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ABSTRACT
We investigate the standard generalized Gorenstein algebras of homologi-
cal dimension three, giving a structure theorem for their resolutions.
Moreover in many cases we are able to give a complete description of
their graded Betti numbers.
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1. Introduction

One of the most important tool for studying projective schemes is the minimal free resolution of
their defining ideals. When the scheme has homological dimension 2, there is the Hilbert-Burch
structure theorem which allows a deep knowledge of these schemes (see [4]). When we study
schemes having homological dimension 3, the matter becomes a little intriguing even in the sim-
plest case of the arithmetically Cohen Macaulay schemes. In this last case, when the rank of the
last syzygy module is 1, the situation becomes analogous to the homological dimension 2 case
according to the structure theorem by Buchsbaum and Eisenbud (see [1]). These are the arith-
metically Gorenstein schemes of codimension 3.

So it seems completely natural to study all the schemes of homological dimension 3 such that the
rank of the last syzygy module is 1, i.e. schemes whose resolution is of the type 1; n; n1; even for
codimension less than 3. The goal of this paper is just to study such schemes, which we will call gen-
eralized Gorenstein schemes (of course we omit the trivial case when the codimension is 1).

In literature there are paper which deal with a similar theme. In particular, Y. Kamoi in [6],
gives a description of ideals with a resolution of type 1; n; n; 1 in terms of Koszul complexes asso-
ciated to the entries of the resolution. J. Weyman in [10], in a very general context, gives a struc-
ture for the rings with a resolution of type 1; n; n; 1; in terms of some maps which come from a
comparison of the resolution with a Koszul complex on the generators. P. Pragacz and J.
Weyman in [7], give a description of general rings with resolutions of type 1; n; n; 1 using a suit-
able decomposition on Schur functors.
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In this paper we work on standard graded algebras and mainly we focus on the graded aspects
of their resolutions. These schemes arise frequently in different contexts. For instance the disjoint
union of two complete intersection curves in P

3 and some subschemes of star configurations (see
[9]) are generalized Gorenstein schemes. As in the Gorenstein case, the central map of the reso-
lution is represented by a square matrix M of submaximal rank, which is named presentation
matrix. This matrix, once more, completely determines the resolution of the defining ideals.

Therefore, in Section 2, after studying properties of presentation matrices n�m; n � m, we
give a first characterization of such matrices in Proposition 2.6.

Section 3 is dedicated to producing a structure theorem for the resolutions of the generalized
Gorenstein algebras of homological dimension 3 and the main result on this direction is
Theorem 3.8. Moreover, we study the special case in which the ideal associated to the last map in
the resolution is minimally generated by 3 elements. In Propositions 3.14 and 3.15 we give a
complete characterization of such schemes and in Theorem 3.17 we give a nice geometrical
description of these schemes.

All these results permit us to study the graded Betti numbers for generalized Gorenstein
schemes of homological dimension 3. The main result in Section 4 is in Theorem 4.5, in which
all the graded Betti numbers are characterized in the case in which the defining ideal is minimally
generated by n¼ 3 elements. The main results of Section 5 are in Theorem 5.14, where we give a
complete description of the graded Betti sequences for those schemes which have n generators
and syzygies with concentrated degrees, with n odd, and in Proposition 5.15 where some neces-
sary conditions and some sufficient conditions are given in the even case.

2. Matrices of submaximal rank

Throughout the article k will be a field and R :¼ k½x1; :::; xr�; r � 3; will be the standard graded
polynomial k-algebra.

The aim of this paper is to investigate graded minimal free resolutions of type

0�!R �sð Þ�! �
n

j¼1
R �bj
� ��! �

n

i¼1
R �aið Þ�!R:

We give the following definition.

Definition 2.1. Let M 2 Rn;m be a matrix with m � n: We say that M is a presentation matrix if
it is associated to a map u in a presentation of type

Rm�!u Rn�!R:

Note that if M 2 Rn;m is a presentation matrix, then rank M ¼ n�1:
At first in this section we would like to study properties of presentation matrices.
Let S be a UFD and let H 2 Sn;n�1: We set giðHÞ ¼ ð�1Þiþ1Hi where Hi is the minor of H

obtained by deleting the i-th row of H. The following lemmas will play a key role along
the article.

Lemma 2.2. Let S be a UFD, M 2 Sn;m; n � m; with rank M ¼ n�1: Let N and N0 be two subma-
trices of M of size n� ðn�1Þ of rank n�1: Let dN ¼ GCD ðg1ðNÞ; :::; gnðNÞÞ and dN0 ¼
GCD ðg1ðN0Þ; :::; gnðN0ÞÞ: Then there exists a unit a 2 S such that

g1 Nð Þ
dN

; :::;
gn Nð Þ
dN

� �
¼ a

g1 N0ð Þ
dN0

; :::;
gn N0ð Þ
dN0

 !
:
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Proof. Let Q(S) be the field of fractions of S. Let us consider

v ¼ g1 Nð Þ
dN

; :::;
gn Nð Þ
dN

� �
2 Q Sð Þn; v0 ¼ g1 N 0ð Þ

dN0
; :::;

gn N0ð Þ
dN0

 !
2 Q Sð Þn;

then we have that hvi ¼ hv0i; as vector subspaces of QðSÞn; since rank M ¼ n�1: Therefore bv ¼
b0v0; with b; b0 2 S; GCD ðb; b0Þ ¼ 1; so b is a divisor of each component of the vector v0; hence
b is unit. Analogously b0 is a unit too, so v ¼ av0; with a a unit. w

By Lemma 2.2, using the same notation, we can set giðMÞ ¼ giðNÞ=dN and we will set

c Mð Þ ¼ g1 Mð Þ; :::; gn Mð Þ� �
:

Note that cðMÞ is determined up to a unit and GCD ðcðMÞÞ ¼ 1: So cðMÞ generates an ideal
IM; with depth IM � 2: In the sequel IM will be called the ideal associated to M. Moreover cðMÞ
defines a map

c Mð Þ : Rn�!R:

When F and G are graded free modules, rank F � rank G and u : F�!G; is a map associated
to a matrix M (with respect to some bases), with rank u ¼ rank G�1; we set cðuÞ ¼ cðMÞ: So
cðuÞ : G�!R: By construction we have

c uð Þu ¼ 0:

Corollary 2.3. With the same notation of Lemma 2.2, if ðh1; :::; hnÞM ¼ 0 then ðh1; :::; hnÞ ¼
kcðMÞ for some k 2 S:

Proof. As in the proof of Lemma 2.2 bðh1; :::; hnÞ ¼ acðMÞ with a; b 2 S: Now since
GCD ðcðMÞÞ ¼ 1 we see that b divides a, so the conclusion follows. w

The following proposition deals with the special case when IM is perfect of height 2.

Proposition 2.4. Let S be a UFD and M 2 Sn;m; n � m; with rank M ¼ n�1: Let us suppose that
a submatrix M0 obtained taking n – 1 columns of M has rank n – 1 and its maximal minors are
coprime. Then IM is a perfect ideal of height two and each column of M is in the module generated
by the columns of M0:

Proof. By the hypothesis, M0 is a Hilbert-Burch matrix of IM ¼ ðg1; :::; gnÞ; where the gi’s are the
maximal minors of M0: So IM is perfect ideal of height two and the columns of M0 generate the
syzygy module on ðg1; :::; gnÞ: Since any column of M is a syzygy on ðg1; :::; gnÞ; the conclusion
follows. w

Remark 2.5. In particular, when M 2 Rn;m; n � m; is a presentation matrix with a submatrix M0

as in Proposition 2.4, then the presentation defined by M is not minimal.

