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Abstract. This paper aims to introduce a new class of high order conservative schemes to solve
systems of conservation laws. The idea is to couple the conservation form of the system with, possibly
simpler, alternative formulations, which can be used to speed up the time update. In this work, we
illustrate the procedure for a Runge–Kutta time advancement, but other choices are possible. We
show that, as long as the last update is carried out in conservative form, all internal stages can
be computed using any consistent nonconservative formulation, still ensuring the propagation of
shock waves with the correct speeds. The same procedure can be easily extended to finite difference
schemes. Tests from classical and relativistic gas dynamics are carried out to study convergence,
numerical robustness and performance.
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1. Introduction. Several physical systems concerning propagation phenomena
are modeled by quasi-linear hyperbolic systems of conservation laws. Such systems
have been widely studied, both for the enormous relevance in the applications and for
the mathematical challenges they lead to. As known, even if smooth initial conditions
are imposed, the solution of a quasi-linear hyperbolic system will in general develop
singularities in finite times. After such a time, classical solutions cease to exist, and
one has to deal with weak solutions which, for smooth initial data, are composed by
piecewise smooth regions separated by jump discontinuities satisfying suitable jump
conditions. In general, uniqueness of the weak solution is not guaranteed. It can be
restored by adopting some regularization techniques, the most common one being the
addition of a parabolic term with a small viscosity which produces a unique solution
with sharp gradients that become jump discontinuities in the limit as the viscosity
parameter vanishes, yielding the so-called viscosity solution.

The mathematical theory of quasi-linear systems of conservation laws is a very
active field of research, and existence and uniqueness of the solution for several classes
of systems have been proven [8].

The most common schemes to produce numerical solutions of quasi-linear hyper-
bolic systems of conservation laws are the so-called shock-capturing schemes:
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formation and propagation of shocks is automatically “captured” by the scheme, which
produces a small region with sharp gradients where the shock forms and propagates.

The construction and analysis of shock-capturing schemes has been a very active
field of research in recent decades. Such schemes, based on an Eulerian approach, are
designed to discretize the system on a fixed grid, by finite volume, finite difference,
or finite element methods.

In this paper we will concentrate on finite volume and finite difference schemes,
which, together with discontinuous Galerkin schemes, are the most commonly used
methods in this context. An account of finite volume schemes for conservation laws
can be found in the book by Le Veque [18], whereas a more mathematical oriented
book is the one by Godlewski and Raviart [11].

In finite volume schemes, the conservation laws are integrated in space over each
grid cell of the domain, obtaining in such a way evolution equations for the cell
averages of variables. The unknowns are now the cell average values, which are
modified in each time step by the flux through the edges of each cell, and then the
choice of the proper numerical flux functions which correctly approximate the flux is a
crucial point of the scheme. This flux can be obtained by the computation of numerical
flux functions, for example, Godunov, Engquist–Osher, Rusanov, at the edge of each
cell, extracting information on point values from the knowledge of the cell averages.
This is obtained through an appropriate nonlinear reconstruction algorithm, such as
ENO or WENO [31], or the more recent CWENO [6]. In this way we get, from the
original system of PDEs, a large system of ODEs for the cell averages. This procedure
is called method of lines, and it yields a semidiscrete system. Once a system of ODEs is
derived, suitable integrators, such as strongly stability preserving (SSP) Runge–Kutta
schemes can be used [12], providing high order accuracy in time, without any spurious
oscillations due to time discretization. A conservative discrete form is mandatory in
those regions containing discontinuities, because otherwise their speed propagation
might be computed inexactly.

In the above approach, and in most finite volume schemes, the basic unknowns
are the conservative variables and the equations are always treated in conservative
form. However, in many cases there are more convenient ways to write the system
of equations. Harabetian and Pego [14] proposed a hybrid approach, whereby the
system is solved by a nonconservative scheme in smooth regions and switches to a
conservative form in regions with discontinuities. This approach allowed considerable
savings in computational time.

An alternative to the semidiscrete finite volume schemes described before is of-
fered by central schemes on staggered grids. After the first second order shock cap-
turing central scheme on staggered grid in one space dimension by Nessyahu and
Tadmor [24], several extensions appeared, increasing the order of accuracy [2, 19], the
spatial dimensions [16], or both [21].

In such schemes, a piecewise smooth solution is reconstructed in each cell starting
from the cell averages at a given time level tn. At variance with semidiscrete schemes,
in central schemes the fluxes are evaluated at the cell center, along time, enjoying the
smoothness of the solution for short times, provided a suitable restriction of CFL type
on the time step is satisfied. An advantage that has been attributed to central schemes
lies in their construction. They do not require use of exact or approximate Riemann
solvers, which are needed for schemes based on the solution of Riemann problems.
Such advantage, however, is not the main feature. Actually, the choice of the numeri-
cal flux function implies a choice of a particular Riemann solver: a great flexibility of
such functions is available, ranging from the Godunov flux, based on the exact solution
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of the Riemann problem, to the Rusanov flux (also called local Lax–Friedrichs), which
only needs an estimation of the Jacobian’s spectral radius of the system. Stag-
gered central schemes do not have this choice and are less effective—for instance,
the treatment of contact discontinuities in gas dynamics, which are smeared much
more than in the case of sharper Riemann solvers. In practice, the choice of the nu-
merical flux function is actually a weakness of staggered central schemes and not an
advantage!

There is, however, a great advantage of high order staggered central schemes over
classical nonstaggered schemes. Since the fluxes are evaluated from a preliminary
computation of the solution at the center of each cell, where the solution is (locally)
smooth, a large flexibility is provided in the evaluation of such a preliminary solution.
This feature was already pointed out by Nessyahu and Tadmor in their original paper,
where they noticed that the so-called predictor value, at cell center and half time step,
could be computed by the equation written in conservative form (discretizing the flux)
or in nonconservative form (written using the product of the Jacobian matrix times
the space derivative of the solution).

That feature was further exploited in [25]. In that paper, a method was presented
whereby the numerical solution on a staggered grid is computed by a conservative
scheme. In this scheme the stage values, needed for the computation of the fluxes
at the Runge–Kutta stages, may be computed by discretizing the equation in non-
conservative form. This procedure allows us to gain large flexibility in choosing the
dependent variables. However, in spite of this large flexibility, central Runge–Kutta
(CRK) methods suffered a lack of flexibility in choosing the numerical flux function,
typical of staggered central schemes. Furthermore, the formulation of the boundary
conditions might be a little bit more complicated.

