quantization table.



D. Ravì et al. / Pattern Recognition 52 (2016) 260–273 265
containing only uniform distribution since in the non-uniform
case that K-means devotes most of its centres to the immediate
neighborhood of the central peak, and the coding suffers [59]. The
Fig. 5. Laplace distribution representing a given AC frequency. The Laplace distribution
points, are obtained using a uniform quantization. In the right the centroids are inste
uniformity distribution of the data. (For interpretation of the references to color in this

Fig. 6. Extraction pipe

Fig. 7. Extraction pipe
non-uniformity is essentially due to two effects: (i) certain data
occur far more frequently than others; and (ii) the amount of any
given feature that appears is extremely variable due to the multi-
is clustered in two different ways. In the left the centroids, represented by the red
ad obtained with the proposed analytic solution that takes into account the non-
figure caption, the reader is referred to the web version of this paper.)

line for feature f1.

line for feature f2.



Table 4
Results for different configuration of M.

M Overall MeanClass

M1¼STF 74.40 68.99
M2¼STF & f2 unary 74.86 69.90
M3¼STF & f1 75.55 70.46
M4¼STF & f1 & f2 unary 74.84 70.42
M5¼STF & f1& f2 unary & f2 jdiff j 75.12 70.52
M6¼STF & f1 & f2 unary & f2 sum 75.51 71.01
M7¼STF & f1 & f2 unary & f2 diff 75.24 70.94
M8¼STF & f1 & f2 unary & f2 div 75.50 71.21
M9¼STF & f1 & f2 unary & f2 mol 75.19 70.75
M10¼STF & f1 & f2 unary & f2 log 75.00 70.75
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scale region structure of natural scenes. K-means centres drift
towards high density regions owing to the “mean shift like” K-
means update rule [60]. Asymptotically, they are distributed
according to the underlying density (i.e., in the same way as ran-
dom samples). This point is critical because the data that are most
informative for classification tend to have intermediate fre-
quencies. Over-frequent patches typically contain generic image
structures like edges that occur often in all classes, giving little
discriminant information. Conversely, rare patches may be highly
discriminant when they occur, but they occur so seldom that they
have little influence on overall performance. These effects are
probably even greater in man-made environments, where large
uniform uninformative regions are common. A clustering that
takes into account the non-uniformity property of the data is
essential to quantize the DCT space. To obtain the quantization
with the aforementioned non-uniform property, we propose an
analytic solution. An uncompressed training database of images is
used to obtain the two Laplace parameters (median and slope of
each DCT coefficient). The cluster centroids are then computed
performing integration on the area of each Laplace distribution.
The points that divide this area in k equal spaces are the proposed
quantization points (Fig. 5).
Table 3
System parameters.

Related to Name Description

Proposed features M Modality for different features
Us Upsampling factor used to enl
S Type of statistic used to gener
Qp Number of quantization points
B1 Box size used to generate the
B2 Box size used to generate the

STF system D1 Depth for the 1st forest
D2 Depth for the 2nd forest
N1 Number of the features random
N2 Number of the features random

a See Section 6 for the definition of W and resF.

Table 2
Number of operations required to compute f1 for an image of 640�480 pixels.

Selected statistic Us¼4

Stat1 7692
Stat2 11,538
Stat3 3846

Fig. 8. Example o
This process is repeated for all the NF DCT coefficients, sepa-
rately producing a vocabulary table with k � NF entries. In each
column of this table, the values are arranged in an ascending order
that is important during the clustering process since it allows us to
implement an efficient stopping criteria. This vocabulary table is
used to quantize the DCT channels and produce for each DCT value
a corresponding DCT index value required in Section 5 to generate
Default value

setting M4

arge the image 2
ate the feature f1 Stat2
used to quantize the Laplace distribution area 32

feature f1 Wna/2
feature f2 resFna�15

12
15

ly chosen to generate the nodes in the 1st forest 800
ly chosen to generate the nodes in the 2nd forest 800

Us¼2 Us¼1

1950 501
2924 751
974 250

f features f2.
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the proposed features. The new DCT index channels represent in a
suitable way the visual data as discuss so far and they have also
the advantage that can be stored in memory just using few bits per
pixel. Comparison results using different number of clustering are
provided in Section 6.

4.3. Upsampling and subsampling

The design of the proposed pipeline is aimed to be as generic
as possible and capable to efficiently segment any image
regardless of its resolution. In order to obtain this capability, we
propose to process a subsampled version of the image. The only
consequence of using the subsampled image is a less precise
segmentation boundaries output. On the other hand, one should
also consider that the DCT data are obtained by a block based
process that produces not pixel specific information. For this
reason, to obtain DCT information required for each subsampled
pixels we need to use an enlarged version of the image as input of
the DCT transformation block. The enlarged version can be
obtained either using an interpolation process or can be already
available if applied on a multi-resolution sensor. The relation that
links the upsampling factor Us and the subsampling factor Ss with
the DCT block size SDCT_block is described by the following
Table 7
Results for different values of Qp and for different type of statistic.

Selected statistic Qp¼8 Qp¼16 Qp

Overall MeanClass Overall MeanClass Ove

Stat1 75.12 70.52 75.57 70.99 74.4
Stat2 75.48 71.21 75.41 71.11 74.8
Stat3 75.46 71.15 74.67 69.80 74.6
Average 75.35 70.96 75.22 70.63 74.6

Table 6
Results for different values of Us.

Us Overall MeanClass

4 75.32 71.91
2 75.12 70.52
1 74.46 69.43

Table 5
Analysis of the parameters related to the STF system.

