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Abstract
The paper deals with a traffic network with random demands in which some of the
roads need maintenance jobs. Due to budget constraints, a central authority has to
choose which of them are to be maintained in order to decrease as much as possible
the average total travel time spent by all the users, assuming that the network flows
are distributed according to the Wardrop equilibrium principle. This optimal road
maintenance problem is modeled as an integer nonlinear program, where the objective
function evaluation is based on the solution of a stochastic variational inequality. We
propose a regularization and approximation procedure for its computation and prove
its convergence. Finally, the results of preliminary numerical experiments on some
test networks are reported.

Keywords Traffic network equilibrium · Random demand · Stochastic variational
inequality · Investment optimization

1 Introduction

In this paper we deal with the problem of optimizing road maintenance investments.
Indeed, in a traffic network some of the roads usually need improvement jobs but, due
to the limited amount of money available, some decision makers have to find out the
optimal allocation of resources, i.e., they have to choose the roads to be maintained in
such a way that the resulting impact on the traffic in the network is the best according
so some criteria, or performance indices. To provide a useful performance index, we
assume that the flows in the network are distributed according toWardrop equilibrium,
which implies that travelers choose their road so as to minimize their journey time,
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and all the roads actually used to connect a given origin to a given destination share
the same travel time. Moreover, to be closer to concrete applications, we also assume
that the traffic demand can be randomly perturbed according to a given probability
distribution. Accordingly, the quantities of interest in our analysis are the mean values
with respect to the given probability distribution, related to Wardrop equilibrium. The
performance index that we choose is the mean value of the total travel time spent by
all the users in the network, which can be directly connected to the pollution released
by all the vehicles and can be also thought of as a social cost, because it actually
represents the total time subtracted to work or to personal leisure. In the literature,
the terms travel time and travel cost are considered on an equal footing, although a
general cost may include aspects different from the pure travel time. A performance
index only based on a weighted sum of topological parameters of a rail network has
been recently put forward in [20]. To model congestion in the network, we make use
of the link-cost functions in the form given by the Bureau of Public Roads (BPR) [3],
which explicitly contain the capacity ui of each road represented by a link ai in the
network. In this model, the maintenance of link ai improves its capacity from ui to
γi ui , where γi > 1 is called the enhancement ratio of link ai . The case where γi = γ

for all the roads was considered in [14] in a deterministic framework. For each set of
links that can be maintained, under the budget constraint, we update the mean total
travel time mentioned above and compute its relative variation. The decision makers
can then assess the impact of each intervention, with respect to the investment required,
and select a small number of eligible alternatives for the final choice.

The paper is organized as follows. In Sect. 2, we brief the reader on the concept
of Wardrop equilibrium and on the variational inequality formulation of the traffic
equilibrium problem. We also analyze the relationship between the link and the path
formulations, with respect to the monotonicity properties of the cost operator. Sec-
tion 3 provides the reader with the essential background on variational inequalities
in probability spaces and gives a stochastic variational inequality formulation of the
traffic equilibrium problemwith random perturbations of the data. In Sect. 4, we define
our performance index, i.e., themean value of the total cost, and give an approximation
procedure for its computation together with its convergence proof. Later, the optimal
road maintenance investment problem is modeled as an integer nonlinear optimiza-
tion program. Finally, Sect. 5 is devoted to some numerical experiments showing the
approximated solutions of the optimizationmodel together with the impact of different
probability distributions of the traffic demand on the approximated average total cost.
The paper ends with an appendix, where we describe the approximation procedure
for our stochastic variational inequality, in order to enable the interested reader to
implement the model.

2 Traffic network equilibrium and efficiencymeasure

For a comprehensive treatment of the mathematical aspects of the traffic network
equilibrium problem, we refer the reader to the book [17]. In this section, we focus on
the basic definitions and on the variational inequality formulation of a user equilibrium
flow (see, e.g. [4,21]). Throughout the paper, a�b denotes the scalar product between
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vectors a and b, while M� denotes the transpose of a matrix M . A traffic network
consists of a triple G = (N , A,W ), where N = {N1, . . . , Np} is the set of nodes,
A = {a1, . . . , an} ⊆ N × N is the set of arcs (or links) connecting pairs of nodes
and W = {W1, . . . ,Wm} ⊆ N × N is the set of the origin-destination (O-D) pairs.
The flow on the link ai is denoted by fi and the link flows are grouped into a vector
f = ( f1, . . . , fn). A path (or route) is defined as a set of consecutive links and we
suppose that each O-D pair Wj is connected by r j paths, whose set is denoted by Pj .
All the paths of the network are grouped into a vector (R1, . . . , Rk). The structure of
the paths can be described by using the link-path incidence matrix � = (δir ), with
i = 1, . . . , n and r = 1, . . . , k, where δir = 1 if ai ∈ Rr and 0 otherwise. The
flow on path Rr is denoted by Fr . All the path flows are grouped into the network
path flow vector (F1, . . . , Fk). The flow fi on the link ai is equal to the sum of the
flows on the paths containing ai , so that f = �F . The unit cost of traveling through
link ai is a non-negative real function ci ( f ) of the flows on the network, so that
c( f ) = (c1( f ), . . . , cn( f )) denotes the link cost vector of the network. The meaning
of the cost is usually that of travel time and, in the simplest case, the generic component
ci only depends on fi . In our model, we use the BPR form of the link cost function
which explicitly takes into account the link capacities. More precisely, the travel cost
for link ai is given by

ci ( fi ) = t0i

[
1 + k

(
fi
ui

)β
]

, (1)

where t0i is the free flow travel time on link ai , ui describes the capacity of link ai ,
while k and β are positive parameters. Analogously, C(F) = (C1(F), . . . ,Ck(F)) is
the path cost vector, where the cost Cr (F) of path Rr is the sum of the costs on the
links which build that path, i.e.