Proposition 2.6. Let M 2 Rn;m; m � n with rank M ¼ n�1: Let C(M) be the module generated by
the columns of M.

M is a presentation matrix iff every syzygy on cðMÞ belongs to the module CðMÞ:

Proof. If M is a presentation matrix then there exists an exact complex

Rm�!u Rn�!w R; (1)
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where u is the map associated to M. Let ðf1; :::; fnÞ ¼ Im w: Then

f1:::fnð ÞM ¼ 0

and by Corollary 2.3 ðf1; :::; fnÞ ¼ kcðMÞ; for some k 2 R: Thus, every syzygy on cðMÞ is a syzygy
on ðf1; :::; fnÞ too. Since the complex (1) is exact, we are done.

Vice versa, let us consider the following complex

Rm�!u Rn �!c uð Þ
R; (2)

where u is the map associated to M. Since, by the hypothesis, Ker cðuÞ � Im u; M is a pres-
entation matrix. w

Example 2.7. Let R ¼ k½x; y; z; t� and let

M ¼
y �x 0 0
0 z �y 0
0 0 t �z
�t 0 0 x

0
BB@

1
CCA:

We have that cðMÞ ¼ ðzt; xt; xy; yzÞ ¼ ðx; zÞ \ ðy; tÞ; so it is easy to verify that M is a presenta-
tion matrix, whereas MT is not. In fact cðMTÞ ¼ ðx; y; z; tÞ; so it does not satisfy the hypothesis of
Proposition 2.6.

3. The structure of the resolution

In this section we will deal with the case in which M is a presentation square matrix of size n �
3: Now we define the class of algebras which we will investigate along this paper.

Definition 3.1. A graded standard R-algebra R/I of homological dimension 3 is called generalized
Gorenstein algebra if the rank of the last syzygy module is 1 in a its minimal graded
free resolution.

Theorem 3.2. Let M 2 Rn;n be a presentation square matrix. Then R=IM is a generalized
Gorenstein algebra whose a free resolution is

0�!R����!c u�ð Þ�
Rn�!u Rn�!c uð Þ

R�!R=IM�!0; (3)

where u is the map associated to the matrix M.

Proof. Since M is a presentation matrix, using Proposition 2.6, we get Im u ¼ Ker cðuÞ:
Furthermore cðu�Þu� ¼ 0 implies that ucðu�Þ� ¼ 0: Now let u 2 Ker u: It defines a map fu :
R�!Rn: Therefore we have that ufu ¼ 0; hence f �uu

� ¼ 0: Using Corollary 2.3 we deduce that
f �u ¼ acðu�Þ; with a 2 R; consequently fu ¼ acðu�Þ�; i.e. u 2 Im cðu�Þ�:

Finally, by Lemma 2.6 in [8], since rank u ¼ n�1; Ker u is a free module of rank 1. w

Definition 3.3. Whenever the resolution of Theorem 3.2 is minimal, we say that M is a minimal
presentation matrix.

Remark 3.4. If M 2 Rn;n is a presentation matrix then ht IM is either 2 or 3. When ht IM ¼ 3, IM
is a Gorenstein ideal. Consequently if n is even, then ht IM ¼ 2:

Remark 3.5. If M 2 Rn;n is a presentation matrix, by the exactness of the complex (3), then
depth ðcðMTÞÞ � 3 and depth ðIn�1ðMÞÞ � 2; by the exactness criterion in [2].
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Using Theorem 3.2 we are able to characterize all the standard generalized Gorenstein algebras
of homological dimension 3.

Corollary 3.6. Let I be an ideal of R. Then R/I is a generalized Gorenstein algebra of homological
dimension 3 iff there exists a presentation matrix M such that I ¼ IM:

Proof. Theorem 3.2 says that every IM associated to a presentation matrix is a generalized
Gorenstein ideal. Conversely, if I is a generalized Gorenstein ideal in R of homological dimension
3 then there is a resolution of R/I of type

0�!R�!Rn�!M Rn�!R�!R=I�!0:

So M is a presentation matrix hence, again by Theorem 3.2, Coker ðMÞ ¼ IM: From which we
get I ¼ IM: w

Thus it is important to recognize when M is a presentation matrix. The next results will give
another characterization of such matrices.

Lemma 3.7. Let M 2 Rn;n be a matrix of rank n�1: We set cðMÞ ¼ ðg1; :::; gnÞ and cðMTÞ ¼
ðh1; :::; hnÞ: Let MC be the cofactor matrix of M. Then MC ¼ uðgihjÞ; where u 2 R:

Proof. Let us consider the following complex

0�!R �!h1:::hnð ÞT
Rn�!M Rn �!g1:::gnð Þ

R:

We denote by cij the cofactor of M in the position ði; jÞ: Since ðg1:::gnÞM ¼ 0 and
ðc1j:::cnjÞM ¼ 0; by Corollary 2.3 we get

c1j; :::; cnjð Þ ¼ kj g1; :::; gnð Þ:
On the other hand since ðh1:::hnÞMT ¼ 0 and ðci1:::cinÞM ¼ 0; again by Corollary 2.3 we get

ci1; :::; cinð Þ ¼ li h1; :::; hnð Þ:
By these equalities follows that

kj g1; :::gnð Þ ¼ hj l1; :::; lnð Þ; li h1; :::; hnð Þ ¼ gi k1; :::; knð Þ:
Since GCD ðg1; :::gnÞ ¼ GCD ðh1; :::hnÞ ¼ 1; we obtain that

cij ¼ ajhjgi ¼ bigihj;

for some aj; bi 2 R; so aj ¼ bi for every i and j. Let

u ¼ a1 ¼ ::: ¼ an ¼ b1 ¼ ::: ¼ bn;

thus cij ¼ ugihj: w

Theorem 3.8. Let M 2 Rn;n be a matrix of rank n�1: Let cðMÞ ¼ ðg1; :::; gnÞ; cðMTÞ ¼ ðh1; :::; hnÞ
and let J be the ideal generated by cðMTÞ: Let MC be the cofactor matrix of M.

The matrix M is a presentation matrix iff depth J � 3 and MC ¼ uðgihjÞ where u is a unit.

Proof. We set I ¼ ðg1; :::; gnÞ: If M is a presentation matrix then by Theorem 3.2 the complex

0�!R �!h1:::hnð ÞT
Rn�!M Rn �!g1:::gnð Þ

R (4)

is exact, so by the Buchsbaum-Eisenbud criterion, we get depth J � 3 and depth In�1ðMÞ � 2:
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Note that In�1ðMÞ is generated by the entries of MC; so by Lemma 3.7, In�1ðMÞ ¼ uIJ; conse-
quently u is a unit.