(a) Results for different values of N1

N1 Overall MeanClass

400 75.12 70.52
600 75.59 70.83
800 75.16 70.90
1000 75.36 71.19
(b) Results for different values of N2

N2 Overall MeanClass
400 75.12 70.52
600 74.96 71.39
800 75.29 71.38
1000 75.49 71.76
(c) Results for different values of D1 & D2

D1 & D2 Overall MeanClass
D1¼12 & D2¼15 75.15 70.42
D1¼13 & D2¼14 74.19 70.25
D1¼13 & D2¼15 75.12 70.52
D1¼13 & D2¼16 75.68 70.71
D1¼14 & D2¼15 75.44 71.40
equation:

UsnSs ¼ SDCT_block ð5Þ
When the subsampling factor Ss is equal to the size of the DCT
block SDCT_block no enlarging process is required before the DCT
transformation block. At the end of this process, colour and
texture data are available and ready to generate features through
the colour and the DCT based features extraction blocks
(see Fig. 2).
5. DCT-based features extraction

We propose two novel DCT based features which are computed
after the quantization step detailed in Section 4.2. The first one,
that we call feature f1, is aimed to capture the different textures
distribution for each image region. The feature f1 is defined as a
tuple ½rðx; y;h;w; tÞ; s� where r is an image region with size h�w
associated to the ith pixel in the DCT layer t, and s is the quanti-
zation index used for the statistical evaluation. The vector of
coordinates ðx; yÞ indicates the offset of the considered region with
respect to the ith pixel to be classified. A set R of candidate rec-
tangle regions are chosen at random, such that their top-left and
bottom-right corners lie within a fixed bounding box B1. The
details about the extraction process used to obtain the feature f1
are shown in Fig. 6. Specifically, the 3D array with NF 2D maps of
size h�w is extracted with an offset vector (x, y) respect to the ith
pixel to be segmented (the ith pixel is represented with the red
cross in Fig. 6). In the step (3) of Fig. 6, one of the NF available DCT
index layers, is selected using the probability table PDCT defined in
Section 4.2, whereas in the steps (4) and (5) a statistical mea-
surement is performed on the selected region r. By fixing the value
s as one of the index of the quantization process (selected ran-
domly when the features are generate) and using the region r, we
propose the three following measurements:

Stat1 r; sð Þ ¼
P

cA r j c�sj
j rj ð6Þ

Stat2 r; sð Þ ¼
P

cA rðc�sÞ2
j rj ð7Þ

Stat3 r; sð Þ ¼
P

cA rδcs
j rj ð8Þ
¼32 Qp¼64 Average

rall MeanClass Overall MeanClass Overall MeanClass

3 71.00 74.46 71.30 74.90 70.95
9 71.63 74.90 71.06 75.17 71.25
6 70.16 74.64 69.98 74.86 70.27
6 70.93 74.67 70.78

Table 8
Results for different values of B1. W is wtnUs=DCTblockSize where wt is the width of
the image, Us is the upsampling factor and DCTblockSize is the size of the DCT
transformation block.

B1 Overall MeanClass

w/2 75.08 70.92
w/3 75.12 71.13
w/4 75.00 70.52
w/5 74.78 70.12
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where j rj is the area of the region r and c is the result of the
quantization process applied at each pixel in the region r. The
quantization process used in the proposed approach is further
detailed in Section 4.2. In Eq. (8), δcs is the Kronecker's delta
function applied to the variables c and s. The performances
obtained with the different measures are reported in Table 7 and
will be analysed later in Section 6. These aforementioned mea-
surements can be efficiently computed over a whole image by
exploiting the integral histogram [61].

The second extracted feature, called feature f2 detailed in Fig. 7,
is designed to compare two generic pixels P1 and P2 related to the
ith pixel to be classified in the semantic segmentation pipeline.
Specifically, considering the pixels P1 and P2 obtained adding the
offsets (x1, y1) and (x2, y2) to the ith pixel, two 1D arrays are
generated by the NF channels extracted in the step (2) of the
pipeline (see Fig. 7). This produces the feature vectors V ¼ V1…VNF

and T ¼ T1…TNF . In the step (4) of Fig. 7 two indexes w and z are
extracted using the table PDCT, and the elements Vw and Tz are
selected. Such two values are finally combined using a mathe-
matical operation (e.g., sum, log, and pow) to generate the final
feature value. The performances of each mathematical operation
involved in the extraction of the feature f2 are reported in Table 4
and will be discussed later in Section 6.

Fig. 8 shows a toy example where the feature f2 is computed in
two different points specified by the yellow crosses. Just con-
sidering, the offsets (x1, y1) and (x2, y2) (represented by the blues
arrows) the DCT blocks centred in the points denoted by the red
square are picked and the NF coefficients selected. For each block
the two coefficients in the blue squares are selected and a division
operation (in this example) is performed between them. The two
analysed pixels are related to a bicyclist and a pedestrian. Due to
the vertical high frequencies correlated to the wheel under the
human the features value of f 21

and the f 22
are sensibly different

allowing the STF system to properly perform the semantic seg-
mentation. From this example we can observe that although the
feature f2 is very simple, it allows us to recognize complex visual
cues inside the image.
Table 10
Comparison to state-of-the-art on the CamVid dataset.

Approach Classification for each class

Building Tree Sky Car Sign Road Pede

Proposed 49.16 77.14 93.51 80.84 63.92 88.05 75.0
Shotton [13] 44.83 75.31 93.39 80.53 59.96 88.99 71.15
Tighe [28] 83.10 73.50 94.60 78.10 48.00 96.00 58.6
Tighe [29] 87.00 67.10 96.90 62.70 30.10 95.90 14.70
Brostow [63] 46.20 61.90 89.70 68.60 42.90 89.50 53.6
Sturgess [33] 84.50 72.60 97.50 72.70 34.10 95.30 34.2
Zhang [30] 85.30 57.30 95.40 69.20 46.50 98.50 23.8
Floros [34] 80.40 76.10 96.10 86.70 20.40 95.10 47.10
Ladicky [35] 81.50 76.60 96.20 78.70 40.20 93.90 43.0

Table 9
Results for different values of B2. ResF is DCTblockSize=Us where DCTblockSize is the
size of the DCT transformation block and Us the upsampling factor.