Cr (F) =
n∑

i=1

δir ci ( f ),

or in compact form C(F) = ��c(�F). For each pair Wj , there is a given traffic
demand Dj > 0, so that D = (D1, . . . , Dm) is the demand vector of the network.
Feasible path flows are non-negative flows such that the traffic demands are satisfied,
i.e., they belong to the set

K = {F ∈ R
k : F ≥ 0 and �F = D}, (2)

where � is the pair-path incidence matrix, whose entries are

ϕ jr =
{
1, if the path Rr connects the pairWj ,

0, elsewhere,

with j = 1, . . . ,m and r = 1, . . . , k. The notion of a user traffic equilibrium is given
by the following definition.
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Definition 1 A network flow H ∈ K is a Wardrop equilibrium if, for each O-D pair
Wj and for each pair of paths Rr , Rs which connect Wj , the following implication
holds:

Cr (H) > Cs(H) �⇒ Hr = 0;

that is, if traveling along the path Rr takes more time than traveling along Rs , then the
flow along Rr vanishes.

It follows from the previous definition that the travel cost of the paths which connect
a given O-D pair is the same (and minimum) for all paths with positive flow. Hence, H
is a Wardrop equilibrium if for each O-D pairWj there exists a scalar λ j (representing
the equilibrium cost shared by all the used paths connecting Wj ) such that

Cr (H)

{
= λ j , if Hr > 0,

≥ λ j , if Hr = 0.

The variational inequality formulation of the Wardrop equilibrium is given by the
following result (see, e.g., [17]).

Theorem 1 Anetwork flow H ∈ K is aWardrop equilibrium iff it solves the variational
inequality

C(H)�(F − H) ≥ 0, ∀ F ∈ K . (3)

Notice that the variational inequality (3) can be rewritten by decomposing the scalar
product according to the various O-D pairs as follows:

m∑
j=1

∑
r∈Pj

Cr (H) (Fr − Hr ) ≥ 0, ∀ F ∈ K .

For the subsequent development, the monotonicity properties of the cost operators
will be exploited.

Definition 2 A map T : Rn → R
n is said monotone if

( (T (x) − T (y) )�(x − y) ≥ 0, ∀ x, y ∈ R
n,

and strictly monotone if the equality holds only for x = y; T is said strongly monotone
if there exists α > 0 such that

( (T (x) − T (y) )�(x − y) ≥ α‖x − y‖2, ∀ x, y ∈ R
n .

The strict monotonicity assumption of the link-cost functions is commonly used
because it models the congestion effect. However, this does not necessarily imply the
strict monotonicity of the path-cost functions, this needs an extra condition as the
following lemma shows.
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Lemma 1 (a) If c is monotone, then C is monotone.
(b) If c is strictly monotone and � has full column rank, then C is strictly monotone.
(c) If c is strongly monotone and� has full column rank, then C is strongly monotone.

Proof (a) If F1, F2 ∈ K , then

[F1 − F2]�[C(F1) − C(F2)] = [F1 − F2]���[c(� F1) − c(� F2)]
= [�F1 − �F2]�[c(� F1) − c(� F2)]
≥ 0.

(b) If F1 �= F2, then �F1 �= �F2 since � has full column rank, hence

[F1 − F2]�[C(F1) − C(F2)] = [F1 − F2]���[c(� F1) − c(� F2)]
= [�F1 − �F2]�[c(� F1) − c(� F2)]
> 0.

(c) If F1, F2 ∈ K , then there exists α > 0 such that

[F1 − F2]�[C(F1) − C(F2)] = [F1 − F2]���[c(� F1) − (� F2)]
= [�F1 − �F2]�[c(� F1) − c(� F2)]
≥ α‖�F1 − �F2‖2
= α(F1 − F2)����(F1 − F2)

≥ αλmin(�
T�)‖F1 − F2‖2,

where λmin(�
��), which denotes the minimum eigenvalue of ���, is positive

since � has full column rank. �

A useful network efficiency index is the total travel time (or total cost), when a
Wardrop equilibrium H is reached:

TC =
m∑
j=1

∑
r∈Pj

Cr (H) Hr =
m∑
j=1

λ j D j . (4)

It has to be noted that an enhancement of capacity of a link can result in an increase
of the total cost as a consequence of the well known Braess paradox [2].

In our model, we wish to include the possibility that the traffic demand can be
affected by a random perturbation. As a result, we model the traffic equilibrium prob-
lem as a stochastic variational inequality. Thus, the total cost at equilibrium becomes
a random variable as well, whose expectation is then defined as the efficiency index of
our network. In the next section, we brief the reader on the basic facts on the variational
inequality theory in probability spaces (for more details on this topic see, e.g., [7–10]).
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3 An outline of stochastic variational inequalities and their
application to the traffic equilibrium problem

Let (
,A, P) be a probability space, A, B : R
k → R

k two given mappings, and
b, c ∈ R

k two given vectors in Rk . Moreover, let R and S be two real-valued random
variables defined on 
, D a random vector in Rm, and G ∈ R

m×k a given matrix. For
ω ∈ 
, we define a random set M(ω) := {x ∈ R

k : Gx ≤ D(ω)}. Consider the
following stochastic variational inequality: for almost every ω ∈ 
, find x̂ := x̂(ω) ∈
M(ω) such that

(S(ω) A(x̂) + B(x̂) )�(z − x̂) ≥ (R(ω) c + b )�(z − x̂), ∀ z ∈ M(ω). (5)

To facilitate the foregoing discussion, we set T (ω, x) := S(ω) A(x) + B(x). We
assume that A, B and S are such that the map T : 
 × R

k �→ R
k is a Carathéodory

function.
We also assume that T (ω, ·) is monotone for every ω ∈ 
.
Sincewe are only interested in solutionswithfinite first- and second-ordermoments,

our approach is to consider an integral variational inequality instead of the parametric
variational inequality (5).