Conversely let us suppose that depth J � 3 andMC ¼ uðgihjÞ where u is a unit. To show thatM is
a presentation matrix it is enough to show that the complex (4) is exact. To do this, we will use the
Buchsbaum-Eisenbud criterion. The conditions about the ranks of the modules are trivially satisfied.
We have that depth I � 2; by definition of cðMÞ; and depth J � 3 by the hypothesis. It remains only
to prove that depth In�1ðMÞ � 2: Since MC ¼ uðgihjÞ where u is a unit, we have that In�1ðMÞ ¼ IJ:
Let f 2 IJ; f 6¼ 0: Since depth I � 2 and depth J � 3; there exist g 2 I and h 2 J such that (f, g) and
(f, h) are regular sequences. Hence (f, gh) is a regular sequence in IJ and we are done. w

Remark 3.9. Let M be an alternating matrix of odd size n and of rank n�1: Then cðMÞ ¼ cðMTÞ
and MC ¼ ðpipjÞ; where ph is the h-th submaximal pfaffian of M. Let PM be the ideal generated
by the submaximal pfaffians of M. Suppose that depth PM ¼ 3: Then M is a presentation matrix
and PM ¼ IM: So Theorem 3.8 allows us to recover the well known characterization of the
Gorenstein ideals of heighth 3 of Buchsbaum and Eisenbud [1].

Remark 3.10. By Theorem 3.8, let M be a presentation matrix and let ðh1; :::; hnÞ ¼ cðMTÞ: Then
hj ¼ 0 iff the submatrix obtained from M by removing the j-th column has not maximal rank.

The following propositions put into relation a presentation square matrix M with the kernel of
the associated map.

Proposition 3.11. Let M 2 Rn;n be a presentation square matrix and let u : Rn�!Rn be the associ-
ated map. Let J ¼ Im cðu�Þ: Let us suppose that

Rm�!w Rn��!c u�ð Þ
R

is a presentation of J. Then there exists a map b : Rm��!Rn; such that u ¼ bw�:

Proof. At first we dualize the resolution of Theorem 3.2. We get the complex

0�!R��!c uð Þ�
Rn��!u

�
Rn��!c u�ð Þ

R:

By the exactness of the presentation we get the factorization u� ¼ wa for a suitable a :
Rn��!Rm: Consequently we have u ¼ a�w�; so a� is the required map b: w

Proposition 3.12. Let M 2 Rn;n be a presentation square matrix and let u : Rn�!Rn be the associated
map. Let us suppose that cðMTÞ ¼ ðh1; :::; ht; 0; :::; 0Þ: Let J ¼ ðh1; :::; htÞ: Take a presentation of J

Rm�!w Rt��!s R (5)

where sðe�i Þ ¼ hi; for 1 � i � t: Then there exist two maps b : Rm��!Rn and d : Rn�t�!Rn such
that u ¼ ðbw�Þ�d:

Proof. By the hypotheses R=IM has a resolution of the type

0�!R��!s
�;0ð Þ

Rt�Rn�t �!u¼u1�d
Rn�!R�!R=IM�!0:

Consequently we have u1s
� ¼ 0; so we get the complex

Rn��!u
�
1 Rt��!s R:

By the exactness of (5), we get the factorization u�
1 ¼ wa for a suitable a : Rn��!Rm; so u1 ¼

a�w� and u ¼ ða�w�Þ�d: w
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The next results will be useful for studying generalized Gorenstein algebras.

Lemma 3.13. Let M be a minimal presentation matrix and let J be the ideal generated by cðMTÞ:
Then there exists a resolution of IM of the type

0�!R�!q Rn�!Rn�!R�!R=IM�!0

such that qð1Þ ¼ ðh1; :::; hs; 0; :::; 0Þ where h1; :::; hs minimally generate J.

Proof. Let ðh1; :::; hnÞ ¼ cðMTÞ: Let us suppose that hn ¼
Pn�1

i¼1 aihi: Let u : Rn�!Rn be the map
associated to the matrix M. We change the basis in the domain of u from ðe1; :::; enÞ to
ðv1; :::; vnÞ; where vi ¼ ei þ aien; for 1 � i � n�1 and vn ¼ en: Then qð1Þ ¼Pn�1

i¼1 hivi: By iterat-
ing this procedure we get the stated result. w

According to Lemma 3.13 we will use the following notation. Let I be a generalized
Gorenstein ideal I of homological dimension 3 and let

0�!R�!q Rn�!Rn�!R�!R=I�!0

be a minimal free resolution. We define fðIÞ ¼ �ðIÞ��ðIðqÞÞ:
Note that 0 � fðIÞ � �ðIÞ�3:
Now we would like to study minimal free resolutions for generalized Gorenstein ideals I of

homological dimension 3 with maximal fðIÞ: Observe that in this case, using the same notation
as before, qð1Þ ¼ ðh1; h2; h3; 0; :::; 0Þ; where ðh1; h2; h3Þ is a regular sequence.

Using Proposition 3.12, R/I has a minimal free resolution of the type

0�!R�!s;0ð Þ
R3�Rn�3 �!ajð Þ�d

Rn�!R; (6)

where sð1Þ ¼ ðh1; h2; h3Þ; j : R3�!R3 is the Koszul map on h1; h2; h3 and a : R3�!Rn; d :
Rn�3�!Rn are suitable maps. Consequently I ¼ IM; where M is a minimal presentation matrix
having the structure M ¼ ðAKjCÞ; with

K ¼
0 h3 �h2

�h3 0 h1
h2 �h1 0

0
@

1
A;

for some A 2 Rn;3 and C 2 Rn;n�3: In the next result we will give the structure of the generators
of such ideals.

Proposition 3.14. Let I¼ IM be a generalized Gorenstein ideal of homological dimension 3 with
maximal fðIÞ; where M ¼ ðAKjCÞ: Then I is generated by the maximal minors obtained by delet-
ing one by one the first n rows of the ðnþ 1Þ � n-matrix

B ¼ A C

h1 h2 h3 0 ::: 0

0
BB@

1
CCA:

Proof. To compute a minimal set of generators for I, for instance cðMÞ; it is enough to compute
the maximal minors of a submatrix of M obtained by choosing a submatrix of M of size n�
ðn�1Þ of rank n – 1 (see Lemma 2.2). Note that, since rank ðAKÞ ¼ 2; to obtain such a subma-
trix, we are forced to remove one of the first three columns.

Let Mði;jÞ be the minor of M obtained by deleting the row i and the column j. The following
computation will show that, for some s,

COMMUNICATIONS IN ALGEBRAVR 3129



M i;jð Þ ¼ �1ð ÞshjBi;

where Bi is the minor of B obtained by deleting the row i. Hence I ¼ ðB1; :::;BnÞ:
In fact we write the matrix A by columns A ¼ ðA1A2A3Þ and M in this way

M ¼ �h3A2 þ h2A3jh3A1�h1A3j�h2A1 þ h1A2jCð Þ:
Moreover we will write AðiÞ

j the submatrix obtained by Aj by removing the i-th row. So

Mi;1 ¼ jh3A ið Þ
1 �h2A

ið Þ
1 Cj þ jh3A ið Þ

1 h1A
ið Þ
2 Cj þ j�h1A

ið Þ
3 �h2A

ið Þ
1 Cjþ

þ j�h1A
ið Þ
3 h1A

ið Þ
2 Cj ¼ h1 h1jA ið Þ

2 A ið Þ
3 Cj�h2jA ið Þ

1 A ið Þ
3 Cj þ h3jA ið Þ

1 A ið Þ
2 Cj

� �
¼ �1ð Þsh1Bi:

similarly we get Mi;2 and Mi;3: w

In order to reverse Proposition 3.14, we need to fix some notation. Let B 2 Rnþ1;n be a minimal
Hilbert-Burch matrix, such that a row, say the last row, is H ¼ ðh1; h2; h3; 0; :::; 0Þ: Then B has
the following shape

B ¼ A C

h1 h2 h3 0 ::: 0

0
BB@

1
CCA: (7)

Moreover we write Bi for the minor obtained from B by removing the i-th row, multiplied
by ð�1Þi:
Proposition 3.15. With the above notation let B 2 Rnþ1;n be a minimal Hilbert-Burch matrix, such
that the last row is H ¼ ðh1; h2; h3; 0; :::; 0Þ with ðh1; h2; h3Þ a regular sequence. Let I be the ideal
generated by B1; :::;Bn:

Then I is a generalized Gorenstein ideal of homological dimension 3 with maximal fðIÞ:

Proof. Let us consider the complex

0�!R�!q Rn�!u Rn�!c R

where qð1Þ ¼ ðh1; h2; h3; 0; :::; 0Þ; u is represented by the matrix M ¼ ðAKjCÞ, where K is the
matrix of the central map of the Koszul complex on ðh1; h2; h3Þ and c is the map defined by the
row ðB1; :::;BnÞ: We have to check that this complex is exact. According to our hypotheses it is
useful to rewrite it as follows.