B2 Overall MeanClass

resFn17 74.86 70.58
resFn15 75.06 71.21
resFn13 74.98 71.12
5.1. Complexity of the proposed features

In this section we describe the computational cost required to
extract each proposed feature. For the feature f1 the complexity is
strictly related to the use of the integral histogram [62]. If the
available memory is enough to store and use the integral histo-
gram (NF new layers of integer are required), the features f1 can be
computed in constant time. Otherwise, assuming that the
bounding box of the region r cannot be more then B1, the average
number of operations required is:
PB1

i i2nsOp
B1

¼ ðB1þ1Þð2nB1þ1ÞnsOp
6

ð9Þ

where sOp is a value that depends by the statistic measure used,
and specifically it is 2 for Stat1, 3 for Stat2 and 1 for Stat3. Table 2
summarizes the number of required operations when different
statistics and different upsampling factors Us are used. Table 2 is
obtained using an input image of 640�480 pixels and running the
system with the a maximum bounding box B1 equal to width=3¼
213 pixels.

On the other hand, since the feature f2 is the result of just one
operation between two numbers it can be computed always in
constant time.
6. Experimental setting and results

To analyse the proposed solution we have performed experi-
ments employing the Cambridge-driving Labeled Video Database
(CamVid) [63,64] and the MRSC-v2 dataset [13,31]. In the follow-
ing subsections are reported the experimental settings and the
results obtained considering the aforementioned datasets.

6.1. CamVid dataset

CamVid is a collection of videos captured on road driving
scenes. It consists of more than 10 min of high quality (970�720),
30 Hz footage and is divided into four sequences. Three sequences
were taken during daylight and one at dusk. A subset of 711
images is almost entirely annotated into 32 categories, but as
suggested in [28], we used only the 11 object categories, forming a
majority of the overall labelled pixels (89.16%). Data were captured
from the perspective of a driving automobile. The driving scenario
increases the number and heterogeneity of the observed object
classes. The parameters of the system are summarized in Table 3.

Our system has been extensively evaluated with the purpose to
optimize these parameters. The database is split into 468 training
images and 233 test images as suggested in [28]. A validation step is
applied to obtain the best configuration for each parameter. Specifically
Overall Mean-class

strian Fence Pole Sidewalk Bicyclist

0 76.28 28.62 88.54 76.16 76.35 72.47
70.40 27.90 89.27 73.89 74.90 70.51

0 32.80 5.30 71.20 45.90 83.90 62.50
17.90 1.70 70.00 19.40 83.30 51.20

0 46.60 0.70 60.50 22.50 69.10 53.00
0 45.70 8.10 77.60 28.50 83.80 59.20
0 44.30 22.00 38.10 28.70 82.10 55.40

47.30 8.30 79.10 19.50 83.20 59.60
0 47.60 14.30 81.50 33.90 83.80 62.50
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the validation process divides the training images in 2 sub-groups of
equal size. The first group is used for training the validation and the
remaining for test them. Moreover we have fixed a default value for all
of the free parameters. These initial values are reported in the last
column of Table 3. In the final test phase, the configuration set that has
obtained the best performance is used to train the system. The
semantic segmentation accuracy is computed by comparing the
ground truth pixels to the inferred segmentation. We report per-class
accuracies (the normalized diagonal of the pixel-wise confusion
matrix), the mean-class accuracy, and the overall segmentation accu-
racy. Table 4 shows the results obtained when the novel features are
introduced in the STF system and when different operations are used
to compute the features f2. The first 4 rows of Table 4 shows the
classification results obtained by the system when each of the pro-
posed features f1 and f2 are included in the STF system. Some tests use
also a feature called “unary” that is obtained when the point P1 and P2
are the same and the selected DCT channels W and Z are equal. The
next 6 rows of Table 4 show the results obtained using the different
type of operations to compute feature f2. From the results, we can see
that adding both the features f1 and f2 to the STF system, improves the
classification performance. Specifically the best results are obtained
when the “division” and the “sum” operations are considered to gen-
erate the feature f2.

Table 5 (a)–(c) analyse the performance related to the forest
parameters, specifically the depths D1 and D2 of the 2 random
forests involved into the system and the number of the features N1

and N2 randomly selected to generate each node. Increasing the
values of these parameters gives in general a better accuracy.

Table 6 analyses the behaviours of the system when different
upsampling factor Us are used. The best results are obtained when the
image is upsampled by a factor of 4. To have an acceptable efficient
system, it is recommended to use an upsampling factor of 4 only when
the integral histogram is used in the system, otherwise, reminding the
computational analysis proposed in Section 5 and according to Table 2,
an adequate trade-off between performance and high efficiency is
obtained using an upsampling factor equal to 2. Table 7 shows the
system accuracy obtained using each of the proposed statistics when
different number of clusters are computed for quantizing the DCT
data. The best results are obtained when the statistic Stat2 is selected.
Moreover, only 8 clusters are enough to quantize the DCT data. We use
clustering with 8, 16, 32 and 64 centroids. Table 7 shows that
increasing the number of the clusters will not provide substantial
improvement to the system. For this reason, the clustering with
8 centroids is the one that we propose in the final configuration. With
8 clusters for each DCT coefficient we have 8�NF different DCT Tex-
tons (in our case with 25 frequencies selected there are 200 DCT
Textons). Furthermore, with this configuration, each DCT index data,
can be saved in memory employing only 3 bits.

Tables 8 and 9 show the performance obtained using different
sizes for the bounding box B1 and B2. The best results are obtained
when a bounding box equal to wtnUs=ð3nDCTblockSizeÞ pixels is
used for the feature f1 and equal to DCTblockSizen15=Us pixels is
used for the feature f2 (where wt is the width of the image, Us is
the upsampling factor and DCTblockSize is the size of the DCT
transformation block). Table 10 compares the results obtained by
the state-of-the-art approaches with respect to our proposal when
the best configuration set of parameters is used. Instead, Table 12
shows the confusion matrix obtained by our solution.