Thus, for a fixed p ≥ 2, consider the Banach space L p(
, P,Rk) of ran-
dom vectors V from 
 to R

k such that the expectation (p-moment) is given by
EP (‖V ‖p) = ∫



‖V (ω)‖pd P(ω) < ∞. For subsequent developments, we need

the following growth condition

‖T (ω, z)‖ ≤ α(ω) + β(ω)‖z‖p−1, ∀ z ∈ R
k, (6)

where α ∈ Lq(
, P) and β ∈ L∞(
, P). Due to the above growth condition, the
Nemytskii operator T̂ associated to T , acts from L p(
, P,Rk) to Lq(
, P,Rk),

where p−1 + q−1 = 1, and is defined by T̂ (V )(ω) := T (ω, V (ω)), for any ω ∈ 
.

Assuming D ∈ L p
m(
) := L p(
, P,Rm), we introduce the following nonempty,

closed and convex subset of L p
k (
)

MP := {V ∈ L p
k (
) : G V (ω) ≤ D(ω), P − a.s.}.

Let S(ω) ∈ L∞, 0 < s < S(ω) < s, and R(ω) ∈ Lq . Equipped with these
notations, we consider the following L p formulation of (5). Find Û ∈ MP such that
for every V ∈ MP , we have

∫



(S(ω) A[Û (ω)] + B[Û (ω))]�(V (ω) − Û (ω)) dP(ω) ≥
∫




(b + R(ω) c)�(V (ω) − Û (ω))dP(ω).

(7)

A general theorem for the solvability of (7) is given at the end of the Appendix.
To get rid of the abstract sample space
, we consider the joint distribution P of the

random vector (R, S, D) and work with the special probability space (Rd ,B(Rd),P),
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where d := 2 + m and B is the Borel σ -algebra on R
d . For simplicity, we assume

that R, S, and D are independent random vectors. We set

r = R(ω), s = S(ω), t = D(ω), y = (r , s, t).

For each y ∈ R
d , we define the set M(y) := {x ∈ R

k : Gx ≤ t}.
Consider the space L p(Rd ,P,Rk) and introduce the closed and convex set MP :=

{v ∈ L p(Rd ,P,Rk) : Gv(r , s, t) ≤ t, P − a.s.}. Without any loss of generality, we
assume that R ∈ Lq(
, P) and D ∈ L p(
, P,Rm) are non-negative.

Moreover, we assume that the support (i.e., the set of possible outcomes) of S ∈
L∞(
, P) is the interval [s, s[⊂ (0,∞). With these ingredients, we consider the
variational inequality problem of finding û ∈ MP such that for every v ∈ MP we have

∫ ∞

0

∫ s

s

∫
R
m+
(s A[û(y)] + B[û(y)])�(v(y) − û(y)) dP(y) ≥

∫ ∞

0

∫ s

s

∫
R
m+
(b + r c)�(v(y) − û(y)) dP(y).

(8)

For the reader’s convenience, we provide some details on the numerical approxima-
tion of the solution û in the Appendix. Here, we only mention that the set MP can be
approximated by a sequence {Mn

P
} of finite dimensional sets, and the functions r and

s can be approximated by the sequences {ρn} and {σn} of step functions, with ρn → ρ

in L p and σn → σ in L∞, respectively, where ρ(r , s, t) = r and σ(r , s, t) = s.
When the solution of (8) is unique, we can compute a sequence of step functions ûn
which converges strongly to û, under suitable hypotheses, by solving, for n ∈ N, the
following discretized variational inequality: find ûn := ûn(y) ∈ Mn

P
such that, for

every vn ∈ Mn
P
, we have

∫ ∞

0

∫ s

s

∫
R
m+
(σn(y) A[ûn(y)] + B[ûn(y)])�(vn(y) − ûn(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫
R
m+
(b + ρn(y) c)

�(vn(y) − ûn(y)) dP(y). (9)

In absence of strict monotonicity, the solution of (7) and (8) can be not unique and
the previous approximation procedure must be coupled with a regularization scheme
as follows. We choose a sequence {εn} of regularization parameters and choose the
regularization map to be the duality map J : L p(Rd ,P,Rk) → Lq(Rd ,P,Rk). We
assume that εn > 0 for every n ∈ N and that εn ↓ 0 as n → ∞.

We can then consider the following regularized stochastic variational inequality:
for n ∈ N, find wn = w

εn
n (y) ∈ Mn

P
such that, for every vn ∈ Mn

P
, we have

∫ ∞

0

∫ s

s

∫
R
m+

(
σn(y) A[wn(y)] + B[wn(y)] + εn J (wn(y))

)�
(vn(y) − wn(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫
R
m+
(b + ρn(y) c)

�(vn(y) − wn(y)) dP(y).

(10)
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As usual, the solution wn will be referred to as the regularized solution. Weak and
strong convergence of wn to the minimal-norm solution of (8) can be proved under
suitable hypotheses (see the Appendix).

In traffic network equilibrium problems, the demand and the cost are often modeled
as random variables (see, e.g., [1,5,7]).

Thus, let 
 be a sample space and P be a probability measure on 
, and consider
the following feasible set which takes into consideration random fluctuations of the
demand:

K (ω) = {F ∈ R
k : F ≥ 0, �F = D(ω)}, ω ∈ 
.

Moreover, let C : 
 ×R
k �→ R

k be the random cost function. We can thus introduce
ω as a random parameter in (3) and consider the problem of finding a vector H(ω) ∈
K (ω) such that, P − a.s:

C(ω, H(ω))�(F − H(ω)) ≥ 0, ∀ F ∈ K (ω). (11)

Definition 3 A random vector H ∈ K (ω) is a random Wardrop equilibrium if for
P-almost every ω ∈ 
, for each O-D pairWj and for each pair of paths Rr , Rs which
connect Wj , we get

Cr (ω, (H(ω)) > Cs(ω, (H(ω))) �⇒ Hr (ω) = 0.