In the present paper we propose a new class of schemes, which enjoy the flexibility
of CRK in the choice of the possibly nonconservative form of the equation to be
discretized in time while, at the same time, permitting the usage of arbitrary numerical
flux functions at the cell edges, thus delivering sharp treatment of contacts and linear
discontinuities. The stage values are computed at the cell center, where the solution is
locally smooth, by writing the system in a not necessarily conservative form. Once the
(nonconservative) stage values are computed, a preliminary solution is reconstructed
at both cell edges by some suitable nonoscillatory technique. The reconstructed values
are used to compute the fluxes at the cell edges by some numerical flux function. Once
the fluxes are known, the cell averages are updated by the conservative Runge–Kutta
step for the computation of the numerical solution. Therefore, the final scheme is
in conservative form, though most calculations can be performed using a convenient
nonconservative form of the equation.

The larger flexibility of the new approach allows the construction of more efficient
schemes in all those cases in which the system has a simpler form when expressed
in nonconservative variables. A typical example is given by the Euler equations of
relativistic gas dynamics, in which the computation of the pressure by the conservative
variables requires the solution of a nonlinear equation. The new approach allows us
to compute pressure just once per time step in each cell, as opposed to s times
for a classical s-stage Runge–Kutta scheme applied to a semidiscrete finite volume
discretization.

The plan of the paper is the following. In the next section we describe the
construction of finite volume schemes based on nonconservative evolution of the fields
at the cell center, in one spatial dimension. Then we present a series of numerical
tests both for classical gas dynamics and for the relativistic case. The purpose of the
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tests is to assess the high resolution capability and the computational efficiency of the
new approach. Finally in the last section we draw conclusions and mention future
perspectives of the new approach.

2. Semiconservative finite volume schemes. The evolution of conserved
quantities, such as mass, momentum, and energy, is given by equations of the form

∂t

∫
V

udv +

∫
∂V

f(u) · ndS = 0 ∀V ∈ Rd,(2.1)

where u : Rd×R+ → Ω⊂Rm are the conserved quantities, f=[f1, . . . , fd] : Rm → Rm
is the flux function, and V is any control volume in Rd. Here Ω denotes the set where
the variable u is defined: for instance, the density must be positive. If u is smooth,
(2.1) can be rewritten as a system of partial differential equations of the form

ut +∇ · f = 0.(2.2)

It is well known that the solution u can develop singularities in a finite time, even
from smooth initial data. In this case, (2.2) must be interpreted in a weak sense,
while (2.1) continues to hold; see [8] for more details.

Piecewise smooth solutions of (2.1) are allowed, in which jump discontinuities
propagate satisfying the co-called Rankine–Hugoniot conditions, which are derived
from (2.1). Since (2.2) descends from the conservative principle (2.1), the equations
(2.2) are said to be in conservative form. They are the only equations consistent with
(2.1) which permit us to derive the correct Rankine–Hugoniot conditions, and thus
the correct shock speeds.

Here, for simplicity, we consider initial value problems for one-dimensional, quasi-
linear hyperbolic systems of conservation laws of the form{

ut + fx(u) = 0, t > 0,
u(x, 0) = u0(x), x ∈ R.(2.3)

Since the system is hyperbolic, the Jacobian A(u) = ∇uf is diagonalizable with
real eigenvalues. As long as the solution is differentiable, system (2.3) can be rewritten
in the nonconservative form

ut +A(u)ux = 0,(2.4)

completed by the same initial conditions. For generic quasi-linear systems, the Jaco-
bian matrix A depends explicitly on the solution u.

The key point of this work is that other nonconservative forms of system (2.3) can
be formulated, as long as the solution is smooth, which can be more convenient from
a computational point of view, and it is possible to exploit these simpler formulations,
without losing exact conservation at the discrete level.

Let v denote a new set of variables, related to u by a one to one smooth mapping
M(v):

u =M(v), J =
∂M
∂v

, det(J) 6= 0, ∀ v ∈M−1(Ω).(2.5)

Rewriting system (2.3) in terms of the new set of variables, we get{
vt +B(v)vx = 0, t > 0,
v(x, 0) = v0(x) =M−1(u0(x)), x ∈ R,(2.6)

where v : R× R+ →M−1(Ω) ⊂ Rm, B = J−1AJ .
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We will solve (2.3) with the method of lines. To this end, we cover the compu-
tational domain with cells centered on the points xj ∈ R, j ∈ Z. For simplicity, we
consider a uniform grid such that xj+1 − xj ≡ ∆x ∀j. Let Ij = [xj−1/2, xj+1/2] be

the generic cell, enclosed by the interfaces xj−1/2 = xj − ∆x
2 , xj+1/2 = xj + ∆x

2 .
Let us introduce the cell averages

ūj(t) =
1

∆x

∫ xj+1/2

xj−1/2

u(x, t) dx, j ∈ Z.(2.7)

Integrating system (2.3) over the cells Ij , one obtains the finite volume formulation

dūj
dt

= − 1

∆x

(
f(u(xj+1/2, t))− f(u(xj−1/2, t))

)
,(2.8)

ūj(0) =
1

∆x

∫ xj+1/2

xj−1/2

u0(x) dx, j ∈ Z.

The numerical solution of system (2.3) in finite volume form (2.8) is based on three
key points

1. a reconstruction algorithm R, which gives an estimate of the numerical so-
lution at the interfaces, starting from the cell averages, with the desired
accuracy;

2. a numerical flux function F
j+1/2

, approximating f(u(x
j+1/2

, t)) at each cell
interface;

3. a time advancing scheme to compute the solution at time tn + ∆t, starting
from time tn.

The purpose of the reconstruction algorithm R is to obtain estimates of the point
values of the solution at the cell interfaces, starting from the cell averages. Typically,
one works with piecewise polynomial reconstructions,

R(x, ū) =
∑
j

Pj(x)χIj (x),

where Pj(x) are polynomials of degree d, which match d+ 1 contiguous cell averages,
including ūj , and where ū denotes the vector containing all cell averages of the numer-
ical solution. Note that the reconstruction is discontinuous across cells. In particular,
let

u+
j+1/2 = Pj+1(x

j+1/2
) u−

j+1/2
= Pj(xj+1/2

)

be the boundary extrapolated data at the cell interfaces. If the solution is smooth, and
the data are reconstructed with accuracy p, then the jump at the interface u+

j+1/2
−

u−
j+1/2

= O(∆x)p.