0�!R �!q¼ s;0ð Þ
R3�Rn�3 �!u¼aj�d

Rn�!c R; (8)

where sð1Þ ¼ ðh1; h2; h3Þ and a; j and d are the maps represented respectively by A, K and C.
Of course q is injective and Im q � Ker u:
Now we show that Ker u � Im q: Let u ¼ ðu1; u2Þ 2 Ker u; u1 2 R3; u2 2 Rn�3 i.e. ajðu1Þ ¼

0 and dðu2Þ ¼ 0: Since B is minimal, detðAjCÞ 6¼ 0; so a is injective, therefore jðu1Þ ¼ 0:
Consequently u1 2 Ker j ¼ Im s: Since B is an Hilbert-Burch matrix, C has maximal rank, hence
d is injective i.e. u2 ¼ 0; therefore u ¼ ðu1; u2Þ 2 Im q:

By Proposition 3.14 we have that Im u � Ker c; so we need to show that Ker c � Im u: Let
ðv1; :::; vnÞ 2 Ker c: Then ðv1; :::; vn; 0Þ is a syzygy on ðB1; :::;Bn; detðAjCÞÞ: So ðv1; :::; vn; 0Þ
belongs to the module generated by the columns of B i.e.
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v1
:::
vn
0

0
BB@

1
CCA ¼

X3
i¼1

ki

b1i
:::
bni
hi

0
BB@

1
CCAþ

Xn
i¼4

ki

b1i
:::
bni
0

0
BB@

1
CCA)

ðv1; :::; vnÞ ¼ aðk1; k2; k3Þ þ dðkÞ; where k ¼ ðk4; :::; knÞ: Moreover, since k1h1 þ k2h2 þ k3h3 ¼
0; we deduce that ðk1; k2; k3Þ ¼ jðzÞ; for some z 2 R3: Therefore ðv1; :::; vnÞ ¼ ajðzÞ þ dðkÞ; con-
sequently uðz; kÞ ¼ ðv1; :::; vnÞ: w

By Proposition 3.15 IM is generated by n among nþ 1 maximal minors of the matrix B in (7).
The next result will allow us to give a structure for IM in terms of intersection of two sim-
pler ideals.

Lemma 3.16. Let B 2 Rnþ1;n; with rank B ¼ n: Let Bi; 1 � i � nþ 1 be the maximal minors of B.
Let IðBÞ ¼ ðB1; :::;Bnþ1Þ; such that ht IðBÞ ¼ 2: Let ðh1; :::; hnÞ be the last row in B. Then

I Bð Þ \ h1; :::; hnð Þ ¼ B1; :::;Bnð Þ () Bnþ1 is regular in R= h1; :::; hnð Þ:

Proof. Take anþ1 2 R; such that anþ1Bnþ1 2 ðh1; :::; hnÞ: By assumption there exist a1; :::; an 2 R
such that

Pn
i¼1 aiBi ¼ anþ1Bnþ1: Since B is an Hilbert-Burch matrix, ða1; :::; anþ1Þ belongs to the

R-module generated by the columns of B. In particular anþ1 2 ðh1; :::; hnÞ:
Conversely we have only to prove that IðBÞ \ ðh1; :::; hnÞ � ðB1; :::;BnÞ: Let f 2 IðBÞ \

ðh1; :::; hnÞ; so f ¼Pnþ1
i¼1 aiBi: Since Bi 2 ðh1; :::; hnÞ for 1 � i � n; we get anþ1Bnþ1 2 ðh1; :::; hnÞ:

Then, by the assumption, anþ1 2 ðh1; :::; hnÞ; i.e. anþ1 ¼
Pn

i¼1 uihi: For 1 � j � n;
Pn

i¼1 bijBi ¼
�hjBnþ1; hence

Pn
i¼1 ujbijBi ¼ �ujhjBnþ1: Summing up we getXn

j¼1

Xn
i¼1

ujbijBi ¼ �anþ1Bnþ1;

so anþ1Bnþ1 2 ðB1; :::;BnÞ; i.e. f 2 ðB1; :::;BnÞ: w

Using Lemma 3.16, we can give a geometric description of projective schemes having a min-
imal free resolution of type (8).

Theorem 3.17. Let X 	 P
r; r � 3 be a closed projective scheme, whose defining ideal IX has a

graded minimal free resolution of type (8). Let Z be the complete intersection defined by IðqÞ ¼
IðsÞ; let S ¼ Vðdetða�dÞÞ and let Y be the scheme defined by Iða�d; q�Þ: If codim ðS \ ZÞ ¼ 4
then X ¼ Y [ Z:

Proof. It is enough to observe that since codim ðS \ ZÞ ¼ 4; detða�dÞ is regular in R=IZ: So we
can apply Lemma 3.16 to have our assertion. w

Remark 3.18. Note that when detða�dÞ is a unit, Y ¼ ; and X ¼ Z: When detða�dÞ is not a
unit, then X is a union of an aCM scheme of codimension 2 and a complete intersection scheme
of codimension 3.

4. The case n53

Now we will apply the results of previous sections and we will provide an explicit characterization
of the graded Betti numbers for generalized Gorenstein ideals having a graded minimal free reso-
lution of the type
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0�!F3�!q F2�!u F1�!w R�!R=I�!0 (9)

with rank F1 ¼ rank F2 ¼ 3 (and consequently rank F3 ¼ 1).
The three-generated ideals were studied initially in the article [3] by Buchsbaum and

Eisenbud. Here we focus on graded Betti numbers for such ideals.
We start by observing that, by the exactness criterion, Im q is generated by a regular

sequence ðh1; h2; h3Þ:
Let M be the matrix associated to u with respect suitable bases. Since ðh1; h2; h3Þ is a regular

sequence, its first syzygy module is generated by the rows of the following matrix

K ¼
0 h3 �h2

�h3 0 h1
h2 �h1 0

0
@

1
A:

As uq ¼ 0; we get M ¼ AK; where A 2 R3;3: Consequently the resolution (9) can be written
in the following way

0�!F3�!q F2�!u¼aj
F1�!w R�!R=I�!0 (10)

where a and j are the maps associated to the mentioned matrices A and K.