Consider then the set

KP = {F ∈ L p(
, P,Rk) : Fr (ω) ≥ 0, P. − a.s., ∀ r = 1, . . . , k, �F(ω) = D(ω), P. − a.s.},

which is is convex, closed and bounded, hence weakly compact. Furthermore, assume
that the cost function C satisfies the growth condition:

‖C(ω, z)‖ ≤ α(ω) + β(ω)‖z‖p−1, for any z ∈ R
k, P. − a.s.,

for some α ∈ Lq(
, P), β ∈ L∞(
, P), p−1 + q−1 = 1.
The Carathéodory function C gives rise to a Nemytskii map Ĉ : L p(
, P,Rk) →

Lq(
, P,Rk) defined through the usual position Ĉ(F)(ω) = C(ω, F((ω)), and,
with abuse of a notation, instead of Ĉ , the same symbol C is often used for both the
Carathéodory function and the Nemytskii map that it induces. We thus consider the
following integral variational inequality: find H ∈ KP such that

∫



C(ω, H(ω) )�(F − H(ω) )dP(ω) ≥ 0, ∀ F ∈ KP . (12)

A solution of (12) satisfies the randomWardrop conditions in the sense shown by the
following lemma (see [11] for the proof).

Lemma 2 If H ∈ KP is a solution of (12), then H is a random Wardrop equilibrium.
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As a consequence of the previous lemma, we get that there exists a vector function
λ ∈ L p(
, P,Rm) such that

Cr (ω, H(ω)) = λ j (ω) (13)

for all paths Rr which connect w j , with Hr (ω) > 0, P-almost surely.
We assume that the operator is the sum of a purely deterministic term and of a

random term where randomness act as a modulation:

C(ω, H(ω)) = S(ω)A[H(ω)] + B[H(ω)] − b − R(ω)c,

where S ∈ L∞(
, P), R ∈ Lq(
), A, B : L p(
, P,Rk) → Lq(
, P,Rk), b, c ∈
R
k .
The integral variational inequality now reads: find H ∈ KP such that, for all

F ∈ KP , we have

∫



( S(ω)(A[H(ω)])� + (B[H(ω)])� )(F − H(ω))dP(ω) ≥
∫




( b� + R(ω)c�)(F − H(ω))dP(ω).

(14)

4 Average total cost at equilibrium and optimal roadmaintenance
investment

We are now ready to define the mean values of two important quantities: the (unit)
cost at equilibrium and the total cost at equilibrium. Then, the latter will be used to
formulate the optimal road maintenance investment problem as an integer nonlinear
optimization program.

4.1 Average unit and total costs at equilibrium

Let the traffic demand between the origin and destination be a random function D :

 → R

m and Ĉ : L p(
, P,Rk) → Lq(
, P,Rk) be the cost operator. As usual,
we denote by P the probability measure on 
, while EP is the expectation (or mean
value) with respect to the probability P . We assume that D ∈ L p(
, P,Rm). We
consider the following definitions:

1. The average cost at equilibrium is defined as

EP [λ] =
∫




λ(ω)dP(ω), (15)

where λ = λ(ω) = (λ1(ω), . . . , λm(ω) ) is defined as in (13).

Remark 1 Let us note that the integral in (15) is different from zero under the natural
assumption that in each path Rr there is a linkwhere the cost is bounded from below by
a positive number (uniformly in ω ∈ 
). This hypothesis is fulfilled in real networks
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because the cost is positive for positive flows, but also the cost at zero flow (called the
free flow time) is positive, because it represents the travel time without congestion.

2. The average total cost at equilibrium is defined as

EP [TC] =
∫




m∑
j=1

∑
r∈Pj

Cr [ω, H(ω)] Hr (ω)dP(ω) =
∫




m∑
j=1

λ j (ω) Dj (ω)dP(ω),

(16)
it is finite (because of Hölder inequality) and different from zero for the same
reason as above and because the demands are assumed strictly positive.

As explained in Sect. 3, the random vector t = D(ω) and the two random variables
r = R(ω) and s = S(ω) generate a probability P in the image space R2+m of (r , s, t)
from the probability P on the abstract sample space 
. Hence, we can express the
earlier definedquantities in termsof the image space variables, thus obtaining functions
which can be approximated through a discretization procedure. The integration now
runs over the image space variables, but to keep notation simple we just write

∫
instead

of
∫ ∞
0

∫ s
s

∫
R
m+ . The transformed expressions read as follows:

EP[λ] =
∫

λ(r , s, t)dP(r , s, t), (17)

EP[TC] =
∫ m∑

j=1

∑
l∈Pj

Cl [r , s, H(r , s, t)] Hl (r , s, t)dP(r , s, t) =
∫ m∑

j=1

λ j (r , s, t) t j dP(r , s, t).

(18)

Let us recall that the solution H = H(r , s, t) of the stochastic variational inequality
which describes the network equilibrium can be approximated using the procedure
explained in the Appendix by a sequence {Hn}n of step functions such that Hn → H
in L p, as n → ∞. In the theorem that follows, we give converging approximations
for the mean values defined previously.