Fig. 9 represents the distribution of the pixels per class. One can
note a widely varying class prevalence in this dataset with the first
two majority classes (Building and Road) alone containing more than
50% of the pixels. Obviously, the learning step for the small classes is in
general more complex since they are not well represented in the
database. The approaches in [28–30,33–35] obtain better perfor-
mances for the two classes most represented in the CamVid dataset
(i.e., Building and Road – see Fig. 9 and Table 10) and hence show a
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better overall accuracy at the cost of losing the mean-classes perfor-
mance (since they are less accurate in discriminating less represented
classes in the dataset, such as Sign, Pedestrian, and Bicyclist – see Fig. 9
and Table 10). In our approach instead, the challenging classes with
small percentage of samples in the dataset have got a significant
improvement in the per-class accuracy and hence the proposed
approach obtains the better results in the mean-classes score.

Since the optimization is done over all the classes we have a sig-
nificant improvement in the per-class accuracies and a more balanced
performance at the cost of losing on the overall results. As a result, our
approach obtains always better accuracy in the small classes (i.e.,
Pedestrian, Fence, Pole, Sign) with respect to all the considered
approaches. In conclusion, one should note that, in the case of unba-
lanced dataset, the mean-class metric is a more reliable measure than
the overall accuracymeasure since it applies equal importance to all 11
classes. Fig. 10 shows some classification errors of our approach. In the
first case a region containing a bicycle is confused with a pedestrian;
instead in the second case an area belonging to a building is confused
Table 12
11�11 confusion matrix obtained on the CamVid database.

Building Tree Sky Car Sign R

Building 49.16 4.76 1.49 5.24 11.54 0
Tree 3.18 77.14 2.91 1.49 3.29 0
Sky 0.45 4.34 93.51 0.06 0.23 0
Car 2.07 0.94 0.31 80.84 1.60 0
Sign 9.77 6.53 0.24 3.55 63.92 0
Road 0.01 0.01 0.00 2.19 0.01 8
Pedestian 1.57 0.32 0.00 5.19 2.21 0
Fance 0.68 3.10 0.00 3.36 0.76 0
Pole 9.71 11.45 4.06 2.33 9.96 0
Sidewalk 0.03 0.02 0.00 0.95 0.01 3
Bycyclist 0.11 0.37 0.00 3.66 0.50 1

Fig. 9. CamVid database and

Fig. 10. Examples of classification error obtained using our approach. In 10(a) a region
building is confused with the class pedestrian.
with the class pedestrian. The reason behind these errors can be
explained as follows: in the first case, the long distance between the
subject and the camera, does not allow us to distinguish whether the
high frequency under each person is relative to the wheel's bike or to
the legs of the subjects. In the second case, the low brightness makes
difficult even for a human to distinguish whether the textures in that
area belong to a group of people or to the structure of the building.

Fig. 11 shows an example of visual segmentation outputs, of our
approach in comparison with the STF system. In this case, our
approach has the ability to segment properly an area containing a
bicyclist while the STF approach is failing. In Fig. 12 is compared
the computational time obtained by our approach and the STF
during the two semantic segmentation levels. These tests are
performed on a PC with a processor i73930k 3.20 GHz (6 cores)
and with 32 Gb of memory RAM. Both approaches use the best
parameters configuration (i.e., number of trees, depth, number of
features analysed, and bounding box). Moreover, features f1 are
computed without the support of the integral image. As we can
oad Pedestian Fance Pole Sidewalk Bycyclist

.12 10.56 6.79 6.80 2.66 0.87

.07 2.67 6.81 1.64 0.69 0.11

.00 0.00 0.01 1.40 0.00 0.00

.71 6.85 1.70 1.14 1.65 2.21

.00 5.11 5.04 5.14 0.27 0.42
8.05 0.33 0.16 0.22 8.17 0.85
.22 75.00 4.51 3.30 2.94 4.73
.35 8.31 76.28 1.82 5.07 0.27
.49 16.66 9.65 28.62 5.98 1.10
.93 3.38 1.11 1.02 88.54 1.02
.03 13.05 2.68 1.13 1.30 76.16

per-class distributions.

containing a bicycle is confused with a pedestrian; in 10(b) an area belonging to a



Fig. 11. Example of visual segmentation improvement, obtained using our approach with respect to the STF.

Table 13
21�21 confusion matrix obtained on the MSRCv2 database.

Building Grass Tree Cow Sheep Sky Aerop. Water Face Car Bike Flower Sign Bird Book Chair Road Cat Dog Body Boat