The numerical flux Fj+1/2 is a function of the two estimates of the solution at the

interface, namely Fj+1/2 = F (u+
j+1/2, u

−
j+1/2), and it is a numerical approximation

of the flux f(u) at the cell interface, obtained solving numerically (or exactly) the
Riemann problem at the interface defined by the data u+

j+1/2 and u−
j+1/2

. Many

popular numerical fluxes can be written in viscous form as

F (u+, u−) =
1

2

(
f(u+) + f(u−)

)
− 1

2
Q(u+, u−)

(
u+ − u−

)
,(2.9)

where Q(u+, u−) is the viscosity matrix. For instance, for local Lax–Friedrichs (also
called Rusanov flux) one has

Q(u+, u−) = α(u+, u−)I,



SEMI-CONSERVATIVE FINITE VOLUME SCHEMES B581

where, if f is convex, α = max(ρ(A(u+), ρ(A(u−))) = max(ρ(B(v+), ρ(B(v−))).
Other choices lead to less dissipative numerical monotone fluxes.1 For example, if
a Roe matrix A(u+, u−) [28] is available one could use

Q(u+, u−) = |A(u+, u−)|

or some approximation of the absolute value of the matrix which is cheaper to compute
and does not require full characteristic decomposition of the matrix. Approaches based
on the approximation of the matrix absolute value were introduced in [9] and then
generalized in various contexts (see, for example, the recent paper [5]).

The reconstruction R and the numerical flux F provide the space discretization
of the scheme. With these ingredients, the semidiscrete form of system (2.8) is given
by the system of ODEs

dūj
dt

= − 1

∆x

[
F (u+

j+1/2
(t), u−

j+1/2
(t))− F (u+

j−1/2
(t), u−

j−1/2
(t))
]
, j ∈ Z.(2.10)

Any numerical method for the integration of systems of ODEs can be used as a
time advancing scheme to solve (2.10). In this work, we will use explicit Runge–Kutta
methods [13]. For a generic initial value problem of the form

dy

dt
= g(t, y(t)), y(t) : R→ Rd, d ∈ N,

y(t0) = y0

an explicit ν-stage Runge–Kutta scheme can be written as

yn+1 = yn + ∆t

ν∑
l=1

bl g(tn + cl∆t, Y
(l)) (corrector step),(2.11)

Y (l) = yn + ∆t

l−1∑
k=1

alk g(tn + ck∆t, Y (k)) (predictor step),(2.12)

l = 1, . . . , ν,

where {Y (l)}l=1,...,ν are the internal stages of the Runge–Kutta step (also known as
stage values).

The coefficients {cl}l=1,...,ν , {bl}l=1,...,ν , {aij}i,j=1,...,ν univocally identify the
numerical scheme. In standard finite volume schemes with Runge–Kutta time ad-
vancement, the evolution of the numerical solution (2.11) is obtained applying the
Runge–Kutta scheme to the semidiscrete form (2.10):

ūn+1
j = ūnj −

∆t

∆x

ν∑
l=1

bl∆F
(l)
j ,(2.13)

ū
(l)
j = ūnj −

∆t

∆x

l−1∑
k=1

alk ∆F
(k)
j , l = 1, . . . , ν,

∆F
(l)
j = F

(
u

(l)+
j+1/2, u

(l)−
j+1/2

)
− F

(
u

(l)+
j−1/2, u

(l)−
j−1/2

)
,

where the values u
(l)±
j+1/2 at each cell interface are computed with a reconstruction step

from the cell averages ū(l). Thus, the conservative form of the equation is used for the

1A numerical flux F (u+, u−) is said to be monotone if the first order scheme produced by the
flux is a monotone scheme, i.e., if un

j ≥ wn
j ∀j, then un+1

j ≥ wn+1
j ∀j. For more details consult [17].
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final update (corrector step) and also for each of the ν stage values. This is precisely
the point where our new SC (semiconservative) schemes differ from traditional finite
volume FC (fully conservative) schemes.

In the semiconservative SC approach we propose, we first seek an alternative
simple formulation of the equations in the form (2.6), for a new set of variables v,
defined by the smooth one to one mapping (2.5). We then use the conservative form
of the equation for the final update, but each of the stage values is computed using
the simpler system vt +B(v)vx = 0. Clearly, the convenience of the method depends
on how much simpler system (2.6) is with respect to the conservative formulation and
on the number of stages ν. Thus, this approach is particularly interesting for high
order schemes.

More precisely, from the initial cell averages ūn, we apply a reconstruction step
which yields the point values unj at the cell centers. From these, we compute vnj =

M−1(unj ) ∀j. Next, the stages are computed from (2.6) as

v
(l)
j = vnj −∆t

l−1∑
k=1

alkB
(
v

(k)
j

)(
Dxv

(k)
)
j
, l = 1, . . . , ν.(2.14)

Here (Dxv
(k))j denotes the numerical discretization of the space derivative of the data

v(k), obtained with a suitable reconstruction. After all stages have been computed
using the simple system (2.14), the boundary extrapolated data at the lth stage are

obtained with a reconstruction step on the point values v
(l)
j , and the conservative

variables u are recovered from u
(l)+
j+1/2 =M(v

(l)+
j+1/2) and u

(l)−
j+1/2 =M(v

(l)−
j+1/2). These

quantities are used to close the time step with (2.13).
The algorithm is illustrated in Figure 2.1 and in the box appearing in Figure

2.2. Note that different reconstructions are needed: Ra is the reconstruction which

Fig. 2.1. Diagram for semiconservative finite volume schemes. At time tn the cell averages are
known. Pointwise values un

j are computed at cell centers and then converted to the non-conservative

variables vnj . Such variables are evolved in time and the corresponding stage values v
(k)
j are computed

at position xj and time tn + ck∆t. The stage values are reconstructed at each cell edge, obtaining

v
(k)

j± 1
2

. From such values the numerical flux at the quadrature nodes in time is computed and adopted

in order to obtain the conservative approximation of cell average at the new time tn+1.
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Algorithm: SC schemes
• From ūn find the pointvalues unj = Ra(xj , ū

n) ∀j.
• Compute vnj =M−1(unj ) ∀j.
• Compute all stage values v

(l)
j from (2.14) ∀j.

• Compute the values at interfaces v
(l)±
j+1/2 = Rp(xj+1/2,v

(l)) ∀j.
• Go back to conservative variables u

(l)±
j+1/2 =M(v

(l)±
j+1/2) ∀j.

• Close the time step on conservative variables with (2.13).

Fig. 2.2. Algorithm for the semiconservative finite volume schemes.

computes point values from cell averages, while Rp yields boundary extrapolated data
from point values, and Dx is a discrete derivative.

2.1. Constructing high order SC schemes. Semiconservative schemes can
be constructed with any order of accuracy. To obtain a scheme of order p, the re-
constructions and the time advancement Runge–Kutta scheme must be of matching
order. Here we will consider second, third, and fourth order schemes.

Second order. Since, for a smooth function w(x), w(xj) = wj + O(∆x)2, at
second order accuracy the reconstruction Ra is the identity. From the point values
w, the approximate slopes σj are computed with a piecewise linear reconstruction
and a limiter such as MinMod; see [17] and references therein. Thus ∀j we have

unj = ūnj ,

vnj =M(unj ),

σj = Dxv|j ,
v+
j+1/2 = vnj+1 − 1

2∆xσj+1, v−j+1/2 = vnj + 1
2∆xσj ,

where the slopes σ are computed from the data v. Then the scheme proceeds as in
Figure 2.2. Note that the same reconstruction is used to compute the point values,
the discrete derivative σ = Dxv in (2.14), and the boundary extrapolated data.