Theorem 2 Let, for all n ∈ N, Cn[ρn, σn, Hn(r , s, t)] = σn A[Hn(r , s, t)] +
B[H(r , s, t)] − b − ρnc and let λn(r , s, t) = (λn1(r , s, t), . . . , λ

n
m(r , s, t)), where

λnj (r , s, t) = Cn
l [ρn, σn, Hn(r , s, t)] for all paths Rl which connect w j , for which

Hn
l (r , s, t) > 0, P-a.s.. Let ρ(r , s, t) = r , σ (r , s, t) = s and ρn → ρ strongly in Lq

and σn → σ strongly in L∞, as n → ∞. Let Hn → H strongly in L p. We then have:

1. The sequence

{EP[λn]}n =
{∫

λn(r , s, t)dP(r , s, t)

}
n

converges to EP[λ], as n → ∞.
2. The sequence

{EP[TC n]}n =
⎧⎨
⎩

∫ m∑
j=1

∑
l∈Pj

Cl(ρn, σn, H
n(r , s, t)) Hn

l (r , s, t)dP(r , s, t)

⎫⎬
⎭

n

converges to EP[TC], as n → ∞.
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Proof 1. Since Hn → H strongly in L p, it follows that A[Hn] → A[H ] and

B[Hn] → B[H ], strongly in Lq = L
p

p−1 because of the continuity of the Nemyt-
skii operators A and B. Moreover, ρn → ρ strongly in Lq and σn → σ strongly
in L∞. As a consequence,

σn A[Hn] + B[Hn] − b − ρnc → σ A[H ] + B[H ] − b − ρc

strongly in Lq , and also strongly in L1 because P is a probability measure. Hence,
for each i = 1, . . . , k, we get Cn

i [ρn, σn, Hn] → Ci [r , s, H ] strongly in L1 and,
by the definitions of λ and λn , the thesis is proved.

2. From the previous proof we got that, for each i = 1, . . . , k, Cn
i [ρn, σn, Hn] →

Ci [r , s, H ] strongly in Lq , as n → ∞. This, together with Hn → H in L p, yields
to

Ci (ρn, σn, H
n(r , s, t)) Hn

i (r , s, t) → Ci (r , s, H(r , s, t)) Hn
i (r , s, t)

strongly in L1 and the second claimed is proved. �
The following corollary is a straightforward consequence of the previous theorem,

together with Remark 1 and the fact that the traffic demand is assumed strictly positive
(P a.s.).

Corollary 1 Let C ′ be another cost operator in the random traffic problem (but with
the same functional form as C). We then have that

{EP[TC n]}n − {EP[TC ′ n]}n
{EP[TC n]}n → {EP[TC] − {EP[TC ′]}}

{EP[TC]} , as n → ∞.

(19)

4.2 The optimal roadmaintenance investment model

We can now formalize the optimal road maintenance investment problem. Let us
suppose that a public authority has allocated an amount of money I for road main-
tenance. The improvement process involves a subset of links {ai : i ∈ L}, where
L ⊂ {1, . . . , n}, and Ii is the investment required to enhance the capacity of link ai by
a given ratio γi > 1. Since the available budget does not allow to maintain all roads,
the central authority aims to find the optimal subset of links to be maintained in order
to improve as much as possible the average total cost at equilibrium (18) with respect
to the current situation of the network, while satisfying the budget constraint.

This optimal investment problem can be formulated as an integer nonlinear opti-
mization program as follows. We introduce for any i ∈ L a binary variable xi , which
is equal to 1 if the investment is actually carried out on link ai , and 0 otherwise. Thus,
a vector x = (xi )i∈L is feasible if the budget constraint

∑
i∈L Ii xi ≤ I is satisfied.

Given a feasible vector x , the capacity of each link ai becomes equal to

ui (x) := γi ui xi + (1 − xi ) ui ,
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i.e., ui (x) = γi ui > ui when xi = 1 and ui (x) = ui when xi = 0. The objective
function to be maximized is the relative variation of the average total cost with respect
to the current situation of the network, defined as

f (x) = 100 · EP[TC] − EP[TC](x)
EP[TC] , (20)

where EP[TC] is the average total cost at equilibrium (18) before the maintenance
job, while EP[TC](x) is the average total cost at equilibrium corresponding to the
improved network. Therefore, the resulting optimization model is as follows:

⎧⎪⎨
⎪⎩
max f (x)
s.t.

∑
i∈L

Ii xi ≤ I

xi ∈ {0, 1} i ∈ L.

(21)

We remark that the computation of the nonlinear function f at a given x requires to
find a random Wardrop equilibrium for both the original and the improved network.
Thus, model (21) can be considered as a stochastic nonlinear knapsack problem.
Several authors considered in the literature different stochastic versions of the knapsack
problem (see, e.g., [6,13,19]).

5 Numerical experiments

In this section, we consider the randomWardrop equilibrium problem and the related
optimal road maintenance investment problem on two medium-size networks, assum-
ing that the traffic demands are affected by random perturbations, while the arc cost
functions are supposed to be exactly known. Hence, the average total cost at equilib-
rium (18) depends only on the random vector t = D(ω). The numerical computation
of random Wardrop equilibria has been performed by implementing in Matlab 2018a
the discretization procedure described in Sect. 4, and possibly the regularization proce-
dure shown in Sect. 3, combined with the algorithm designed in [15] for deterministic
Wardrop equilibria. The nonlinear knapsack problem (21) has been solved by a com-
plete enumeration algorithm, i.e., evaluating the objective function at all the feasible
solutions.