Buil. 41.9 2.25 10.46 0.58 0.19 5.27 2.37 1.46 4.02 2.90 7.92 0.00 0.90 0.20 2.26 2.17 11.82 0.44 0.50 1.84 0.46
Grass 0.16 91.5 0.77 3.36 1.43 0.01 0.60 0.01 0.06 0.00 0.12 0.19 0.00 0.08 0.00 0.17 0.22 0.00 0.25 1.06 0.00
Tree 1.49 10.81 76.8 0.54 0.00 3.38 1.42 0.90 0.82 0.13 1.18 0.07 0.58 0.11 0.02 0.19 0.39 0.00 0.13 0.82 0.14
Cow 0.01 7.22 0.37 87.6 2.27 0.00 0.00 0.11 0.08 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.01 1.64 0.60 0.00
Sheep 0.05 4.91 0.02 1.34 91.7 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 1.50 0.00 0.08 0.39 0.00 0.02 0.00 0.00
Sky 1.63 0.12 1.30 0.00 0.00 92.4 0.74 1.50 0.00 0.01 0.00 0.00 0.06 1.84 0.00 0.02 0.22 0.00 0.00 0.00 0.05
Aerop. 8.67 1.30 0.06 0.26 0.00 2.52 85.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.03 0.00 0.00 0.00 0.00
Water 6.18 6.48 0.69 0.30 0.13 6.34 0.01 62.5 0.01 2.18 1.61 0.04 0.25 1.41 0.01 0.14 9.70 0.33 0.24 0.42 1.01
Face 0.58 0.08 0.70 0.01 0.00 0.21 0.00 0.06 90.5 0.15 0.00 0.27 0.08 0.02 0.37 0.01 0.00 0.30 0.42 6.01 0.16
Car 13.29 0.00 0.31 0.00 0.00 0.01 0.00 0.93 0.00 72.0 0.08 0.00 0.96 0.02 0.00 0.07 11.99 0.19 0.02 0.06 0.01
Bike 4.23 0.01 0.37 0.00 0.00 0.00 0.00 0.00 0.14 1.40 77.3 0.00 0.12 0.00 0.00 1.37 14.17 0.86 0.01 0.00 0.00
Flower 0.31 3.45 2.80 1.17 1.61 0.01 0.00 0.22 0.83 0.01 0.00 72.7 8.35 2.52 2.20 0.01 0.25 0.20 0.38 2.88 0.00
Sign 26.42 0.83 3.20 0.08 0.24 2.58 0.00 2.36 0.56 0.36 0.71 1.82 33.7 3.68 12.11 0.99 6.02 1.63 0.42 1.88 0.35
Bird 11.63 9.68 0.98 0.58 7.90 3.35 0.00 8.74 0.10 0.24 2.07 0.01 0.20 29.8 0.00 4.31 14.40 2.86 2.71 0.22 0.14
Book 3.03 0.03 0.16 0.00 0.00 0.00 0.00 0.01 1.28 0.10 0.00 0.08 0.34 0.00 92.3 0.00 0.31 0.25 0.04 1.97 0.02
Chair 1.21 9.76 9.98 9.49 0.89 0.03 0.00 0.06 0.04 0.64 5.45 0.00 1.07 0.70 0.35 44.9 9.33 2.53 2.90 0.64 0.00
Road 3.65 0.70 0.47 0.00 0.89 0.31 0.32 6.18 0.61 0.89 3.18 0.00 0.23 0.04 0.00 0.32 79.8 1.48 0.47 0.44 0.04
Cat 1.42 0.00 0.72 0.00 0.00 0.00 0.00 0.71 0.14 0.03 7.33 0.00 0.07 0.28 0.18 3.04 7.80 78.0 0.24 0.00 0.00
Dog 17.91 3.07 6.09 0.25 0.07 0.47 0.91 0.74 4.57 0.01 0.00 0.07 3.13 4.66 0.04 3.59 11.95 1.80 36.7 3.95 0.00
Body 4.87 4.18 2.52 3.31 0.00 1.64 0.38 3.46 8.28 1.13 0.01 0.47 0.88 0.49 3.29 0.31 2.98 1.68 1.75 56.6 1.72
Boat 21.44 0.10 0.80 0.00 0.00 2.51 0.00 22.31 0.00 5.78 10.50 0.00 1.36 1.50 0.00 1.17 7.41 0.00 0.00 0.80 24.3

Fig. 12. Computational time obtained by our approach and by the STF [13] during the two segmentation phases.
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see from Fig. 12, the proposed features increase significantly the
accuracy obtained on the first level (þ8%) while are just slightly
better on the second level (þ2%). On the other hand, the
complexity of our features has a negligible impact on the execu-
tion time. Hence, for real-time systems that cannot perform both
the semantic segmentation levels, the introduction of our features
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is crucial to have a good classification improvement with a
reduced amount of resources.

6.2. MSRC-v2 dataset

This section presents results of image segmentation on the
database MSRC-v2 that contains photographs of real objects
viewed under general lighting conditions, poses and viewpoints,
for a total of 591 images. In this experiment we have used, for all
the parameters, the same configuration obtained in the previous
section (except for the two depth levels that we have changed into
15 for D1 and 17 for D2). We have again compared our approach
with state-of-the-art and the results are showed in Table 11. As we
can see from the table, also in this case results are in favour of the
proposed approach. Specifically, our method achieve the highest
segmentation accuracy of 74.0% (1.8% more than Shotton [13] and
2.5% more than TexBoost [31]) for the overall pixel accuracy.
Whereas regarding the average across categories we obtaining
67.5% (3.4% more than Shotton [13] and 9.9% more than TexBoost
[31]). Still better performance could likely be achieved by a com-
plete experimental validation on this database. Finally, in Table 13
we can analyse in more details the confusion matrix obtained by
the proposed approach on the MSRC-v2 database.
7. Conclusion

This paper describes an approach for semantic segmentation of
images. Two novel texture features based on DCT data are introduced
in the Semantic Texton Forest framework [13]. The proposed DCT
features describe complex textures capable to recognize object and
region with different frequencies characteristics. Our approach makes
use of a limited amount of resources that allow good accuracy for real
time applications. The effectiveness of the proposed semantic seg-
mentation system has been demonstrated by comparing it with the
STF and other state-of-the-art approaches. In most of the case, our
approach shows better performance overcoming the per-classes
accuracy in the considered databases. Moreover, in a real scenario
our system could show further improvements since usually a large
version of the image is available in the pipeline. This avoids to perform
the proposed upsampling block in the pipeline and generating a more
reliable DCT data that are not affected by the interpolation.
Conflict of interest

We don't have any conflict of Interest.
Acknowledgements

This research has been supported by STMicroelectronics [65].
References

[1] M. Johnson, Semantic segmentation and image search (Ph.D. thesis), Uni-
versity of Cambridge, April 2008.

[2] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Susstrunk, Slic superpixels
compared to state-of-the-art superpixel methods, IEEE Trans. Pattern Anal.
Mach. Intell. 34 (11) (2012) 2274–2282.

[3] Y. Boykov, M.-P. Jolly, Interactive graph cuts for optimal boundary & region
segmentation of objects in n-d images, in: IEEE International Conference on
Computer Vision, vol. 1, 2001, pp. 105–112.

[4] J. Huang, S. Kumar, M. Mitra, W.-J. Zhu, R. Zabih, Image indexing using color
correlograms, in: Proceedings of IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 1997, pp. 762–768.
[5] M.M. Mokji, S.A. R.A. Bakar, Gray level co-occurrence matrix computation
based on Haar wavelet, in: Computer Graphics, Imaging and Visualisation,
CGIV'07, Washington, DC, USA, 2007, pp. 273–279.

