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We introduce a new type of Hessian matrix, that we call Mixed Hessian. The mixed 
Hessian is used to compute the rank of a multiplication map by a power of a linear 
form in a standard graded Artinian Gorenstein algebra. In particular we recover 
the main result of a paper by Maeno and Watanabe for identifying Strong Lefschetz 
elements, generalizing it also for Weak Lefschetz elements. This criterion is also used 
to give a new proof that Boolean algebras have the Strong Lefschetz Property. We 
also construct new examples of Artinian Gorenstein algebras presented by quadrics 
that does not satisfy the Weak Lefschetz Property; we construct minimal examples 
of such algebras and we give bounds, depending on the degree, for their existence. 
Artinian Gorenstein algebras presented by quadrics were conjectured to satisfy WLP 
in two papers by Migliore and Nagel, and in a previous paper we constructed the 
first counter-examples.

© 2019 Elsevier B.V. All rights reserved.

0. Introduction

The Hessian matrix of a form is the matrix of its second derivatives and its Hessian is the determinant 
of this matrix. The first instance of such object goes back to the seminal paper of Gauss [8]. In this 
context the Hessian describes curvature for surfaces given by an implicit function, see also Segre [27] for the 
n-dimensional analog. Complete hypersurfaces with zero Gaussian curvature are also called developable. 
We recall that for X = V (f) ⊂ P

N
K

, a hypersurface defined over K = R, C, we get hessf = 0 (mod f) if 
and only if the hypersurface is developable, that is, the Gauss map is degenerated. In P3 only cones and 
the tangent surface of a curve are developable. While the cones have hessf = 0 the tangent surfaces have 
hessf �= 0 (see [26, Chapter 7]).
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Hesse claimed in [14] that for arbitrary N , hessf = 0 if and only if X = V (f) ⊂ P
N is a cone. Gordan 

and Noether in the fundamental paper [11] showed that Hesse’s claim is true for N ≤ 3 and they produced 
series of counterexamples for N ≥ 4. Moreover, these counterexamples can be characterized as the only 
hypersurfaces in P4 with vanishing hessian which are not cones. A modern proof of this fact can be found in 
[12] while a very detailed account on the subject appears in [26, Chapter 7]. The so called Gordan–Noether 
Theory is also treated in very different aspects in [4,6,19,12,13,31,26].

Hessians of higher degree were introduced in [22] and used to control the so called Strong Lefschetz 
property (SLP). This property for a graded Artinian Gorenstein algebra was inspired by the Hard Lefschetz 
Theorem on the cohomology of smooth projective complex varieties. In this paper we introduce the mixed 
Hessians, that generalize the Hessians of higher order, providing a generalization of the criterion for Strong 
Lefschetz elements also for Weak Lefschetz elements (see Theorem 2.4 and Corollary 2.5).

The Lefschetz properties have attracted a great deal of attention over the years, since they are phenomena
connected with Commutative Algebra, Algebraic and Tropical Geometry and Combinatorics, see [28,29,16,
15,9,10]. The first result in the area, proved by Stanley [28] and independently by Watanabe, asserts that a 
complete intersection of monomials have the SLP. Here we (re)prove a special case of this result for quadratic 
complete intersections of monomials, also called Boolean algebras.

A standard graded K-algebra is said to be presented by quadrics if it is isomorphic to the quotient of a 
polynomial ring over K by a homogeneous ideal generated by quadratic forms. These algebras are related 
with Koszul algebras and Gröbner basis, see for example [5]. In [10] we disprove a conjecture posed in [21]
that Artinian Gorenstein algebras presented by quadrics have the WLP. Here we study in more detail the 
family introduced in [10] to give minimal examples for those algebras failing the WLP.

We now describe the contents of the paper in more detail. In the first section we recall the basic defi-
nitions and constructions of standard graded Artinian Gorenstein algebras, and we recall a combinatorial 
construction introduced in [10].