Example 1 We consider the grid network shown in Fig. 1 consisting of 36 nodes and
60 links. The link cost functions are of the BPR form (1) with k = 0.15 and β = 4
for all the links, while t0i = 1 and ui = 100 for any i = 1, . . . , 30, and t0i = 5 and
ui = 200 for any i = 31, . . . , 60. We consider five O-D pairs: (1,12), (7,18), (13,24),
(19,30), (25,36). We assume that the traffic demand for the first two O-D pairs is
Dj = d ′

j + δ′, with j = 1, 2, where d ′ = (150, 200) and δ′ is a random variable
which varies in the interval [−100, 100] with either uniform distribution or truncated
normal with mean 0 and standard deviation 50. Moreover, the traffic demand for the
last three O-D pairs is Dj = d ′′

j + δ′′, for j = 3, 4, 5, where d ′′ = (100, 200, 100)
and δ′′ is a random variable which varies in the interval [−50, 50] with either uniform
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Fig. 1 Grid network of
Example 1

Table 1 The impact of different
probability densities on the
approximated average total cost
of Example 1

Approximated avg total costs

Nd U-U U-N N-U N-N

10 9777.273 9673.016 9524.207 9428.736

20 9784.510 9680.161 9530.686 9435.027

50 9786.537 9682.170 9532.516 9436.810

100 9786.827 9682.457 9532.778 9437.065

distribution or truncated normal with mean 0 and standard deviation 25. The four
different combinations of probability densities of δ′ and δ′′ are denoted by U-U, U-N,
N-U and N-N; for instance, U-N means that δ′ has a uniform distribution, while δ′′
has a truncated normal distribution, and so on.

Notice that each O-D pair is connected by 6 paths and any arc ai , with i =
31, . . . , 60, belongs to a unique path, thus the link-path incidence matrix � has full
column rank. Lemma 1 guarantees that the path cost operator is strongly monotone,
hence there exists a unique random Wardrop equilibrium and the regularization pro-
cedure is not needed for this instance.

Both intervals [−100, 100] and [−50, 50] have been partitioned into Nd subin-
tervals in the approximation procedure. Table 1 shows the convergence of the
approximated average total costs for different values of Nd by using for four dif-
ferent combinations of probability densities.

We now consider the optimal investment problem in road maintenance. We assume
that the available budget I = 30 ke, while the subset L of links to be maintained
together with the values of γi and Ii are shown in Table 2.

Table 3 reports the ten best feasible solutions with the approximated value of
the objective function f and the corresponding investment I (x) = ∑

i∈L Ii xi .
The approximated values of f (x) have been computed by partitioning the intervals
[−100, 100] and [−50, 50] into 50 subintervals and assuming that random variables
δ′ and δ′′ are uniformly distributed.
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Table 2 Link capacities and
investments for Example 1

L 12 16 20 23 25 29 31 53

γi 1.4 1.8 1.3 1.5 1.7 1.4 1.1 1.5

Ii 6 12 4 6 10 5 2 6

Table 3 The ten best feasible
solutions of the optimal road
maintenance investment
problem for Example 1

x f (x) I (x)

(1,0,0,0,1,1,1,1) 5.306 29

(0,0,0,1,1,1,1,1) 5.300 29

(1,0,1,1,0,1,1,1) 5.279 29

(1,0,0,1,1,1,1,0) 5.128 29

(1,0,0,1,1,0,1,1) 5.073 30

(1,0,1,1,0,1,0,1) 4.945 27

(1,0,1,0,1,1,1,0) 4.904 27

(1,0,0,0,1,1,0,1) 4.900 27

(0,0,1,1,1,1,1,0) 4.898 27

(0,0,0,1,1,1,0,1) 4.894 27

Fig. 2 Sioux-Falls network of
Example 2
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Example 2 Weconsider the Sioux-Falls network shown in Fig. 2 consisting of 24 nodes
and 76 links. The link cost functions are of the BPR form (1) with k = 0.15 and β = 1
for all the links, while the parameters t0i and ui are given in [16]. We assume that the
traffic demand for the 528 O-D pairs is Dj = d j +δ if d j ≥ 7 and Dj = d j otherwise,

123



Optimal road maintenance investment in traffic networks…

Table 4 The impact of different
probability densities on the
approximated average total cost
of Example 2

Approximated avg total costs

Nd ε U N

10 1.0e-02 1560.71 1536.89

20 2.5e-03 1206.28 1189.09

50 4.0e-04 1103.39 1088.72

100 1.0e-04 1088.46 1074.24

200 2.5e-05 1084.72 1070.59

500 4.0e-06 1083.67 1069.57

1000 1.0e-06 1083.52 1069.43

Table 5 Link capacities and
investments for Example 2

Links Scenario 1 Scenario 2

γi Ii γi Ii

25 1.2 5 1.4 6

26 1.5 6 1.8 7

28 1.1 10 1.3 12

43 1.3 5 1.5 6

45 1.4 4 1.7 5

46 1.2 8 1.4 10

56 1.1 6 1.3 7

57 1.5 2 1.8 2.5

60 1.4 3 1.7 3.5

67 1.3 2 1.5 2.5

where the deterministic demand d is given in [16] and δ is a random variable which
varies in the interval [−5, 5] with either uniform distribution (U) or truncated normal
with mean 0 and standard deviation 0.5 (N).

Notice that in this case the link-path incidencematrix� has not full column rank and
the path cost operator ismonotone but not stronglymonotone.Hence, the discretization
procedure must be coupled with the regularization scheme described in Sect. 3.

The interval [−5, 5] has been partitioned into Nd subintervals in the approximation
procedure and the regularization parameter ε has been chosen equal to 1/(Nd)2.
Table 4 shows the convergence of the approximated average total costs for different
values of Nd and ε for any of the two probability densities.

We now consider the optimal investment problem in road maintenance. We assume
that the available budget I = 40 ke and L = {25, 26, 28, 43, 45, 46, 56, 57, 60, 67}
is the subset of links to be maintained. We consider two different scenarios: a low
quality maintenance scenario, with an average enhancement ratio close to 1.3, and a
high quality maintenance one with a ratio close to 1.55. The values of γi and Ii of the
two scenarios are shown in Table 5.