The SSP second order Heun scheme is used for the time advancement.

Fourth order. All reconstructions are obtained with WENO type interpolations;
see [32], [3], and the review [31]. For a fourth order scheme, the reconstruction is based
on three parabolas, combined in order to maximize accuracy on smooth solutions but,
at the same time, preventing spurious oscillations on nonsmooth data. The generic
WENO reconstruction can be written as

R(x, ū) =

1∑
`=−1

ω`j Pj+`(x).

When reconstructing point values from cell averages (Ra), the parabolas Pj+` inter-
polate the data ūj+` in the sense of averages,

1
∆x

∫
Ij+`

Pj(x) = ūj+`, ` = −1, 0, 1,

while the reconstruction from point values Rp has Pj(xj+l) = uj+l, l = −1, 0, 1. In
both cases, the generic parabola Pj(x) = P (x;wj−1, wj , wj+1) is given by
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Pj(x) = wj −
C

24
(wj+1 − 2wj + wj−1) +

wj+1 − wj−1

2∆x
(x− xj)(2.15)

+
wj+1 − 2wj + wj−1

2∆x2
(x− xj)2

with C = 1, w` = ū`, ` = j − 1, j, j + 1 for Ra and C = 0, w` = u`, ` = j − 1, j, j + 1
for Rp. The nonlinear weights {ω`j} are

ω`j =
α`j∑1

k=−1 α
k
j

, α`j =
d`

(ε+ β`j)
2
, ` = −1, 0, 1.(2.16)

The smoothness indicators β`j prevent the selection of stencils with nonsmooth data,
thus controlling spurious oscillations. In the case of parabolas they are given by
(see [31])

β−1
j =

13

12
(ūj−2 − 2ūj−1 + ūj)

2 +
1

4
(ūj−2 − 4ūj−1 + 3ūj)

2,

β0
j =

13

12
(ūj−1 − 2ūj + ūj+1)2 +

1

4
(ūj−1 − ūj+1)2,

β1
j =

13

12
(ūj − 2ūj+1 + ūj+2)2 +

1

4
(3ūj − 4ūj+1 + ūj+2)2.

The parameter ε prevents division by zero, but it is also involved in the accuracy of
the scheme; see [1] or [7]. Here we choose simply ε = 10−6, as in [31].

A key point is the choice of the constants d`. When the data derive from a
smooth function, all smoothness indicators are approximately equal, and the weights
ω`j ' d`. Then the constants d` are determined maximizing the accuracy that can be
obtained with a convex combination of the three parabolas involved. The problem is
that a convex combination of three parabolas can provide uniform accuracy within
the cell only up to third order, even though the stencil contains five cells. To increase
accuracy, the constants are determined maximizing the accuracy of the reconstruction
at one particular point. Note that each quantity being reconstructed needs a specific
set of constants and thus a different reconstruction.

A fourth order reconstruction of point values from cell centers can be obtained
by any symmetric choice of the constants d`, ` = −1, 0, 1, as illustrated in [19]. We
use d−1 = 3/16, d0 = 5/8, d1 = 3/16. Higher order accuracy is possible (indeed
sixth order can be obtained); however, it requires the use of negative weights. This
problem can be tackled with the technique described in [30], but we will not consider
this case here. For reconstructing the boundary extrapolated data, the constants are
d−1 = 5/16, d0 = 5/8, d1 = 1/16 for the left value v+

j−1/2
and d−1 = 1/16, d0 = 5/8,

d1 = 5/16 for the right value v−
j+1/2

. The accuracy of the reconstructed data is 5, for

smooth functions.
Finally, a reconstruction is needed also to compute the numerical derivative Dx.

Now, the reconstruction is given by

Dxv|xj
= RD(xj ,v) =

1∑
`=−1

ω`j
d

dx
Pj+`(xj).

The accuracy constants in this case are d−1 = 1/6, d0 = 2/3, d1 = 1/6, and the
accuracy of Dxv|xj

is 4.
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A class of WENO type reconstructions with uniform accuracy within the whole
cell can be found in [6]: in this case a single reconstruction step can yield all needed
quantities. We will illustrate this technique for constructing a third order scheme in
the next paragraph.

The time advancement scheme is the standard fourth order Runge–Kutta scheme.
In all cases, the numerical flux used is the Lax–Friedrichs flux.

Third order. The reconstruction used here is taken from [20] and can be viewed
as a particular case of [6], leading to a third order scheme.

Consider a set of data (point values or cell averages) and a polynomial Popt of
degree G, which interpolates in some sense all the given data (optimal polynomial).
The CWENO operator computes a reconstruction polynomial

Prec = CWENO(Popt, P1, . . . , Pm) ∈ PG

using Popt ∈ PG and a set of lower order alternative polynomials P1, . . . , Pm ∈ Pg,
where g < G and m ≥ 1. The definition of Prec depends on the choice of a set of
positive real coefficients d0, . . . , dm ∈ [0, 1] such that

∑m
`=0 d` = 1, d0 6= 0 (called

linear coefficients) as follows:
1. first, introduce the polynomial P0 defined as

P0(x) =
1

d0

(
Popt(x)−

m∑
`=1

d`P`(x)

)
∈ PG;(2.17)

2. then the nonlinear coefficients ω` are computed from the linear ones as in
(2.16), where β` denotes suitable regularity indicators, which can be chosen
following [15] as

β` =
∑
k≥1

∆x2k−1

∫ xj+1/2

xj−1/2

(
dl

dxl
P`(x)

)2

∆x, ` = 0, . . . ,m;(2.18)

3. and finally

Prec(x) =

m∑
`=0

ω`P`(x) ∈ PG.(2.19)

In the case of a third order scheme, the degree of Popt and P0 is G = 2, while the
m = 2 lower degree polynomials are just linear functions. The interesting point is that
since Prec is defined everywhere in the cell one can use it to compute the extrapolated
data and the discrete derivative. The constants d` can be chosen quite freely. Here
we have d0 = 1

2 , d1 = d2 = 1
4 .

As time integrator, we employ the third order Runge–Kutta scheme used in [15].

3. SC schemes and the Lax–Wendroff theorem. A crucial issue in the in-
tegration of systems of conservation laws is the enforcement of exact conservation. If
shock waves appear, exact conservation ensures that the correct wave speeds are cap-
tured also at the numerical level. This result is guaranteed by the Lax–Wendroff the-
orem, which contains sufficient conditions for the convergence of a numerical scheme
to a weak solution of conservation laws.