[6] T. Leung, J. Malik, Representing and recognizing the visual appearance of materials
using three-dimensional textons, Int. J. Comput. Vis. 43 (1) (2001) 29–44.

[7] T. Ojala, M. Pietikäinen, T. Mäenpää, Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns, IEEE Trans. Pattern
Anal. Mach. Intell. 24 (7) (2002) 971–987.

[8] M. Varma, R. Garg, Locally invariant fractal features for statistical texture classifi-
cation, in: IEEE International Conference on Computer Vision, 2007, pp. 1–8.

[9] S. Savarese, J. Winn, A. Criminisi, Discriminative object class models of appearance
and shape by correlatons, in: IEEE International Conference on Computer Vision
and Pattern Recognition, vol. 2, Washington, DC, USA, 2006, pp. 2033–2040.

[10] C. Farabet, C. Couprie, L. Najman, Y. Lecun, Scene parsing with multiscale
feature learning, purity trees, and optimal covers, in: J. Langford, J. Pineau
(Eds.), International Conference on Machine Learning, ACM, New York, NY,
USA, 2012, pp. 575–582.

[11] S. Battiato, A. Bruna, G. Messina, G. Puglisi, Image Processing for Embedded
Devices: From CFA Data to Image/video Coding, Applied Digital Imaging,
Bentham Science Publishers, 2010.

[12] G.M. Farinella, D. Ravi, V. Tomaselli, M. Guarnera, S. Battiato, Representing
scenes for real-time context classification on mobile devices, Pattern Recognit.
48 (4) (2015) 1086–1100.

[13] J. Shotton, M. Johnson, R. Cipolla, Semantic texton forests for image categor-
ization and segmentation, in: IEEE International Conference on Computer
Vision and Pattern Recognition, 2008, pp. 1–8.

[14] S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition using
shape contexts, IEEE Trans. Pattern Anal. Mach. Intell. 24 (4) (2002) 509–522.

[15] X. Ren, J. Malik, Learning a classification model for segmentation, in: IEEE Inter-
national Conference on Computer Vision, vol. 2, Washington, DC, USA, 2003, p. 10.

[16] M.P. Kumar, P.H.S. Torr, A. Zisserman, Obj cut, in: IEEE International Conference
on Computer Vision and Pattern Recognition, vol. 01, Washington, DC, USA,
2005, pp. 18–25.

[17] T. Malisiewicz, A.A. Efros, Recognition by association via learning per-exemplar
distances, in: IEEE International Conference on Computer Vision and Pattern
Recognition, 2008.

[18] C. Gu, J.J. Lim, P. Arbelaez, J. Malik, Recognition using regions, in: IEEE Inter-
national Conference on Computer Vision and Pattern Recognition, 2009,
pp. 1030–1037.

[19] J.a. Carreira, F. Li, C. Sminchisescu, Object recognition by sequential figure-
ground ranking, Int. J. Comput. Vis. 98 (3) (2012) 243–262.

[20] X. Boix, J.M. Gonfaus, J. van de Weijer, A.D. Bagdanov, J.S. Gual, J. Gonzàlez,
Harmony potentials—fusing global and local scale for semantic image seg-
mentation, Int. J. Comput. Vis. 96 (1) (2012) 83–102.

[21] I. Endres, D. Hoiem, Category independent object proposals, in: European
Conference on Computer Vision, Berlin, Heidelberg, 2010, pp. 575–588.

[22] L. Ladicky, C. Russell, P. Kohli, P.H.S. Torr, Graph cut based inference with co-
occurrence statistics, in: European Conference on Computer Vision, Berlin,
Heidelberg, 2010, pp. 239–253.

[23] P. Viola, M. Jones, Robust real-time face detection, Int. J. Comput. Vis. 57
(2004) 137–154.

[24] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: C.
Schmid, S. Soatto, C. Tomasi (Eds.), IEEE International Conference on Computer
Vision and Pattern Recognition, vol. 2, INRIA Rhône-Alpes, ZIRST-655, av. de
l'Europe, Montbonnot-38334, 2005, pp. 886–893.

[25] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, D. Ramanan, Object detection
with discriminatively trained part-based models, IEEE Trans. Pattern Anal.
Mach. Intell. 32 (9) (2010) 1627–1645.

[26] L.D. Bourdev, J. Malik, Poselets: Body part detectors trained using 3d human
pose annotations, in: IEEE International Conference on Computer Vision,
2009, pp. 1365–1372.

[27] P. Arbelaez, B. Hariharan, C. Gu, S. Gupta, L.D. Bourdev, J. Malik, Semantic
segmentation using regions and parts, in: IEEE International Conference on
Computer Vision and Pattern Recognition, 2012, pp. 3378–3385.

[28] J. Tighe, S. Lazebnik, Finding things: image parsing with regions and per-
exemplar detectors, in: IEEE International Conference on Computer Vision and
Pattern Recognition, 2013, pp. 3001–3008.

[29] J. Tighe, S. Lazebnik, Superparsing - scalable nonparametric image parsing
with superpixels, Int. J. Comput. Vis. 101 (2) (2013) 329–349.

[30] C. Zhang, L. Wang, R. Yang, Semantic segmentation of urban scenes using
dense depth maps, in: European Conference on Computer Vision, Berlin,
Heidelberg, 2010, pp. 708–721.

[31] J. Shotton, J. Winn, C. Rother, A. Criminisi, Textonboost: joint appearance,
shape and context modeling for multi-class object recognition and segmen-
tation, in: European Conference on Computer Vision, 2006, pp. 1–15.

[32] P. Dollar, Z. Tu, S. Belongie, Supervised learning of edges and object bound-
aries, in: IEEE International Conference on Computer Vision and Pattern
Recognition, vol. 2, Washington, DC, USA, 2006, pp. 1964–1971.

[33] P. Sturgess, K. Alahari, L. Ladicky, P.H.S. Torr, Combining appearance and
structure from motion features for road scene understanding, in: British
Machine Vision Conference, 2009, pp. 62.1–62.11.