Table 6 reports the ten best feasible solutions for the two scenarios. The approx-
imated values of f (x) have been computed by partitioning the interval [−5, 5] into
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Table 6 The ten best feasible solutions of the optimal road maintenance investment problem in the two
scenarios of Example 2

Scenario 1 Scenario 2

x f (x) I (x) x f (x) I (x)

(0,1,1,1,1,1,0,1,1,1) 2.75 40 (0,1,1,1,1,0,0,1,1,1) 3.82 38

(1,1,0,1,1,1,0,1,1,1) 2.74 35 (1,1,0,1,1,0,1,1,1,1) 3.81 40

(1,1,1,1,1,0,0,1,1,1) 2.65 37 (0,1,0,1,1,1,0,1,1,1) 3.78 36

(0,1,0,1,1,1,1,1,1,1) 2.62 36 (1,1,0,1,1,1,0,1,0,1) 3.78 39

(1,1,0,1,1,1,1,1,0,1) 2.57 38 (1,1,1,1,0,0,0,1,1,1) 3.77 40

(1,1,0,1,0,1,1,1,1,1) 2.55 37 (1,1,0,1,0,1,0,1,1,1) 3.74 38

(0,1,0,1,1,1,0,1,1,1) 2.54 30 (1,1,0,1,1,1,0,0,1,1) 3.67 40

(0,1,1,1,1,0,1,1,1,1) 2.53 38 (0,1,0,1,1,1,1,1,0,1) 3.64 40

(1,1,0,1,1,0,1,1,1,1) 2.52 33 (0,1,0,1,0,1,1,1,1,1) 3.61 38

(1,0,1,1,1,1,0,1,1,1) 2.52 39 (0,1,1,1,0,1,0,1,0,1) 3.60 40

50 subintervals and assuming that the regularization parameter is ε = 1/2500 and the
random variable δ is uniformly distributed.

Let us note that the value of the ten best solutions in the first scenario varies between
around 2.5% and 2.7%, while that in second scenario between around 3.6% and 3.8%.
Thus, an improvement in the quality of maintenance leads to a greater reduction in
the average total cost.
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Appendix

In this section,we provide some details for the numerical approximation of the solution
û of (8). First, we need a discretization of the space X := L p(Rd ,P,Rk).We introduce
a sequence {πn}n of partitions of the support

ϒ := [0,∞[×[s, s[×R
m+

of the probability measure P induced by the random elements R, S, and D. For this,
we set

πn = (π R
n , π S

n , πD
n ),

where

π R
n := (r0n , . . . , r

N R
n

n ), π S
n := (s0n , . . . , s

N S
n

n ), πDi
n := (t0n,i , . . . , t

N
Di
n

n,i )
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0 = r0n < r1n < . . . r
N R
n

n = n, s = s0n < s1n < . . . s
N S
n

n = s,

0 = t0n,i < t1n,i < . . . t N
Di
n

n,i = n (i = 1, . . . ,m)

|π R
n | := max{r j

n − r j−1
n : j = 1, . . . , N R

n } → 0 (n → ∞)

|π S
n | := max{skn − sk−1

n : k = 1, . . . , NS
n } → 0 (n → ∞)

|πDi
n | := max{thin,i − thi−1

n,i : hi = 1, . . . , NDi
n } → 0 (i = 1, . . . ,m; n → ∞) .

These partitions give rise to an exhausting sequence {ϒn} of subsets of ϒ , where each
ϒn is given by the finite disjoint union of the intervals:

I njkh := [r j−1
n , r j

n [×[sk−1
n , skn [×I nh ,

where we use the multi-index h = (h1, · · · , hm) and

I nh :=
m∏
i=1

[thi−1
n,i , thin,i [.

For each n ∈ N, we consider the space of the Rl -valued step functions (l ∈ N) on ϒn ,
extended by 0 outside of ϒn :

Xl
n :=

⎧⎨
⎩vn : vn(r , s, t) =

∑
j

∑
k

∑
h

vnjkh1I njkh (r , s, t), vnjkh ∈ R
l

⎫⎬
⎭ ,

where 1I denotes the {0, 1}-valued characteristic function of a subset I .
To approximate an arbitrary function w ∈ L p(Rd ,P,R), we employ the mean

value truncation operator μn
0 associated to the partition πn given by

μn
0w :=

N R
n∑

j=1

NS
n∑

k=1

∑
h

(μn
jkhw) 1I njkh , (22)

where

μn
jkhw :=

⎧⎨
⎩

1

P(I jkh)

∫
I njkh

w(y) dP(y), if P(I njkh) > 0,

0, otherwise.

Analogously, for a L p vector function v = (v1, . . . , vl), we define

μn
0v := (μn

0v1, . . . , μ
n
0vl),

for which one can prove that μn
0v converges to v, in L p(Rd ,P,Rl).
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To construct approximations for

MP =
{
v ∈ L p(Rd ,P,Rk) : Gv(r , s, t) ≤ t , P − a.s.

}
,

we introduce the orthogonal projector q : (r , s, t) ∈ R
d �→ t ∈ R

m and define for
each elementary cell I njkh ,

qnjkh = (μn
jkhq) ∈ R

m, (μn
0q) =

∑
jkh

qnjkh 1I njkh ∈ Xm
n .

This leads to the following sequence of convex and closed sets of the polyhedral type:

Mn
P

:= {v ∈ Xk
n : Gvnjkh ≤ qnjkh , ∀ j, k, h}.

Since our objective is to approximate the random variables R and S, we introduce

ρn =
N R
n∑

j=1

r j−1
n 1[r j−1

n ,r j
n [ ∈ Xn and σn =

NS
n∑

k=1

sk−1
n 1[sk−1

n ,skn [ ∈ Xn .

Notice that

σn(r , s, t) → σ(r , s, t) = s in L∞(Rd ,P) and ρn(r , s, t) → ρ(r , s, t) = r in L p(Rd ,P).