The key fact is that the Lax–Wendroff theorem (see, for instance, [10, p. 100])
requires the scheme to be conservative, and this is the main reason why one dis-
cretizes directly the conservative form of the equations, thus working in conservative
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variables. However, recalling the definition of conservative scheme, we can easily prove
that SC schemes are indeed conservative and therefore satisfy the hypotheses of the
Lax–Wendroff theorem.

Definition 3.1 (conservative scheme). The numerical scheme

ūn+1
j = ūnj − ∆t

∆x

(
F

j+1/2
− F

j−1/2

)
is conservative if the numerical flux F

j+1/2
= F (ūnj−p, . . . , ū

n
j+m) (p and m positive

integers) satisfies the following conditions:
1. F (u, . . . , u) = f(u) (consistency),
2. F (ūj−p, . . . , ūj+m) is at least Lipschitz continuous in all of its arguments.

Consistency. First note that the scheme is clearly built on a stencil with a finite
number of cells. Let then xj−p, . . . , xj+m be the cell centers in the stencil containing
the data needed to compute the numerical flux at the interface xj+1/2, with p and m
positive integers.

If ūnj−p = · · · = ūnj+m = U , then, since any piecewise polynomial reconstruction
interpolates constants exactly, also the reconstructed point values satisfy unj−p = · · · =
unj+m = U . Then the transformed variables are vnj−p = · · · = vnj+m = V =M−1(U).
Again, the piecewise polynomial reconstruction preserves constants, thus the numer-

ical derivative is zero, and all stage values in (2.14) reduce to v
(l)
k = vnk = V ∀k

in the stencil of the cell j. Reconstructing these data, all boundary extrapolated data

result in v
(l),±
j+1/2 = V . Mapping back to conservative variables, u

(l),±
j+1/2 =M(V ) = U .

Since we are using a conservative and consistent numerical flux, F
(l)
j+1/2 = F (u

(l),+
j+1/2,

u
(l),−
j+1/2) = F (U,U) = f(U). Finally, the numerical flux of the scheme is Fj+1/2 =∑
l blF

(l)
j+1/2 = f(U)

∑
l bl. So, the consistency of the numerical flux relies ultimately

on the consistency of the Runge–Kutta scheme, which ensures that
∑
bl = 1.

Lipschitz regularity. All ingredients used in the construction of the numerical
fluxes are at least Lipschitz continuous. More precisely, for the second order scheme,
the piecewise linear reconstruction using MinMod has just Lipschitz regularity, while
WENO reconstructions are C∞. The Lax–Friedrichs numerical flux is also C∞. The
final numerical flux is just a composition of these functions, and thus it has the
required smoothness.

4. Applications and numerical results. We illustrate the performance and
the field of applicability of the scheme with examples and numerical tests. We start
from scalar conservation laws, where it is easy to appreciate the differences between
standard conservative finite volume schemes and the new semiconservative schemes.
Next we continue with classical Euler equations, to end with the equations of rela-
tivistic gas dynamics, where the new scheme permits us to obtain considerable savings
in computational complexity.

4.1. Burgers’ equation. The computation of the correct shock speeds is en-
sured by the Lax–Wendroff theorem, which uses only the consistency of the numerical
fluxes, appearing in the conservative form of the finite volume formulation.

As an example, consider the following two initial value problems:

∂tu+ ∂x

(
1

2
u2

)
= 0, u(x, t = 0) = u0(x) > 0,(4.1)

∂tz + ∂x

(
1

3

√
(2z)3

)
= 0, z(x, t = 0) = 1

2u
2
0(x).(4.2)
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If, in the second equation, we take the change of variables z = M(v) = 1
2v

2, we
find that in the v variables, (4.2) coincides with the characteristic form of (4.1),
namely vt + vvx = 0, with the same initial data. Thus the two equations have the
same solution, as long as the solution is smooth. However, an initial step u0(x) =
uL + (uR − uL)H(x), where H is the Heavyside function, yields two different shock
speeds in the two initial value problems, namely

su =
1

2
(uL + uR),

sz =
2

3

u2
L + uLuR + u2

R

uL + uR
.

In fact, (4.1) prescribes the conservation of the quantity u, while the second equation
prescribes the conservation of the quantity z, and this fact yields two different results
for the shock speed, when one applies the Rankine–Hugoniot condition.

In the standard fully conservative scheme, the final update and all stage values are
computed directly from the two conservation laws. In the semiconservative approach,
for (4.1) we choose the auxiliary variables v = M−1(u) = I(u). Then the algorithm
is the following (here λ = ∆t

∆x ):
• Reconstruct the point values Unj from cell averages, and set V nj = Unj .
• Compute the stage values using the characteristic form vt + vvx = 0,

V
(l)
j = V nj −∆t

l−1∑
k=1

V
(k)
j Dx(V (k))(xj), l = 1, . . . , ν.

• Use the point values of the stages to reconstruct the boundary extrapolated

data, (V
(l)
j+1/2)±, and obtain (U

(l)
j+1/2)± = (V

(l)
j+1/2)±.

• Apply the conservative corrector step, evaluating the numerical flux F (l) =

F (U
(l)+
j+1/2, U

(l)−
j+1/2), consistent with f(u) = 1

2u
2, obtaining the new cell

averages

Ūn+1
j = Ūnj − λ

ν∑
l=1

bi

(
F

(l)
j+1/2 − F

(l)
j−1/2

)
.

For (4.2), we choose v = M−1(z) =
√

2z. Then, the semiconservative SC ap-
proach results in the following algorithm:

• Reconstruct the point values Znj from cell averages. Set V nj =
√

2Znj .
• Compute the stage values using the characteristic form vt + vvx = 0

V
(l)
j = V nj −∆t

l−1∑
k=1

V
(k)
j Dx(V (k))(xj), l = 1, . . . , ν.

• Use the point values of the stages to reconstruct the boundary extrapolated

data, (V
(i)
j+1/2)±, and obtain (Z

(l)
j+1/2)± = 1

2 [(V
(l)
j+1/2)±]2.

• Apply the conservative corrector step, evaluating the numerical flux F (l) =

F (Z
(l)+
j+1/2, Z

(l)−
j+1/2), consistent with f(z) = 1

3 (2z)(3/2), obtaining the new cell
averages

Z̄n+1
j = Z̄nj − λ

ν∑
l=1

bi

(
F

(l)
j+1/2 − F

(l)
j−1/2

)
.
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Fig. 4.1. Shock propagation (left) and shock formation (right). Red continuous line: fully
conservative fourth order (FC4) scheme; blue circles: semiconservative fourth order (SC4) scheme.