Proposition 4.1. If

0�!F3�!q F2�!u F1�!w R

is a graded minimal free resolution and M is the matrix associated to u with respect suitable bases,
then IM is generated by the maximal minors obtained by deleting one by one the first 3 rows of the
4� 3-matrix

B ¼ A

h1 h2 h3

0
BB@

1
CCA;

where A is the matrix defined above and ðh1; h2; h3Þ generates Im q:

Proof. This is a particular case of Proposition 3.14, when fðIÞ ¼ 0: w

In order to reverse Proposition 4.1, we need to fix some notation. Let B 2 R4;3 be a Hilbert-
Burch matrix. Let us consider a row of B, say H ¼ ðh1; h2; h3Þ and let B̂ be the matrix obtained
from B by deleting the row H. Let B1;B2;B3 be the maximal minors of B including the row H.

Proposition 4.2. With the above notation let B 2 R4;3 be a Hilbert-Burch matrix, providing a min-
imal set of generators, such that one of its rows H ¼ ðh1; h2; h3Þ is a regular sequence. Let J be the
ideal generated by B1;B2;B3: Then a graded minimal free resolution of R/J is

0�!F3�!q F2�!u F1�!w R

where Im q is generated by ðh1; h2; h3Þ; u ¼ aj where a is the map associated to the matrix B̂; j
is the central map of the Koszul complex on ðh1; h2; h3Þ; w is the map defined by the row
ðB1;B2;B3Þ and F1; F2 are graded free modules of rank three.

Proof. This is a particular case of Proposition 3.15, when fðIÞ ¼ 0: w

The next proposition describes the graded Betti numbers for an ideal I 	 R whose resolution
is of type (10).
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Proposition 4.3. Let I 	 R be a generalized Gorenstein ideal, ht I � 2: Then there exist six integers
d1; d2; d3; a1; a2; a3; with di>0 and ai � 0; such that the graded minimal free resolution of R/I is

0�!R �d�að Þ�! �
3

i¼1
R di�d�að Þ�! �

3

i¼1
R ai�di�að Þ�!R;

where d ¼ d1 þ d2 þ d3 and a ¼ a1 þ a2 þ a3:
Conversely if we choose six integers d1; d2; d3; a1; a2; a3; with di>0 and ai � 0; then there

exists a generalized Gorenstein ideal, ht I � 2; such that R/I has the following minimal graded
free resolution

0�!R �d�að Þ�! �
3

i¼1
R di�d�að Þ�! �

3

i¼1
R ai�di�að Þ�!R;

where d ¼ d1 þ d2 þ d3 and a ¼ a1 þ a2 þ a3:

Proof. Since R/I has a minimal free resolution of type (10), we set d1; d2; d3; the degrees of the
complete intersection IðqÞ and a : �3

i¼1Rð�eiÞ�!�3
j¼1Rð�e0jÞ: We set ai ¼ ei�e0i; for 1 � i � 3:

By Proposition 4.1 we see that the degrees of the minimal generators of I are d1 þ a2 þ a3; d2 þ
a1 þ a3; d3 þ a1 þ a2 i.e. aþ di�ai for 1 � i � 3: Furthermore since u ¼ aj; a simple computa-
tion shows that the shifts of the second module are e1�e01 þ d2 þ ðaþ d1�a1Þ ¼ aþ d1 þ d2;
e2�e02 þ d3 þ ðaþ d2�a2Þ ¼ aþ d2 þ d3; e3�e03 þ d1 þ ðaþ d3�a3Þ ¼ aþ d1 þ d3; consequently
they are aþ d�di; for 1 � i � 3: Since the map q is the map of the complete intersection of type
ðd1; d2; d3Þ the last graded Betti number is aþ d:

Conversely let J ¼ ðh1; h2; h3Þ be a complete intersection with deghi ¼ di for 1 � i � 3 and we
choose three forms gi; deggi ¼ ai for 1 � i � 3: I ¼ ðh1g2g3; h2g1g3; h3g1g2Þ is a required ideal.
Namely if we consider the matrix

B ¼
g1 0 0
0 g2 0
0 0 g3
h1 h2 h3

0
BB@

1
CCA;

it satisfies the hypotheses of Proposition 4.2. w

In order to avoid trivial cases in the sequel we will use the following definition.

Definition 4.4. A Betti sequence is said to be essential if it occurs for R/I where I is a homoge-
neous ideal with ht I � 2:

The next theorem will characterize the Betti sequences for generalized Gorenstein ideals of
homological dimension 3 and ht I � 2:

Theorem 4.5. A sequence ða1; a2; a3; b1; b2; b3; sÞ with a1 � a2 � a3 and b1 � b2 � b3 is a essential
Betti sequence iff

1. s ¼P3
j¼1 bj�

P3
i¼1 ai;

2.
P3

i¼1 ai<b2 þ b3;
3. aj þ bj �

P3
i¼1 ai; for 1 � j � 3:

Proof. Let ða1; a2; a3; b1; b2; b3; sÞ be a essential Betti sequence then there is an ideal I of height at
least two, such that R/I has the following graded minimal free resolution
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0�!R �sð Þ�! �
3

j¼1
R �bj
� ��! �

3

i¼1
R �aið Þ�!R:

Trivially s ¼P3
j¼1 bj�

P3
i¼1 ai:

Moreover the last map of the resolution is defined by a regular sequence h1; h2; h3 with
deghj ¼ s�bj; for 1 � j � 3: Consequently s�b1>0; i.e.

P3
i¼1 ai<b2 þ b3:

Let M ¼ ðmijÞ be a matrix associated to the central map of the above resolution, with
degmij ¼ bj�ai: We have that

P3
j¼1 mijhj ¼ 0; for 1 � i � 3: Consequently

mi1;mi2;mi3ð Þ 2 0; h3;�h2ð Þ; �h3; 0;�h2ð Þ; h2;�h1; 0ð Þð Þ; 1 � i � 3:

Therefore degmij � deghk; with i 6¼ j 6¼ k 6¼ i; i.e.

bj�ai � s�bk ) bi � aj þ ak ) aj þ bj �
X3
i¼1

ai; for 1 � j � 3:

Conversely let us suppose that the sequence ða1; a2; a3; b1; b2; b3; sÞ satisfies the conditions 1, 2,
3 above. We set cj ¼ s�bj; for 1 � j � 3: Then c3 � c2 � c1 and c1>0 by Assumption 2. Hence
cj>0 for 1 � j � 3: Now we set tj ¼

P3
i¼1 ai�aj�bj: By Assumption 3, tj � 0; for 1 � j � 3: Note

that
P3

j¼1 tj þ
P3

j¼1 cj ¼ s;
P3

i¼1 ti þ
P3

i¼1 ci�cj ¼ bj and
P3

i¼1 ti þ cj�tj ¼ aj: Now, applying
Proposition 4.3 to the integers c1; c2; c3; t1; t2; t3 we get that ða1; a2; a3; b1; b2; b3; sÞ is an essential
Betti sequence. w

5. Graded Betti numbers for ideals IM

In this section we study the graded Betti numbers for generalized Gorenstein ideals IM; arising
from a minimal presentation matrix M ¼ ðmijÞ: A graded minimal resolution for such ideals can
be written in the following way