Combining the above ingredients, for n ∈ N, we consider the following discretized
variational inequality: Find ûn := ûn(y) ∈ Mn

P
such that for every vn ∈ Mn

P
, we have

∫ ∞

0

∫ s

s

∫
Rd

[σn(y) A(ûn)+B(ûn)]�[vn−ûn] dP(y) ≥
∫ ∞

0

∫ s

s

∫
Rd

[b+ρn(y) c]�[vn−ûn] dP(y) .

(23)
We also assume that the probability measures PR , PS , and PDi have the probability

densities ϕR , ϕS , and ϕDi , i = 1, . . . ,m, respectively. Therefore, for i = 1, . . . ,m,

we have

dPR(r) = ϕR(r) dr , dPS(s) = ϕS(s) ds, dPDi (ti ) = ϕDi (ti ) dti .

It turns out that (23) can be split in a finite number of finite dimensional variational
inequalities: For every n ∈ N, and for every j, k, h, find ûnjkh ∈ Mn

jkh such that

[T̃ n
k (ûnjkh)]�[vnjkh − ûnjkh] ≥ [c̃nj ]�[vnjkh − ûnjkh], ∀ vnjkh ∈ Mn

jkh, (24)

where

Mn
jkh := {vnjkh ∈ R

k : Gvnjkh ≤ qnjkh}, T̃ n
k := sk−1

n A + B, c̃nj := b + r j−1
n c.
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Clearly, we have

ûn =
∑
j

∑
k

∑
h

ûnjkh 1I njkh ∈ Xk
n .

We recall the following convergence result (see [9]).

Theorem 3 Assume that T (ω, ·) is strongly monotone, uniformly with respect to ω ∈

, that is

(T (ω, x) − T (ω, y))�(x − y) ≥ α‖x − y‖2 ∀ x, y, a.e. ω ∈ 
,

where α > 0 and that the growth condition (6) holds. Then the sequence {ûn}, where
ûn is the unique solution of (23), converges strongly in L p(Rd ,P,Rk) to the unique
solution û of (8).

In absence of strict monotonicity, the solution of (8) is not unique and we resort to
a regularization technique as follows (see [10] for the details and proofs).

We will regularize the above discrete variational inequality and show that its con-
tinuous analogue is recovered by the limiting process. For this, we choose a sequence
{εn} of regularization parameters and choose the regularization map to be the duality
map J : L p(Rd ,P,Rk) → Lq(Rd ,P,Rk). We assume that εn > 0 for every n ∈ N

and that εn ↓ 0 as n → ∞. We consider the following regularized stochastic varia-
tional inequality: For n ∈ N, find wn = w

εn
n (y) ∈ Mn

P
such that for every vn ∈ Mn

P
,

we have

∫ ∞

0

∫ s

s

∫
R
m+
[σn(y) A(wn(y)) + B(wn(y)) + εn J (wn(y))]�(vn(y) − wn(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫
R
m+
[b + ρn(y) c]�(vn(y) − wn(y)) dP(y).

(25)

As usual, the solution wn will be referred to as the regularized solution.
The following theorems highlight some of the features of the regularized solutions.

Theorem 4 The following statements hold.

1. For every n ∈ N, the regularized stochastic variational inequality (10) has the
unique solution wn .

2. Any weak limit of the sequence {wn} of the regularized solutions is a solution
of (8).
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3. The sequence of the regularized solutions {wn} is bounded provided that the follow-
ing coercivity condition holds: There exists a bounded sequence {δn}with δn ∈ Mn

P

such that

∫ ∞
0

∫ s
s

∫
R
m+[σn(y) A(un(y)) + B(un(y))]�(un(y) − δn(y)) dP(y)

‖un‖ → ∞ as ‖un‖ → ∞.

(26)

To obtain strong convergencewe need to use the concept of fastMosco convergence,
as given by the following definition.

Definition 4 Let X be a normed space, let {Kn} be a sequence of closed and convex
subsets of X and let K ⊂ X be closed and convex. Let εn be a a sequence of positive
real numbers such that εn → 0. The sequence {Kn} is said to converge to K in the
fast Mosco sense, related to εn , if

1. For each x ∈ K , ∃{xn} ∈ Kn such that ε−1
n ‖xn − x‖ → 0;

2. For {xm} ⊂ X , if {xm} weakly converges to x ∈ K , then ∃{zm} ∈ K such that
ε−1
m (zm − xm) weakly converges to 0.

Theorem 5 Assume that Mn
P
converges to MP in the fast Mosco sense related to εn.

Moreover assume that ε−1
n ‖σn − σ‖ → 0, and ε−1

n ‖ρn − ρ‖ → 0 as n → ∞. Then
the sequence of regularized solutions {wn} converges strongly to the minimal-norm
solution of stochastic variational inequality (8) provided that wn is bounded.

We conclude this section by recalling the following general result that ensures the
solvability of an infinite dimensional variational inequality like (7) or (8) (see [12] for
a recent survey on existence results for variational inequalities).

Theorem 6 Let E be a reflexive Banach space and let E∗ denote its topological dual
space. We denote the duality pairing between E and E∗ by 〈·, ·〉E,E∗ . Let K be a
nonempty, closed, and convex subset of E, and A : K −→ E∗ be monotone and
continuous on finite dimensional subspaces of K . Consider the variational inequality
problem of finding u ∈ K such that

〈Au, v − u〉E,E∗ ≥ 0, ∀ v ∈ K .

Then, a necessary and sufficient condition for the above problem to be solvable is the
existence of δ > 0 such that at least a solution of the variational inequality:

find uδ ∈ Kδ such that 〈Auδ, v − uδ〉E,E∗ ≥ 0, ∀ v ∈ Kδ

satisfies ‖uδ‖ < δ, where Kδ = {v ∈ K : ‖v‖ ≤ δ}.
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