The results are shown in Figure 4.1. The plot on the left is obtained with an
initial jump, located in x = −0.8 with uL = 3 and uR = 1, at time T = 1. The
Burgers’ solution is a shock traveling with speed s1 = 2; the modified Burgers’ (4.2)
solution is a shock with speed s2 = 13

6 . The plot contains the solution of both
problems obtained with the fully conservative fourth order scheme (FC4) and the
semiconservative fourth order scheme (SC4). The plot on the right has as initial data
u0(x) = sin(π(x− 1

2 ))+1. For both equations the shock appears at the same time, but
it will have different speeds. Note that the FC and SC solutions coincide in all cases,
with the correct shock speeds. All numerical solutions were obtained with N = 100
grid points, and a CFL number CFL = 0.9.

4.2. Accuracy. We carry out accuracy tests on linear advection, using low and
high frequency solutions, for schemes of order 2, 3 and 4. The equation is ut+ux = 0.
The low frequency initial datum is

u0(x) = sin (πx− sin(πx)/π) ,

while for high frequency, we consider

u0(x) = sin(πx) + 1
4 sin(15πx) e−20x2

.

The first test can be found in [1], while the second test is due to [29].
Figure 4.2 contains the convergence history for the low frequency (left panel)

and the high frequency (right panel) test. The final time is T = 2, with periodic
boundary conditions on [−1, 1], so that each solution completes a whole period. The
black dashed lines are the expected rates (2, 3, and 4), the green, red, and blue curves
refer to the second, third, and fourth order scheme, respectively. The results of the
fully conservative schemes are labeled with circles, while the results of the new SC
schemes are marked with plus signs. The SC schemes have slightly smaller errors
than the traditional FC schemes, except than in the case of the fourth order scheme.
This is due to the fact that the WENO reconstruction is fifth order on the boundary
extrapolated data (which are the only data needed by the fourth order FC4) but only
fourth order on the reconstruction of point values at the cell center, which is needed
by SC4.

For the data on the high frequency test, we note that the expected accuracy
is obtained only after a transient, when the grid is fine enough to detect the high
frequency features of the solution.
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Fig. 4.2. Accuracy plots. Low frequency (left) and high frequency (right) tests. From top to
bottom, and green, red, and blue, respectively: second, third, and fourth order schemes. Semicon-
servative: +; and fully conservative: •.

4.3. Euler equations. We consider the standard Euler equations of compress-
ible gas dynamics in one dimension. In the notation of (2.3) U = [ρ,m,E], where ρ
is the density, m = ρv is the momentum, v is the velocity, and E is the total energy
per unit volume. The pressure p is linked to the other quantities by the equation of
state. Here we take E = 1

2ρv
2 + 1

γ−1p, with γ = 1.4 the polytropic constant for air.

∂t

 ρ
ρv
E

+ ∂x

 ρv
ρv2 + p
v(E + p)

 = 0.(4.3)

When the solution is smooth, system (4.3) can be written in terms of primitive
variables, obtaining a system of the form (2.6) with V = [ρ, v, p], namely

∂t

 ρ
v
p

+

 u ρ 0
0 v 1/ρ
0 γp v

 ∂x

 ρ
v
p

 = 0.(4.4)

As an example, we consider Lax’s Riemann problem, which is a standard bench-
mark in computational gas dynamics. The left and right states are ρL

vL
pL

 =

 0.445
0.6989
3.5277

  ρR
vR
pR

 =

 0.5
0

0.5710

 .

In this test, a high pressure gas on the left is impinging against a stationary low
pressure gas. Figure 4.3 contains the density profiles obtained with the second order
FC scheme (on the left) and the SC scheme on the right, for several values of the
number of grid points: N = 100, 200, 400, 800. As expected, the solution converges
to the exact profile (shown with the dashed line) under grid refinement, but it is
noteworthy that the SC scheme and the FC one provide undistinguishable solutions.

We do not expect gains in efficiency in Euler equations, using the semiconservative
approach, because the inverse of the map u =M(v), needed by the fully conservative
scheme to compute the flux, can be written explicitly, and it is fast to compute. On
the other hand, the SC approach requires one more reconstruction per step (from cell
averages to point values), and one application of the direct map per stage, to compute
the artificial diffusion correction. It is not surprising therefore that the computational
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Fig. 4.3. Lax’s test, density profile with the second order FC2 (left) and SC2 (right) schemes,
with N = 100, 200, 400, 800 (blue, green, red, black, respectively). The dashed profile is the exact
solution.

Table 4.1
Computational costs for Lax’s test, in seconds of CPU. The two columns on the right refer to

the scheme with characteristic projection (CP).

N FC2 SC2 FC4 SC4 FC4 CP SC4 CP
100 0.148 0.131 0.295 0.403 9.153 9.244
200 0.213 0.224 0.745 1.002 35.44 33.42
400 0.536 0.559 2.158 2.859 143.4 130.3
800 1.493 1.557 6.940 9.037 559.6 516.4

times of the SC schemes are slightly higher than those obtained by the corresponding
FC; see the first four columns of Table 4.1. The CPU times were obtained running
the code in MATLAB on a 2.9 GHz Intel Core i5 machine. The code is vectorized,
except for the runs with the reconstruction on characteristic variables, as in the last
two columns of the table.

Figure 4.4 contains a detail of the density peak obtained with the fourth or-
der FC4 (on the left) and SC4 (on the right). It is well known that high order
WENO schemes develop spurious oscillations in Riemann problems, with amplitude
decreasing under grid refinement. In fact, this is precisely the meaning of essentially
nonoscillatory reconstructions. This essentially nonoscillatory behavior is quite ap-
parent in the figure, but note that the SC solution is less oscillatory than its FC
counterpart, although in both cases the amplitude of the oscillations decreases under
grid refinement.

These oscillations arise in the first steps of the computation, when the waves
originated by the Riemannn problem are so close that it is impossible to find a stencil
containing only one discontinuity. This problem can be cured projecting the unknown
along characteristic directions, before performing the reconstruction, and computing
the reconstruction along the direction of the eigenvectors. This procedure was outlined
in [27] and it is very effective. The drawback is that it is computationally expensive.
Figure 4.5 shows the peak in the density of Lax’s Riemann problem when this device is
applied. The computational cost is reported in the last two columns of Table 4.1. Now,
the SC computation is slightly faster, because one variable is already a characteristic
variable.