In the second section we introduce the mixed Hessians and prove the main result, Theorem 2.4, a gen-
eralization of the Hessian criterion to mixed Hessians, see also Corollary 2.5. In the third section we prove 
an inductive construction (see Proposition 3.3) whose Corollary is the very well known fact that Boolean 
algebras have the SLP (see Corollary 3.4).

The next section is devoted to recall a combinatorial construction introduced in [10], we associate a 
homogeneous simplicial complex to a standard graded Artinian Gorenstein algebra. A special family called 
Turan algebras have been used in [10] to produce counterexamples to the conjecture posed in [20,21]. The 
conjecture was that Artinian Gorenstein algebras presented by quadrics have the WLP.

In the last section we deal with algebras presented by quadrics of minimal codimension failing the WLP. 
For degree d = 3 we find the minimal example in codimension 8 (see Example 5.6). We also classify algebras 
associated to graphs with respect to WLP (see Proposition 5.9). Applying the inductive construction we 
get a lower bound for the codimension of algebras of odd degree to fail the WLP (see Corollary 5.12); this 
bound is relatively sharp. For even degrees we also give a bound for the failure of the WLP, Corollary 5.17.

1. Artinian Gorenstein algebras and the Lefschetz properties

1.1. Lefschetz properties

Let K be an infinite field and R = K[x1, . . . , xn] be the polynomial ring in n indeterminates.

If A = R/I is an Artinian standard graded R-algebra, then A has a decomposition A =
d⊕

i=0
Ai, as a sum 

of finite dimensional K-vector spaces with Ad �= 0.
A form F ∈ Rk induces a K-vector space map μi,F : Ai → Ai+k, defined by μi,F (α) = Fα, for every 

α ∈ Ai.
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Definition 1.1. We say that A has the Strong Lefschetz property (in short SLP) if there exists a linear form 
L ∈ R1 such that rkμi,Lk = min{dimK Ai, dimK Ai+k}, for every i, k.

Definition 1.2. We say that A has the Weak Lefschetz property (in short WLP) if there exists a linear form 
L ∈ R1 such that rkμi,L = min{dimK Ai, dimK Ai+1}, for every i.

Definition 1.3. Let R = K[x1, . . . , xn] and A = R/I be an Artinian standard graded R-algebra, with I1 = 0. 
The integer n is said to be the codimension of A. If Ad �= 0 and Ai = 0 for all i > d, then d is called the 
maximal socle degree of A. The Hilbert vector of A is hA = Hilb(A) = (1, h1, h2, . . . , hd), where hk = dimAk. 
We say that hA is unimodal if there exists k such that 1 ≤ h1 ≤ . . . ≤ hk ≥ hk+1 ≥ . . . ≥ hd.

Remark 1.4. We recall that an Artinian algebra A =
d⊕

i=0
Ai, Ad �= 0, is a Gorenstein algebra if and only if 

dimK Ad = 1 and the bilinear pairing

Ai ×Ad−i → Ad

induced by the multiplication is non-degenerate for 0 ≤ i ≤ d. So we have an isomorphism Ai �
HomK(Ad−i, Ad) for i = 0, . . . , d. In particular, dimK Ai = dimK Ad−i, for i = 0, . . . , d. Moreover, for 
every L ∈ R1, rankμi,L = rankμd−i−1,L, for 0 ≤ i ≤ d.

Since A is generated in degree 0 as an R-module, if μi,L is surjective, then μj,L is surjective for every 
j ≥ i. Therefore, for an Artinian Gorenstein algebra A, if μi,L is injective, then μj,L is injective for every 
j ≤ i. Of course SLP implies WLP. Notice also that the WLP implies the unimodality of the Hilbert vector 
of A. Unimodality in the Gorenstein case implies that dimAk−1 ≤ dimAk for all k ≤ d

2 . The converse of 
these implications are not true, (see Corollary 3.3 and Theorem 3.8 in [9]).