[34] K.R. Georgios Floros, B. Leibe, Multi-class image labeling with top-down seg-
mentation and generalized robust pn potentials, in: British Machine Vision
Conference, 2011, pp. 79.1–79.11.

http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref2
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref2
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref2
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref2
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref6
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref6
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref6
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref7
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref7
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref7
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref7
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref11
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref11
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref11
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref12
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref12
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref12
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref12
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref14
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref14
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref14
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref19
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref19
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref19
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref20
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref20
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref20
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref20
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref23
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref23
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref23
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref25
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref25
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref25
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref25
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref29
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref29
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref29


D. Ravì et al. / Pattern Recognition 52 (2016) 260–273 273
[35] L. Ladický, P. Sturgess, K. Alahari, C. Russell, P.H.S. Torr, What, where and how
many? combining object detectors and CRFs, in: European Conference on
Computer Vision, Berlin, Heidelberg, 2010, pp. 424–437.

[36] G. Csurka, C. Dance, L. Fan, J. Willamowski, C. Bray, Visual categorization with
bags of keypoints, in: European Conference on Computer Vision - Interna-
tional Workshop on Statistical Learning in Computer Vision, 2004, pp. 1–22.

[37] S. Rota Bulò, P. Kontschieder, Neural decision forests for semantic image labelling,
in: IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 81–88.

[38] P. Kontschieder, S. Rota Bulò, M. Pelillo, H. Bischof, Structured labels in random
forests for semantic labelling and object detection, IEEE Trans. Pattern Anal.
Mach. Intell. 36 (10) (2014) 2104–2116.

[39] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic seg-
mentation, in: IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[40] A. Criminisi, J. Shotton, Decision Forests for Computer Vision and Medical
Image Analysis, Springer Publishing Company, Incorporated, 2013, ISBN
1447149289, 9781447149286.

[41] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression
Trees, 1984.

[42] Y. Amit, D.G. Y, Shape quantization and recognition with randomized trees,
Neural Comput. 9 (1997) 1545–1588.

[43] T.K. Ho, Random decision forests, in: International Conference on Document
Analysis and Recognition, vol. 1, Washington, DC, USA, 1995, pp. 278–282.

[44] A. Criminisi, J. Shotton, D. Robertson, E. Konukoglu, Regression forests for
efficient anatomy detection and localization in CT studies, in: International
Conference on Medical Computer Vision: Recognition Techniques and Appli-
cations in Medical Imaging, MCV'10, Berlin, Heidelberg, 2011, pp. 106–117.

[45] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995)
273–297.

[46] G.K. Wallace, The jpeg still picture compression standard, Commun. ACM 34
(4) (1991) 18–34.

[47] W.K. Pratt, Digital Image Processing, New York, NY, USA, 1978.
[48] J.D. Eggerton, Statistical distributions of image DCT coefficients, Comput.

Electr. Eng. 12 (1986) 137–145.
[49] T. Eude, R. Grisel, H. Cherifi, R. Debrie, On the distribution of the DCT coeffi-

cients, in: IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 5, 1994, pp. 365–368.

[50] F. Müller, Distribution shape of two-dimensional DCT coefficients of natural
images, Electron. Lett. 29 (1993) 1935–1936.
[51] S. Smoot, L.A. Rowe, Study of DCT coefficient distributions, in: SPIE Symposium
on Electronic Imaging, vol. 2657, 1996, pp. 403–411.

[52] G.S. Yovanof, S. Liu, Statistical analysis of the DCT coefficients and their
quantization, in: Conference Record of the Thirtieth Asilomar Conference on
Signals, Systems and Computers, vol. 1, 1996.

[53] E.Y. Lam, J.W. Goodman, A mathematical analysis of the DCT coefficient dis-
tributions for images, IEEE Trans. Image Process. 9 (10) (2000) 1661–1666.

[54] E. Lam, Analysis of the DCT coefficient distributions for document coding, IEEE
Signal Process. Lett. 11 (2) (2004) 97–100.

[55] ITU, Iso/iec 10918-1 : 1993(e) ccit recommendation t.81, 1993.
[56] V.C. Smith, J. Pokorny, Spectral sensitivity of the foveal cone photopigments

between 400 and 500 nm, Vis. Res. 15 (2) (1975) 161–171.
[57] S. Battiato, M. Mancuso, A. Bosco, M. Guarnera, Psychovisual and statistical

optimization of quantization tables for DCT compression engines, in: ICIAP,
IEEE Computer Society, 2001, pp. 602–606.

[58] H.A. Peterson, H. Peng, J.H. Morgan, W.B. Pennebaker, Quantization of color
image components in the DCT domain, in: B.E. Rogowitz, M.H. Brill, J.P. Alle-
bach (Eds.), Human Vision, Visual Processing, and Digital Display II, Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 1453,
1991, pp. 210–222.

[59] F. Jurie, B. Triggs, Creating efficient codebooks for visual recognition, in: IEEE
International Conference on Computer Vision, vol. 1, 2005, pp. 604–610 Vol. 1.

[60] A. Likas, N. Vlassis, J.J. Verbeek, The global k-means clustering algorithm,
Pattern Recognit. 36 (2) (2003) 451–461.

[61] P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple
features, in: IEEE International Conference on Computer Vision and Pattern
Recognition, vol. 1, 2001, pp. I-511–I-518.

[62] F.M. Porikli, Integral histogram: a fast way to extract histograms in cartesian
spaces, in: IEEE International Conference on Computer Vision and Pattern
Recognition, IEEE Computer Society, San Diego, CA, USA, 2005, pp. 829–836.

[63] G.J. Brostow, J. Shotton, J. Fauqueur, R. Cipolla, Segmentation and recognition
using structure from motion point clouds, in: European Conference on Com-
puter Vision, Berlin, Heidelberg, 2008, pp. 44–57.