0�!R �sð Þ�!�n
j¼1R �bj

� ��!�n
i¼1R �aið Þ�!R�!R=IM�!0; (11)

where a1 � ::: � an; b1 � ::: � bn and s ¼Pn
j¼1 bj�

Pn
i¼1 ai: We will set also cj ¼ s�bj; for 1 �

j � n: Note that C ¼ ðc1:::cnÞT is the degree vector of the leftmost map of the resolution. It is
easy to check that ai<bnþ1�i for 1 � i � n; and a2<bn; a3<bn�1: Moreover bn�2<s � a1 þ a2 þ
a3: Now we set dij ¼ degmij: Note that dij ¼ bj�ai; so dij � diþ1j and dij � dijþ1 for 1 � i � n�1
and 1 � j � n�1: So if dhk ¼ 0 for some (h, k) then mij ¼ 0 for every i � h and j � k: The
matrix D ¼ ðdijÞ 2 Z

n;n is called the degree matrix of M. The degree matrix of M does not deter-
mine, in general, the graded Betti numbers of IM:

Example 5.1. Let us consider the ideals

I ¼ xyz; yzt; ztu; tuv; uvx; vxyð Þ; J ¼ xyzt; yztu; ztuv; tuvx; uvxy; vxyzð Þ:
Their graded minimal free resolutions are

0�!R �6ð Þ�!R �4ð Þ6�!R �3ð Þ6�!R�!R=I�!0

and

0�!R �6ð Þ�!R �5ð Þ6�!R �4ð Þ6�!R�!R=J�!0:

However if we know one of the cj’s in addition to the degree matrix, then the graded Betti num-
bers are determined.
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Proposition 5.2. Let M be a minimal presentation matrix and let D ¼ ðdijÞ be the degree matrix of
M. Let cr be the degree of the r-th component of C. Then the graded Betti numbers of R=IM are s ¼Pn

i¼1 dii; bj ¼ sþ drj�drr�cr; for 1 � j � n; ai ¼ s�dir�cr; for 1 � i � n:

Proof. By the exactness of (11) s ¼Pn
i¼1ðbi � aiÞ ¼

Pn
i¼1 dii:

Furthermore
ai ¼ ai þ s�br� s�brð Þ ¼ s� br�aið Þ�cr ¼ s�dri�cr:

bj ¼ ar þ drj ¼ s�drr�cr þ drj:
w

Proposition 5.3. Let

a1; :::; an; b1; :::; bn; sð Þ
be an essential Betti sequence. Let ui � 0; 1 � i � n be any integers. We set u ¼Pn

i¼1 ui: Then the
sequence

a1 þ u�u1; :::; an þ u�un; b1 þ u; :::; bn þ u; sþ uð Þ
is an essential Betti sequence.

Proof. By the assumptions there exists an ideal I 	 R ¼ k½x1; :::; xr�; ht I � 2; having a resolution
of the type

0�!R �sð Þ�! �
n

j¼1
R �bj
� ��!u �

n

i¼1
R �aið Þ�!R�!R=I�!0;

where uðeiÞ ¼ ðm1i; :::;mniÞ and ðe1; :::; enÞ is a basis of �n
j¼1Rð�bjÞ: Let S ¼ R½y1; :::; yn�; where

the yi’s are new variables. Let

u0 : �
n

j¼1
S �bj�u
� ��! �

n

i¼1
S �ai�uþ uið Þ

be the map defined by

u0 e0i
� � ¼ m1iy

u1
1 ; :::;mniy

un
n

� �
:

By Theorem 3.8 one sees that the matrix M0 ¼ ðmijy
uj
j Þ (matrix associated to u0) is a minimal

presentation matrix, so it defines an ideal IM0 ; whose minimal free resolution looks like

0�!S �s�uð Þ�! �
n

j¼1
S �bj�u
� ��!u0

�
n

i¼1
S �ai�uþ uið Þ�!S�!S=IM0�!0:

Moreover if IM ¼ ðg1; :::; gnÞ; then IM0 ¼ ðg01; :::; g0nÞ; where
g0i ¼ gi

Yn
j 6¼ij¼1

y
uj
j :

Definition 5.4. We will say that a Betti sequence ða1; :::; an; b1; :::; bn; sÞ is minimal if the n
sequences ða1; a2�1:::; an�1; b1�1; :::; bn�1; s�1Þ; :::; ða1�1; a2�1:::; an; b1�1; :::; bn�1; s�1Þ are
not Betti sequences.

Of course, by Proposition 5.3, it is enough to find the minimal Betti sequences for determine
all Betti sequences for ideals IM:

In order to give more information about Betti sequences for ideals IM; we give the following
definition, which arises from perfect ideals of height 2 (see [5]).
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Definition 5.5. We will say that a sequence ða1 � ::: � an; b1 � ::: � bn; sÞ is a Gaeta sequence if
s ¼Pn

j¼1 bj�
Pn

i¼1 ai and bnþ2�i>ai for 2 � i � n:

Remark 5.6. Of course not every Gaeta sequence is an essential Betti sequence. For instance the
sequence

3; 3; 3; 3; 5; 5; 5; 5; 8ð Þ
is a Gaeta sequence. If it were an essential Betti sequence there should be an ideal I 	 R ¼
k½x; y; z�; of height at least 2, having this Betti sequence. But HR=Ið6Þ ¼ 0; so R/I is an Artinian
algebra, therefore R/I is a Gorenstein algebra of codimension 3, which is a contradiction because
I has an even number of minimal generators.

Our aim is to understand when a Gaeta sequence is an essential Betti sequence.
The next result will permit us to reduce the study of the essential Betti sequences to the

Gaeta sequences.

Theorem 5.7. Let ða1 � ::: � an; b1 � ::: � bn; sÞ be a sequence such that bnþ2�t � at for some t �
4: We set d ¼Pn

i¼tðbnþ1�i � aiÞ: It is an essential Betti sequence iff

1. s ¼Pn
j¼1 bj�

Pn
i¼1 ai;

2. ða1�d; :::; at�1�d; bnþ2�t�d; :::bn�d; s�dÞ is an essential Betti sequence;
3. bnþ1�i>ai for i � t:

Proof. Let us suppose that ða1 � ::: � an; b1 � ::: � bn; sÞ is an essential Betti sequence, so there
is an ideal I, ht I � 2; such that the graded minimal free resolution of R/I looks like

0�!R �sð Þ�!�n
j¼1R �bj

� ��!�n
i¼1R �aið Þ�!R:

The conditions 1 and 3 are well known for general facts. Let M ¼ ðmijÞ be a matrix associated
to the central map of the resolution, such that degmij ¼ bj�ai: Let ðg1; :::; gnÞ ¼ cðMÞ: Since
bnþ2�t � at; mij ¼ 0 for i � t and j � nþ 2�t: Let M0 ¼ ðmijÞ be the square submatrix of M
where 1 � i � t�1 and nþ 2�t � j � n and D ¼ ðmijÞ where t � i � n and 1 � j � nþ 1�t:
Note that rank M0 � t�2 since ðg1:::gt�1ÞM0 ¼ 0: Furthermore rank M0 � t�2 since rank M ¼
n�1: So rank M0 ¼ t�2: Moreover detD 6¼ 0: Indeed, because of the vanishing of the maximal
minors of the submatrix of M obtained by removing a column Cj with 1 � j � nþ 1�t; there is
a column Ck with nþ 2�t � k � n such that the maximal minors of the submatrix of M
obtained by removing Ck are not vanishing multiple of g1; :::; gn: Since such minors are multiple
of detD we get that detD 6¼ 0: Consequently cðM0Þ ¼ ðdetDÞ�1ðg1; :::; gt�1Þ: Now since every
syzygy on cðM0Þ is also a syzygy on g1; :::; gn and since detD 6¼ 0 this syzygy must be in the span
of Cj for nþ 2�t � j � n: So by Proposition 2.6, M0 is a presentation matrix and the Betti
sequence of IM0 is ða1�d; :::; at�1�d; bnþ2�t�d; :::bn�d; s�dÞ:

Conversely we suppose that the conditions 1, 2 and 3 are satisfied. In particular, by condition 2
there exists a presentation matrix M0 ¼ ðm0

ijÞ; with degm0
ij ¼ ðbnþ1�t�j�dÞ�ðai�dÞ ¼ bnþ1�t�j�ai

of size t – 1 such that IM0 has Betti sequence ða1�d; :::; at�1�d; bnþ2�t�d; :::bn�d; s�dÞ: Now we
define a square matrixM ¼ ðmijÞ; of size n, in the following way

mij ¼

m0
i;j� nþ1�tð Þ for 1 � i � t�1; nþ 2�t � j � n

y
bj�ai
i for iþ j ¼ n; t�1 � i � n�1

z
bj�ai
i for iþ j ¼ nþ 1; t � i � n

0 elsewhere

;

8>>>>><
>>>>>:
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where yj and zj are new variables for every j. The condition 3 guarantees that the exponents of yj
and zj are positive integers. Since rank M0 ¼ t�2; we have rank M ¼ n�1: We set

ðg01; :::; g0t�1Þ ¼ cðM0Þ: Now if we set ðg1; :::; gnÞ ¼ cðMÞ; we see that gi ¼ g0i
Qn

i¼t z
bn�i�ai
i for 1 �

i � t�1 and gi ¼ g0t�1

Qi�1
h¼t�1 y

bn�h�ah
h

Qn
h¼iþ1 z

bnþ1�h�ah
h for t � i � n: Note that deggi ¼ ai for 1 �

i � n: In order to show that M is a minimal presentation matrix, we will use Theorem 3.8. We
set ðh01; :::; h0t�1Þ ¼ cðM0TÞ: By Theorem 3.8, the ideal J0 generated by the components of cðM0TÞ
has depth J0 � 3: Since cðMTÞ ¼ ð0; :::; 0; h01; :::; h0t�1Þ; the ideal J generated by the components of

cðMTÞ coincides with J0; so it has depth greater than or equal to 3 too. By Lemma 3.7, MC ¼
ucðMÞTcðMTÞ: So we need only to show that u is a unit. To do this we compute the cofactor
M1n of the entry in position ð1; nÞ:

M1n ¼ �1ð Þnþ1g01h
0
t�1

Yn
i¼t

zbn�i�ai
i ¼ �1ð Þnþ1g1h

0
t�1;

since h0t�1 is the n-th component of cðMTÞ; we are done. w

Corollary 5.8. Let ða1 � ::: � an; b1 � ::: � bn; sÞ be a sequence such that bn�2 � a4: We set d ¼Pn
i¼4ðbnþ1�i � aiÞ: It is an essential Betti sequence iff

1. s ¼Pn
j¼1

bj�
Pn
i¼1

ai;
2. ajþbn�3þjþd � a1þa2þa3<bn�1þbnþd; for j ¼ 1; 2; 3:
3. bnþ1�i>ai for i � 4:

Proof. According to Theorem 5.7, we need to show that ða1�d; a2�d; a3�d;
bn�2�d; bn�1�d; bn�d; s�dÞ is a essential Betti sequence. Now it is enough to use Theorem 4.5 to verify
this fact. w

Remark 5.9. Note that by iterating the procedure of Theorem 5.7 any sequence b ¼ ða1 � ::: �
an; b1 � ::: � bn; sÞ can be transformed in a Gaeta sequence b0 ¼ ða01 � ::: � a0m; b

0
1 � ::: � b0m; s

0Þ:

Corollary 5.10. Let b ¼ ða1 � ::: � an; b1 � ::: � bn; sÞ be a sequence. Using the same notation of
Remark 5.9, b is an essential Betti sequence iff the Gaeta sequence b0 is an essential Betti sequence.

Proof. Taking into account Remark 5.9, it is an easy application of Theorem 5.7. w

Now we study the essential Betti sequences of the type

a; :::; a; b; :::; b; sð Þ:

Definition 5.11. Let M be a square matrix of size n. The matrix M ¼ ðmijÞ is said to be bidiago-
nal iff mij ¼ nij ¼ 0 for j 6¼ i; iþ 1; 1 � i � n (here mn;nþ1 means mn1).

Lemma 5.12. Let S ¼ k½x1; :::; xr; y1; :::; ys�: Let M ¼ ðmijÞ and N ¼ ðnijÞ be two minimal presenta-
tion bidiagonal square matrices of size n such that mij are forms of degree d in k½x1; :::; xr�; nij are
forms of degree e in k½y1; :::; ys�: Let M � N ¼ ðtijÞ be the matrix such that tii ¼ miinii and ti;iþ1 ¼
�mi;iþ1niiþ1 and tij ¼ 0 otherwise.

Then M � N is a presentation bidiagonal matrix. Moreover if cðMTÞ ¼ ðh1; :::; hnÞ and
cðNTÞ ¼ ðk1; :::; knÞ then cððM � NÞTÞ ¼ ðh1k1; :::; hnknÞ:
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Proof. Note that

det M � Nð Þ ¼
Yn
i¼1

tii þ �1ð Þnþ1
Yn
i¼1

ti;iþ1 ¼

¼
Yn
i¼1

miinii þ �1ð Þnþ1 �1ð Þn
Yn
i¼1

mi;iþ1ni;iþ1 ¼

¼
Yn
i¼1

miinii�
Yn
i¼1

mi;iþ1ni;iþ1 ¼ 0:

To show that M � N is a minimal presentation matrix we use Theorem 3.8. At first we need to
compute the cofactors of M � N: Such a computation can be found, for instance, in the article [9]
on page 281. From this computation follows immediately that detðM � NÞij ¼ detMijdetNij (where
with the index ij we mean the submatrix obtained by removing i-th row and j-th column).
Consequently we get that cððM � NÞTÞ ¼ ðh1k1; :::; hnknÞ: Since cððMÞTÞ and cððNÞTÞ consisting
of forms living in polynomial rings in different variables we deduce that the ideal generated by
cððM � NÞTÞ has depth at least 3. From the same computation follows also that
ðM � NÞC ¼ cððM � NÞÞTcððM � NÞTÞ: w

Proposition 5.13. If a sequence ða1; :::; an; b1; :::; bn; sÞ of positive integers, with a1 ¼ ::: ¼ an ¼ a;
b1 ¼ ::: ¼ bn ¼ b; is a essential Betti sequence then

1. s ¼ nðb�aÞ;
2. na<ðn�1Þb � ðnþ 1Þa; moreover, when n is even, ðn�1Þb<ðnþ 1Þa:

Proof. Let us suppose that ða1; :::; an; b1; :::; bn; sÞ with a1 ¼ ::: ¼ an ¼ a; b1 ¼ ::: ¼ bn ¼ b; is a
essential Betti sequence. Then there exists an ideal I, ht I � 2; whose resolution is

0�!R �sð Þ�!R �bð Þn�!R �að Þn�!R�!R=I�!0:

The condition 1 is trivial. Moreover, since s>b; nðb�aÞ>b; so na<ðn�1Þb:
Since depth ðR=IÞ ¼ depth ðRÞ�3 we can reduce to a ring in only 3 variables. So we can sup-

pose that R ¼ k½x1; x2; x3�: Of course we have that HR=Iðs�2Þ � 0: Therefore

0 � HR=I s�2ð Þ ¼ s

2

 !
�n

s�a

2

 !
þ n

s�b

2

 !
� 0

2

 !