1.2. Macaulay–Matlis duality

From now on we assume that charK = 0. Let us regard the polynomial algebra R as a module over the 
algebra Q = K[X1, . . . , Xn] via the identification Xi = ∂/∂xi. If f ∈ R we set

AnnQ(f) = {p(X1, . . . , Xn) ∈ Q | p(∂/∂x1, . . . , ∂/∂xn)f = 0}.

It is well known that A = Q/I is a standard graded Artinian Gorenstein algebra if and only if there exists 
a form f ∈ R such that I = AnnQ(f) (for more details see, for instance, [22]).

In the sequel we always assume that A = Q/I, I = AnnQ(f) and I1 = 0.

When we deal with standard bigraded Artinian Gorenstein algebras A =
d⊕

i=0
Ai, Ad �= 0, with Ak =

k⊕
i=0

A(i,k−i), A(d1,d2) �= 0 for some d1, d2 such that d1 +d2 = d, we call (d1, d2) the socle bidegree of A. Since 

A∗
k � Ad−k and since duality is compatible with direct sum, we get A∗

(i,j) � A(d1−i,d2−j).
In this case given a presentation of A = Q/ AnnQ(f) with R = K[x, u] and Q = K[X, U ] standard 

bigraded, we get I = AnnQ(f) a bihomogeneous ideal. It is easy to see that the Macaulay dual of the 
defining ideal is f ∈ R(d1,d2) a bihomogeneous polynomial of total degree d = d1 + d2.

Definition 1.5. With the previous notation, all bihomogeneous polynomials of bidegree (1, d − 1) can be 
written in the form
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f = x1g1 + . . . + xngn,

where gi ∈ K[u1, . . . , um]d−1. We say that f is of square-free monomial type if all gi are square free mono-
mials. The associated algebra, A = Q/ AnnQ(f), is bigraded, has socle bidegree (1, d − 1) and we assume 
that I1 = 0, so codimA = m + n.

2. Mixed Hessians and dual mixed Hessians

Let R = K[x1, . . . , xn] and Q = K[∂/∂x1, . . . , ∂/∂xn]. Let f ∈ Rd. Let A = Q/ Ann(f) be a standard 
graded Artinian Gorenstein K-algebra,

A = A0 ⊕ . . .⊕Ad, dimK Ad = 1.

Let k ≤ l be two integers, take L ∈ A1 and let us consider the K-vector space map

μL : Ak → Al, μL(α) = Ll−kα.

Let Bk = (α1, . . . , αr) be a K-linear basis of Ak and Bl = (β1, . . . , βs) be a K-linear basis of Al.

Definition 2.1. We call the matrix

Hess(k,l)f := [αiβj(f)]

the mixed Hessian (matrix) of f of mixed order (k, l) with respect to the bases Bk and Bl. Moreover, we 
define Hesskf = Hess(k,k)

f , hesskf = det(Hesskf ) and hessf = hess1f .

Now we consider the unique generator ϑ ∈ Ad, such that ϑ(f) = 1. So we can define the dual basis in 
HomK(Al, Ad), B∗

l = (β∗
1 , . . . , β

∗
s ), in the following way

β∗
i (βj) = δijϑ.

Since A is Gorenstein, the multiplication induces a non-degenerate bilinear map Al × Ad−l → Ad, so 
we have an isomorphism ϕ : Ad−l → HomK(Al, Ad), defined by ϕ(γ)(β) = γβ. In particular we have 
ϕ−1(β∗

i ) = ϑ/βi ∈ Ad−l.

Definition 2.2. We call the matrix

Hess(l
∗,k)

f := [(ϑ/βi)αj(f)]

the dual mixed Hessian (matrix) of f of mixed order (k, l) with respect to the bases Bk and Bl.

Note that Hess(k,l)f ∈ (Rd−l−k)s,r and Hess(l
∗,k)

f ∈ (Rl−k)s,r.