4.4. Relativistic gas dynamics. As we have seen in the previous section, the
semiconservative approach reproduces the correct shock speeds, even though the stage
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Fig. 4.4. Lax’s test, detail of the density profile with the fourth order FC4 (left) and SC4 (right)
schemes, with N = 100, 200, 400, 800 (blue, green, red, black, respectively). The dashed profile is
the exact solution.
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Fig. 4.5. Lax’s test, detail of the density profile with the fourth order FC4 (left) and SC4 (right)
schemes, with N = 100, 200, 400, 800 (blue, green, red, black, respectively). Reconstruction along
characteristic directions. The dashed profile is the exact solution.

values are computed in nonconservative form. Since the mapping between conservative
and nonconservative variables u = M(v) is easily invertible in Euler equations, the
semiconservative approach is not computationally faster than standard finite volume
schemes. We expect to gain in efficiency when the semiconservative approach is
applied to equations for which the mapping M is not easily invertible.

As an example of this type, we consider the relativistic gas dynamic equations
([22]; see also [23] for a review), which can be written as

∂t

 D
S
τ

+ ∂x

 Dv
Sv + p
S −Dv

 = 0,(4.5)

where the conservative variables are mass densityD, momentum density S, and energy
density τ in the laboratory frame of reference. These quantities are linked to the
density ρ, the velocity v, and the pressure p through the relations

D = ρW,(4.6)

S = ρhW 2v,(4.7)

τ = ρhW 2 − p−D,(4.8)
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where W = (1−v2)−1/2 is the Lorentz factor in which v has been nondimensionalized
with the speed of light, thus v ∈ [−1, 1]; h is the enthalpy per unit mass, h = 1+e+ p

ρ ,
and e is the internal energy per unit mass. The pressure p is given by the equation of
state, p = ρe(γ − 1). To compute the flux on the right-hand side of (4.5), one must
compute v and p from the conservative variables.

The velocity v can be easily written in terms of the pressure and of conservative
variables using (4.7) and (4.8),

v =
S

τ +D + p
.

The internal energy is ρe = ρh− ρ− p, and the enthalpy can be written as a function
of the pressure and of conservative variables as

ρh =
τ +D + p

W 2
.

Substituting these quantities in the equation of state p = (γ − 1)ρe, one obtains a
nonlinear equation for the pressure, namely

0 = =(p(D,S, τ)) =
(
γW 2 − (γ − 1)

)
p− (γ − 1) (τ +D(1−W )) .(4.9)

The conservative variables (D,S, τ) clearly must satisfy D > 0, τ > 0. As already
noted, the velocity v cannot surpass the speed of light, i.e., −1 ≤ v ≤ 1. This
condition implies that τ + D ≥ |S|. Finally, the root of F(p) = 0 must be positive,
and this request brings in a further restriction. In fact, F(p) is a monotone increasing
function (see [22]). Thus the pressure is positive if F(p = 0) < 0, which is satisfied
provided

(τ +D)2 > D2 + S2.(4.10)

In this case, the function F(p) has a single, positive root. To compute the flux, the
nonlinear equation (4.9) must be solved at each grid point. In our tests, (4.9) is solved
with Newton’s method, using, as a starting guess for the pressure, the local value from
the previous time step. Note, however, that condition (4.10) may be violated when
spurious oscillations occur, especially when the flow is characterized by a total energy
which is almost completely kinetic. In this case, (4.9) may yield a negative value for the
pressure or no solution at all, and the integration breaks down. Thus, it is crucial to
use nonoscillatory schemes when dealing with low pressure, relativistic gas dynamics.

Clearly, if v � 1, classical mechanics holds, and one recovers standard compress-
ible gas dynamics.

The equations of relativistic gas dynamics in primitive variables are [22]

∂t

 ρ
v
p

+



v
ρ

1− v2c2
−v

hW 2(1− v2c2)

0 v
1− c2

1− v2c2
1

ρhW 4(1− v2c2)

0
ρhc2

1− v2c2
v(1− c2)

1− v2c2


∂x

 ρ
v
p

 = 0,(4.11)

where c2 = γp/(ρh). These are the equations which will be used in the computation
of the stage values.

Now, for the standard finite volume scheme FC, given the cell averages D̄n, S̄n, τ̄n

one needs to compute the ν stage values, and each stage value requires the evaluation
of the inverse of the map U =M(V ) defined by (4.6)–(4.8), which needs the solution
of F(p;D(i), S(i), τ (i)) = 0. In the semiconservative schemes SC, instead, given the
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cell averages D̄n, S̄n, τ̄n, we compute the point values Dn, Sn, τn, and the primitive
variables ρ, v, p inverting again the map U = M(V ), but this is done only once per
time step. Next, the ν stages are computed from (4.11), which does not require the
inversion ofM(V ). Once the stage values ρ(i), v(i), p(i) are known, the stage values for
the conservative variables D(i), S(i), τ (i) are easily found. This explains why the new
SC schemes are faster with respect to the fully conservative schemes in the relativistic
case.

We illustrate the behavior of the schemes with three shock tube problems. The
first two tests can be found in [22]. The left and right states for the first test are
given by

Test 1

 ρ
v
p


L

=

 10
0

13.3

 ,

 ρ
v
p


R

=

 1
0

0.6 10−6

 .

In this case, a gas expands into an extremely low pressure gas. The polytropic param-
eter is γ = 5

3 , the final time is T = 0.36, and the Courant number is CFL= 0.45 for
all schemes. The profiles for density, velocity, and pressure for the second order FC2
and SC2 can be seen in Figure 4.6. The exact solution was computed thanks to the
Riemann solver described in [23].

It is apparent that all features of the solution are correctly reproduced by the
semiconservative SC scheme. For the fourth order schemes, we show a peak of the
density profiles in Figure 4.7. Again, we note that the semidiscrete SC schemes
are less oscillatory than the standard finite volume method of the same order. The
computational times of the four schemes tested are listed in Table 4.2. Now, the
semiconservative schemes are faster than their fully conservative counterpart, because
the costly inverse of the map u =M(v) has to be computed only once per time step.
Clearly, the difference is much more apparent in the fourth order case.

The second test is again from [22], but an analogous set up can also be found in
[26], [33]:

Test 2

 ρ
v
p


L

=

 1
0

1000

 ,

 ρ
v
p


R

=

 1
0

0.01

 .

This shock tube problem results in a rarefaction moving toward the left and a contact
and shock traveling right. The difficulty of this test is due to the fact that the
contact and the shock travel at almost equal speeds, so that high order schemes have
difficulties in selecting a nonoscillatory stencil.

The results obtained with the fourth order semiconservative scheme appear in
Figure 4.8. The fully conservative, fourth order scheme fails on this test, because
condition (4.10) is violated across the contact wave, after the computation of the first
stage values.

A further test, Test 3, is drawn from [33]. The initial left and right states are
given by

Test 3

 ρ
v
p


L

=

 1
0.9
1

 ,

 ρ
v
p


R

=

 1
0
10

 .