¼ 1
2
n b�að Þ a nþ 1ð Þ�b n�1ð Þ	 


that implies ðn�1Þb � ðnþ 1Þa: Moreover, when n is even, since R/I cannot be Gorenstein, hence
it cannot be Artinian, so HR=Iðs�2Þ>0; so for n even we have ðn�1Þb<ðnþ 1Þa: w

Theorem 5.14. A sequence ða1; :::; an; b1; :::; bn; sÞ of positive integers, with a1 ¼ ::: ¼ an ¼ a; b1 ¼
::: ¼ bn ¼ b; n odd is an essential Betti sequence iff

1. s ¼ nðb�aÞ;
2. na<ðn�1Þb � ðnþ 1Þa:

Proof. The condition is necessary by Proposition 5.13.
Conversely let ða1; :::; an; b1; :::; bn; sÞ with a1 ¼ ::: ¼ an ¼ a; b1 ¼ ::: ¼ bn ¼ b; n odd a

sequence satisfying the conditions 1Þ and 2Þ:
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By subtracting ðn�1Þa; the condition 2Þ becomes

n�1
2

b�að Þ � a � n�1ð Þ b�að Þ�1:

Now we work by induction on b�a: For b�a ¼ 1 our condition becomes s¼ n and n�1
2 � a �

n�2: Using Corollary 3.11 in [9] we can produce an ideal I, ht I � 2; in R such that R/I has the
requested Betti sequence. Let us suppose that we have realized an algebra R/I having the
requested Betti sequence when b�a ¼ h. We need to construct algebras R/I with Betti sequence
satisfying ðn�1Þ

2 ðhþ 1Þ � a � ðn�1Þðhþ 1Þ�1 and s ¼ nðhþ 1Þ: Using Proposition 5.3 for ui ¼ 1
for every i, we realize the Betti sequences satisfying s ¼ nðhþ 1Þ and ðn�1Þðhþ2Þ

2 � a � ðn�1Þðhþ
1Þ�1: So, it remains to build the Betti sequences such that

s ¼ n hþ 1ð Þ and
n�1ð Þ
2

hþ 1ð Þ � a � n�1ð Þ
2

hþ 2ð Þ�1

i.e. n�1
2 hþ 1 � s�b � n�1

2 ðhþ 1Þ: We are interested on the integer s – b since it is the degree of
the components of vector cðMTÞ; where M is the presentation matrix which we will use to realize
these Betti sequences. Note that h and s – b determine all the Betti sequence. For h¼ 1 we have
realized every Betti sequence such that 1 � s�b � n�1

2 ; using bidiagonal matrices. Moreover, by
the inductive hypothesis, we have also realized every Betti sequence such that b�a ¼ h and 1 �
s�b � h n�1

2 ; using again bidiagonal matrices. Now let 1 � t � n�1
2 and let M be a minimal pres-

entation bidiagonal matrix realizing the Betti sequence such that s ¼ n; b�a ¼ 1 and s�b ¼ t:
Let N be a minimal presentation bidiagonal matrix realizing the Betti sequence such that s ¼ nh;
b�a ¼ h and s�b ¼ h n�1

2 : Applying Lemma 5.12 we get a matrix M � N realizing the Betti
sequence such that s ¼ nðhþ 1Þ; b�a ¼ hþ 1 and s�b ¼ h n�1

2 þ t: w

Proposition 5.15. A sequence ða1; :::; an; b1; :::; bn; sÞ of positive integers, with a1 ¼ ::: ¼ an ¼ a;
b1 ¼ ::: ¼ bn ¼ b; n even is an essential Betti sequence provided that

1. s ¼ nðb�aÞ;
2. na<ðn�1Þb � naþ n�2

2 ðb�aÞ:

Proof. At first we observe that the condition 2 is equivalent to

n
2

b�að Þ � a � n�1ð Þ b�að Þ�1 () 1 � s�b � n�2
2

b�að Þ:

We proceed analogously to the proof of Theorem 5.14. Now we work by induction on b�a:
For b�a ¼ 1 our conditions become s¼ n and n�2

2 � a � n�2: Using Corollary 3.11 in [9] we
can produce an ideal I in R, ht I � 2; such that R/I has the requested Betti sequence.

Let us suppose that we have realized an algebra R/I having the requested Betti sequence when
b�a ¼ h. We need to construct algebras R/I with Betti sequence satisfying n

2 ðhþ 1Þ � a �
ðn�1Þðhþ 1Þ�1 and s ¼ nðhþ 1Þ: Using Proposition 5.3 for ui ¼ 1 for every i, we realize the
Betti sequences satisfying s ¼ nðhþ 1Þ and n

2 hþ n�1 � a � ðn�1Þðhþ 1Þ�1: So, it remains to
build the Betti sequences such that

s ¼ n hþ 1ð Þ and
n
2

hþ 1ð Þ � a � n
2
hþ n�2

i.e. n�2
2 hþ 1 � s�b � n�2

2 ðhþ 1Þ: We are interested on the integer s – b since it is the degree of
the components of vector cðMTÞ; where M is the presentation matrix which we will use to realize
these Betti sequences. Note that h and s – b determine all the Betti sequence. For h¼ 1 we have
realized every Betti sequence such that 1 � s�b � n�2

2 ; using bidiagonal matrices. Moreover, by
the inductive hypothesis, we have also realized every Betti sequence such that b�a ¼ h and 1 �
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s�b � h n�2
2 ; using again bidiagonal matrices. Now let 1 � t � n�2

2 and let M be a minimal pres-
entation bidiagonal matrix realizing the Betti sequence such that s ¼ n; b�a ¼ 1 and s�b ¼ t:
Let N be a minimal presentation bidiagonal matrix realizing the Betti sequence such that s ¼ nh;
b�a ¼ h and s�b ¼ h n�2

2 : Applying Lemma 5.12 we get a matrix M � N realizing the Betti
sequence such that s ¼ nðhþ 1Þ; b�a ¼ hþ 1 and s�b ¼ h n�2

2 þ t: w

Remark 5.16. Unfortunately our construction does not allow building all the sequences satisfying
the conditions of Proposition 5.13. For instance the sequence ð5; 5; 5; 5; 8; 8; 8; 8; 12Þ cannot be
built with the tools of Proposition 5.15. Nevertheless it is an essential Betti sequence. In fact,
using Macaulay 2, one can verify that the ideal I ¼ ðf1; f2; f3; f4Þ with

f1 ¼ �x3y4y5z4z5�y1y4y5z4z6 þ x3y4y5z1z8 þ y1y4y5z2z8
f2 ¼ x1x2x3z4z5 þ x1x2y1z4z6 þ y1y2y3z4z7þ

�x1x2x3z1z8�x1x2y1z2z8�y1y2y3z3z8
f3 ¼ x3y2y3z3z5 þ y1y2y3z3z6�x3y2y3z1z7�y1y2y3z2z7
f4 ¼ �x1x2x3z3z5�x1x2y1z3z6 þ x1x2x3z1z7þ

þ x1x2y1z2z7 þ x3y4y5z4z7�x3y4y5z3z8

has height 2 and the above Betti sequence.
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