Remark 2.3. First of all, since we are interested only in the rank of such matrices, the dependence on the 
basis is not relevant.

Therefore, it is easy to see that rk Hess(l
∗,k)

f = rk Hess(d−l,k)
f .

We observe that, under the natural assumption that AnnQ(f)1 = 0, the notation hessf is consistent with 
the classical definition of Hessian, by taking B1 = {X1, . . . , Xn}, the standard basis of the embedding.

Moreover, the notation is also compatible with the Definition of higher order Hessians given in [22].
If A is bigraded, and if Bk = {α1, . . . , αs} and Bl = {β1, . . . , βt} are bases of the K-vector spaces A(k,l)

and A(k′,l′) respectively, we can also define Hess((k,l),(k
′,l′)) = (αi(βj(f)))s×t.
f



4272 R. Gondim, G. Zappalà / Journal of Pure and Applied Algebra 223 (2019) 4268–4282
If L = a1∂/∂x1 + . . . + an∂/∂xn, we set L⊥ = (a1, . . . , an). We regard it as a point in An. For example 
if F ∈ K[x1, . . . , xn], then F (L⊥) = F (a1, . . . , an).

Theorem 2.4. With the previous notation, let M be the matrix associated to the map μL : Ak → Al with 
respect to the bases Bk and Bl. Then

M = (l − k)! Hess(l
∗,k)

f (L⊥).

Proof. First of all note that if g ∈ Rd then Ld(g) = d!g(L⊥).
Let M = (bij). Then

Ll−kαj =
s∑

h=1

bhjβh.

Consequently

β∗
i (Ll−kαj) =

s∑
h=1

bhjβ
∗
i (βh) ⇒ (ϑ/βi)Ll−kαj = bijϑ ⇒ Ll−k(ϑ/βi)αj = bijϑ.

Now we evaluate in f

Ll−k(ϑ/βi)αj(f) = bijϑ(f) ⇒ (l − k)!(ϑ/βi)αj(f)(L⊥) = bij . �
The previous results give us a generalization of [30, Theorem 4] and [22, Theorem 3.1].

Corollary 2.5 (Hessian criteria for Strong and Weak Lefschetz elements). Let A = Q/ AnnQ(f) be a standard 
graded Artinian Gorenstein algebra of codimension n and socle degree d and let L = a1x1 + . . .+anxn ∈ A1, 
such that f(a1, . . . , an) �= 0. The map μLl−k : Ak → Al, for k < l ≤ d

2 , has maximal rank if and only if the 

(mixed) Hessian matrix Hess(k,d−l)
f (a1, . . . , an) has maximal rank. In particular, we get the following:

(1) (Strong Lefschetz Hessian criterion, [30], [22]) L is a strong Lefschetz element of A if and only if 
hesskf (a1, . . . , an) �= 0 for all k = 1, . . . , [d/2].

(2) (Weak Lefschetz Hessian criterion) L ∈ A1 is a weak Lefschetz element of A if and only if either 
d = 2q + 1 is odd and hessqf (a1, . . . , an) �= 0 or d = 2q is even and Hess(q−1,q)

f (a1, . . . , an) has maximal 
rank.

Proof. Let μ : Ak → Al be the map defined by the multiplication by Ll−k. By Theorem 2.4,

rkμ = rk Hess(l
∗,k)

f (L⊥) = rk Hess(l
∗,k)

f (a1, . . . , an) = rk Hess(k,d−l)
f (a1, . . . , an),

(see also Remark 2.3).
The other claims are a direct consequence of it. �

3. An inductive construction

In this section we want to study the relations between the algebras A = Q/ AnnQ(f) and Ã = Q̃/ AnnQ̃(f̃)
with f ∈ R = K[x1, . . . , xr] and f̃ = uf ∈ R̃ = K[x1, . . . , xr, u]. As a Corollary we prove that the Boolean 
algebras have the SLP. This result have been proved in a number of different ways, it was the genesis of the 
area with the work of R. Stanley and J. Watanabe.
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Lemma 3.1. Let f ∈ R = K[x1, . . . , xr] be a homogeneous polynomial of degree d and let f̃ = uf ∈ R̃ =
K[x1, . . . , xr, u]. Let Q and Q̃ be the rings of differential operators associated to R and R̃ respectively. Then

AnnQ̃(f̃) = AnnQ(f)Q̃ + U2Q̃ ⊂ Q̃.