[64] G.J. Brostow, J. Fauqueur, R. Cipolla, Semantic object classes in video: a high-
definition ground truth database, Pattern Recognit. Lett. 30 (2009) 88–97.

[65] STMicroelectronics, Advanced System Technology- Computer Vision group.
URL 〈http://www.st.com/〉.
Daniele Ravì obtained the degree in Computer Science from the University of Catania, Italy, in 2007. From 2008 to 2010 he has been a Research Consultant at STMicroe-
lectronics, Advanced System Technology – Computer Vision Group, Catania, IT. He received his Ph.D. at the Department of Mathematics and Computer Science, University of
Catania, Italy, in 2014 after spending 1 year as a Ph.D. visiting student at the Centre for Vision, Speech and Signal Processing, University of Surrey, UK. FromMarch 2014 he is a
research associate at The Hamlyn Centre for Robotic Surgery – Imperial College of London. Daniele Ravì is co-author of 15 papers in book chapters, international journals and
international conference proceedings. He is also co-inventor of 1 patent. His interests lie in the fields of computer vision, image analysis, visual search, machine learning and
wearable sensor for health monitoring.
Miroslaw Bober is a Professor of Video Processing in the Centre for Vision, Speech and Signal Processing (CVSSP) at the University of Surrey, UK. From 1997 to 2011, he was
the General Manager of Mitsubishi Electric R&D Center Europe (MERCE-UK) and the Head of Research for its Visual and Sensing Division. In 2011 he co-founded Visual Atoms
Ltd, a UK-based high-tech R&D company. Miroslaw received the M.Sc. degree in Electrical Engineering from the AGH University of Science and Technology, Krakow, Poland, in
1990. Subsequently he received the M.Sc. with distinction in Signal Processing and Artificial Intelligence (1991) and the Ph.D. in 1995, both from the University of Surrey, UK.
Miroslaw has been actively involved in the development of visual analysis tools in MPEG, chairing the work of MPEG-7 Visual group and recently the work on Compact
Descriptors for Visual Search (CDVS). He developed shape description and image and video signature technologies which are now a part of the ISO standards. Miroslaw is an
inventor of over 70 patents and several of his inventions are deployed in consumer and professional products. His publication record includes over 70 refereed publications
and three books and book chapters. His research interests include image and video processing and analysis, computer vision and machine learning.
Giovanni Maria Farinella received the M.S. degree in Computer Science (egregia cum laude) from the University of Catania, Italy, in 2004, and the Ph.D. degree in Computer
Science, in 2008. He joined the Image Processing Laboratory (IPLAB) at the Department of Mathematics and Computer Science, University of Catania, in 2008, as Researcher.
He is Professor of Computer Science at the University of Catania (since 2008) and Professor of Computer Vision at the Academy of Arts of Catania (since 2004). His research
interests lie in the fields of computer vision, pattern recognition and machine learning. He has edited four volumes and co-authored more than 90 papers in international
journals, conference proceedings and book chapters. He is a co-inventor of four international patents. He serves as a reviewer and on the programme committee for major
international journals and international conferences. He founded (in 2006) and currently directs the International Computer Vision Summer School.
Mirko Guarnera received his Master Degree in Electronic Engineering from the University of Palermo and the Ph.D. from University of Messina. He joined STMicroelectronics
at the AST Labs in Catania, in 1999, where he currently holds the position of R&D Project Manager. He is IEEE member and member of the technical committee of SPIE
Electronic Imaging – Digital Photography conference. His research interests include image processing and pattern recognition for camera, TV, printers and projectors. He is
author of many Papers in journals, book chapters and Patents.
Sebastiano Battiato received his degree in Computer Science (summa cum laude), in 1995 from University of Catania and his Ph.D. in Computer Science and Applied
Mathematics from University of Naples, in 1999. From 1999 to 2003 he was the leader of the “Imaging” team at STMicroelectronics in Catania. He joined the Department of
Mathematics and Computer Science at the University of Catania as assistant professor in 2004 and became associate professor in the same department, in 2011. His research
interests include image enhancement and processing, image coding, camera imaging technology and multimedia forensics. He has edited 6 books and co-authored more
than 150 papers in international journals, conference proceedings and book chapters. He is a co-inventor of about 20 international patents, reviewer for several international
journals, and he has been regularly a member of numerous international conference committees. Battiato has participated in many international and national research
projects. Chair of several international events (IWCV2012, ECCV2012, VISAPP 2012-2013-2014, ICIAP 2011, ACM MiFor 2010-2011, SPIE EI Digital Photography 2011-2012-
2013, etc.). He is an associate editor of the IEEE Transactions on Circuits and System for Video Technology and of the SPIE Journal of Electronic Imaging. Guest editor of the
following special issues: “Emerging Methods for Color Image and Video Quality Enhancement” published on EURASIP Journal on Image and Video Processing (2010) and
“Multimedia in Forensics, Security and Intelligence” published on IEEE Multimedia Magazine (2012). He is the recipient of the 2011 Best Associate Editor Award of the IEEE

http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref38
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref38
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref38
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref38
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref42
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref42
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref42
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref45
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref45
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref45
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref46
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref46
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref46
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref47
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref48
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref48
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref48
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref50
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref50
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref50
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref53
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref53
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref53
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref54
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref54
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref54
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref56
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref56
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref56
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref56
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref56
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref60
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref60
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref60
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref64
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref64
http://refhub.elsevier.com/S0031-3203(15)00400-8/sbref64
http://www.st.com/

	Semantic segmentation of images exploiting DCT based features and random forest
	Introduction and motivations
	Related works
	Random forests and semantic texton forest
	Proposed approach
	DCT transform and DCT frequencies selection
	Quantization
	Upsampling and subsampling

	DCT-based features extraction
	Complexity of the proposed features

	Experimental setting and results
	CamVid dataset
	MSRC-v2 dataset

	Conclusion
	Conflict of interest
	Acknowledgements
	References