It describes a low pressure gas impinging against a high pressure gas. Figure 4.9
contains the resulting density profiles for the fourth order schemes, with a zoom on
the contact wave on the bottom of the figure. In this case, the semiconsenservative
scheme is more oscillatory than the fully conservative finite volume scheme.
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Fig. 4.6. Mart́ı Müller Test 1, density, velocity, and pressure profiles with the second order FC2
(left) and SC2 (right) schemes, with N = 100, 200, 400, 800 (blue, green, red, black, respectively).
The dashed profile is the exact solution.
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Fig. 4.7. Mart́ı Müller Test 1, zoom on the density profiles with the fourth order FC4 (left)
and SC4 (right) schemes, with N = 100, 200, 400, 800 (blue, green, red, black, respectively). The
dashed profile is the exact solution.

For this test, we also show the error versus the CPU time of first (green), second
(blue), and fourth (red) order schemes, see Figure 4.10. The results obtained with the
fully conservative FC schemes are represented with a dot, while the results yielded
by the semiconservative schemes appear with a + marker. It is clear that the SC
schemes in all cases (except on a very coarse grid) yield consistently smaller CPU
times for the same error. This is not a test in which high order schemes work at their
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Table 4.2
Computational costs for Relativistic gas dynamics, in seconds of CPU. Test 1 from Mart́ı Müller.

N FC2 SC2 FC4 SC4
100 0.155 0.288 0.668 0.409
200 0.341 0.260 1.390 0.788
400 0.798 0.577 3.763 1.922
800 1.973 1.506 10.783 5.611
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Fig. 4.8. Mart́ı Müller Test 2. At the top: density profile with a zoom on the contact wave.
Bottom: velocity and pressure, SC4 with N = 100, 200, 400, 800 (blue, green, red, black, respec-
tively). The dashed profile is the exact solution.

best, because the solution of a Riemann problem is not full of structure. However, in
this case the exact solution is known and quantitative results can be carried out. The
most interesting point is that SC is indeed faster than fully conservative schemes.

4.4.1. Two-dimensional tests. Finally, we consider two-dimensional tests. The
equations for relativistic gas dynamics in primitive variables are

∂tV +Ax∂xV +Ay∂yV = 0,(4.12)

where the Jacobians of the flux are given by

Ax =



u ρG 0 − uG
hW 2

0 uG(1− c2) 0 G
ρhW 2 (1− u2 − c2v2)

0 − c
2G
W 2 v u −G(1−c2)

ρhW 2 uv

0 ρhc2G 0 G(1− c2)u


(4.13)
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Fig. 4.9. Zhao Tang, Test 3. At the top: density profiles for SC4 (left) and FC4(right).
Bottom: zoom on the contact wave. N = 100, 200, 400, 800 (blue, green, red, black, respectively).
The dashed profile is the exact solution.
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Fig. 4.10. Error versus CPU time of first (green), second (blue), and fourth (red) order
schemes. FC schemes are represented with a dot, SC schemes appear with a + marker.

and

Ay =



v 0 ρG − uG
hW 2

0 v − c
2G
W 2 u −G(1−c2)

ρhW 2 uv

0 0 −G(1− c2)v G
ρhW 2 (1− c2u2 − v2)

0 0 ρhc2G G(1− c2)v


.(4.14)
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Fig. 4.11. Two-dimensional Riemann problem for relativistic gas dynamics, density contours,
second order FC (top) and SC (bottom), with N = 100 (left) and N = 400 (right) points per
direction.

Here, (u, v) are the components of the velocity in the x and y directions, respectively,
W 2 = 1/(1 − (u2 + v2)) and G = 1/(1 − c2(u2 + v2)). As a test, we propose a
two-dimensional Riemann problem, in which the four states are given by

VNW =


2
0
0
1

 , VNE =


2
−0.5
0.5
1

 , VSW =


2
0

0.5
1

 , VSE =


2
0

0.5
10

 ,

with NW labeling the northwest corner of the computational domain, and similarly
for the other labels.

The computational domain is the square Q = (0, 1)2, with free-flow boundary
conditions. The final time is tf = 0.36 and the origin of the Riemann problem is in
the middle of Q.

We show results obtained with a dimension by dimension piecewise linear re-
construction for second order and the truly two-dimensional third order CWENO
reconstruction of [4], to which we added the computation of the slopes. The results
can be seen in Figure 4.11 for the second order scheme and Figure 4.12 for the third
order scheme. Each figure contains 40 contour lines for the density ρ for the FC
scheme (top plots) and for the SC scheme (bottom). The figures also show the effect
of grid refinement: the number of grid points along each side is N = 100 for the
left plots and N = 400 for the plots on the right. SC provides in all cases a slight
improvement in the resolution of the discontinuities. Further, in this solution with a
rich structure, the third order solution exhibits more details than the second order
case.

The corresponding computational times can be found in Table 4.3. As in the
one-dimensional case, the SC scheme is faster than its corresponding FC, and the
computational gain increases with the order.
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Fig. 4.12. Two-dimensional Riemann problem for relativistic gas dynamics, density contours,
third order FC (top) and SC (bottom), with N = 100 (left), and N = 400 (right) points per direction.

Table 4.3
Computational costs for the two-dimensional relativistic Riemann problem, in seconds of CPU.

N FC2 SC2 FC3 SC3
100 1.78 1.82 12.85 9.55
200 13.45 11.54 165.25 121.19
400 138.09 113.88 1875.12 1400.89

5. Conclusions. In this paper we have presented a novel approach to construct
conservative finite volume methods for conservation laws. Although the final scheme
is conservative and is able to capture shocks with the correct propagation speed,
most of the computational work is performed using a nonconservative formulation,
in nonconservative variables. This adds a tremendous flexibility to the choice of the
unknown variables and on the form of the equations on which most of the compu-
tational effort is carried out. We explored in some detail two applications, namely
classic and relativistic gas dynamics. In both cases, the nonconservative form of the
equations based on primitive variables was chosen. In classical gas dynamics, it is
observed that in many cases this choice provides less oscillatory solutions than in
standard WENO schemes based on conservative variables. In relativistic gas dynam-
ics, high order schemes greatly benefit from the nonconservative formulation, which
allows us to compute the evolution of the fields without solving the nonlinear equation
to determine the pressure from the conservative variables. Such an equation has to be
solved only once per cell per time step, as opposed to what happens in standard finite
volume schemes based on ν stages Runge–Kutta schemes, for which such an equation
has to be solved ν times per cell per time step.

The method can be easily extended to the construction of conservative finite
difference schemes, which may be very convenient for efficient computation in several
space dimensions.
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We believe there are several other contexts in which the flexibility introduced
by the semiconservative approach can be successfully exploited for producing more
effective codes, which are either more efficient or more accurate for the same dis-
cretization parameters. The use of the new approach in other contexts as well as in
several space dimensions is currently under investigation.
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