In particular, if A = Q/ AnnQ(f) is presented by quadrics, then Ã = Q̃/ AnnQ̃(f̃) is also presented by 
quadrics.

Proof. It is easy to see that if α ∈ AnnQ(f), then α ∈ AnnQ̃(f̃), and also U2 ∈ AnnQ̃(f̃), hence I =
AnnQ(f)Q̃ + U2Q̃ ⊂ AnnQ̃(f̃). To prove the equality, let α ∈ AnnQ̃(f̃)/I, then we can write:

α = β + Uγ.

Where β, γ ∈ Q/I ⊂ Q̃/I. Therefore:

α(f̃) = β(f) + Uγ(f) = 0.

This give us β = γ = 0, hence α = 0 and the result follows. �
Lemma 3.2. With the previous notation we have the following decomposition as K-vector spaces:

Ãk = Ak ⊕Ak−1U.

Proof. Let {β1, . . . , βs} ⊂ Ak be a K-basis of Ak and let {γ1, . . . , γl} ⊂ Ak−1 be a K-basis of Ak−1. We 
claim that {β1, . . . , βs, Uγ1, . . . , Uγl} ⊂ Ãk is a K-basis of Ãk.

(i) Linear independence. Suppose that

b1β1 + . . . + bsβs + c1Uγ1 + . . . + clUγl = 0.

Hence, by Lemma 3.1 b1β1 + . . . + bsβs = 0 implying b1 = . . . = bs = 0, in the same way c1Uγ1 + . . . +
clUγl = 0 implying c1 = . . . = cl = 0.

(ii) Spanning. Let α ∈ Ãk, by Lemma 3.1, α = β + Uγ, with β ∈ Ak and γ ∈ Ak−1. Therefore β =
b1β1 + . . . + bsβs and γ = c1Uγ1 + . . . + clUγl since {β1, . . . , βs} is a K-basis of Ak and {γ1, . . . , γl} is 
a K-basis of Ak−1. �

Proposition 3.3. With the same notation, if A has the SLP, then Ã has the SLP.

Proof. By Lemma 3.1 and Lemma 3.2, we get:

Hessk
f̃

=
[

0 Hess(k−1,k)
f

Hess(k,k−1)
f uHesskf

]

By hypothesis and by Corollary 2.5, hesskf �= 0, hence one can apply the determinant of block matrix to get:

hessk
f̃

= us hesskf det[0 − Hess(k−1,k)
f (uHesskf )−1 Hess(k,k−1)

f ]

Multiplying by u we get:

hessk˜ = hesskf det[−Hess(k−1,k)(Hesskf )−1 Hess(k,k−1)]

f f f
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By Theorem 2.4 we can interpret the multiplication [Hess(k−1,k)
f (Hesskf )−1 Hess(k,k−1)

f ], up to a scalar mul-
tiple, as a composition of multiplication maps by a general linear form L ∈ A1 in the following way:

Ak−1 → Ad−k → Ak → Ad−k+1
α �→ Ld−2k+1α �→ Lα �→ Ld−2k+2α

In fact, Hess(k,k−1)
f (L⊥) is the matrix of the map μLd−2k+1 : Ak−1 → Ad−k, (Hesskf )−1(L⊥) is the inverse of 

the matrix of the map μLd−2k : Ak → Ad−k and Hess(k−1,k)
f (L⊥) is the matrix of the map μLd−2k+1 : Ak →

Ad−k+1.
Notice that the composition is the map μLd−2k+2 : Ak−1 → Ad−(k−1) and hence, by Theorem 2.4, its 

matrix is just Hessk−1
f (L⊥) whose determinant is non zero by hypothesis. �

A codimension n Boolean K-algebra can be presented as the complete intersection

K[x1, . . . , xn]/(x2
1, . . . , x

2
n) � K[X1, . . . , Xn]/Ann(x1 . . . xn).

It is a particular case of the algebras given by the annihilator of a monomial that have been treated by 
Stanley [28] and Watanabe [16]. This result motivated the entire area and has been reproved by using 
different methods in [25,18,16]. As a consequence of Proposition 3.3 we give a simple proof that the Boolean 
algebras have the SLP using Mixed Hessians.

Corollary 3.4. Let K be a field of characteristic zero. Then, the complete intersection algebra K[x1, . . . , xn]/
(x2

1, . . . , x
2
n) has the SLP.

Proof. By induction in n = codim(A), the result is trivial for n = 1. Suppose the result is true for an 
n ≥ 1, then, for f = x1 . . . xn all the k-th Hessians satisfy hesskf �= 0. Let us call A = Q/ Ann(f). To prove 
the result for B = K[x1, . . . , xn, u]/(x2

1, . . . , x
2
n, u

2), we consider g = uf = ux1 . . . xn ∈ K[x1, . . . , xn, u], by 
Proposition 3.3 the result follows.

See also [17] and [18], for other methods. �
4. A combinatorial construction

Definition 4.1. Let V = {u1, . . . , um} be a finite set. A simplicial complex Δ with vertex set V is a subset 
of the power set 2V , such that for all A ∈ Δ and for all B ⊆ A we have B ∈ Δ. The members of Δ are 
referred as faces. Faces with the maximal dimension are called facets. If A ∈ Δ and |A| = k, it is called a 
(k− 1)-face, or a face of dimension k− 1. If all the facets have the same dimension d the complex is said to 
be homogeneous of (pure) dimension d. We say that Δ is a simplex if Δ = 2V .

In our context we identify the faces of a simplicial complex with square-free monomials in the variables 
{u1, . . . , um}. Let K be any field and let R = K[u1, . . . , um] be the polynomial ring. To any finite subset 
F ⊂ {u1, . . . , um} we associate the monomial mF =

∏
ui∈F

ui. In this way there is a natural bijection between 

the simplicial complex Δ and the set of the monomials mF , where F is a facet of Δ.
Let Δ be a homogeneous simplicial complex of dimension d − 2 whose facets are given by the monomials 

gi ∈ K[u1, . . . , um]d−1. Let f ∈ K[x1, . . . , xn, u1, . . . , um](1,d−1) be the bihomogeneous form of monomial 

square free type associated to Δ, that is f = fΔ =
n∑

i=1
xigi (see Definition 1.5). The vertex set of Δ is 

also called the 0-skeleton and we write V = {u1, . . . , um}. We identify the 1-skeleton with a simple graph 
Δ1 = (V, E), hence the 1-faces are called edges. Since, by differentiation, Xi(f) = gi, we can identify each 
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facet gi with the differential operator Xi. We denote by ek the number of (k − 1)-faces, hence e1 = m and 
ed−1 = n and we put e0 := 1 and ej := 0 for j ≥ d − 1. Let A = Q/ Ann(fΔ) be the associated algebra, we 
suppose that I1 = 0.

Definition 4.2. Let Δ be a homogeneous simplicial complex of dimension d −2. We will call AΔ = Q/ Ann(fΔ)
the associated algebra to Δ.

Definition 4.3. Let Δ be a homogeneous simplicial complex of dimension d − 2. We say that Δ is facet 
connected if for any pair of facets F, F ′ of Δ there exists a sequence of facets, F0 = F, F1, . . . , Fs = F ′ such 
that Fi ∩ Fi+1 is a (d − 3)-face. We say that Δ is a flag complex if every collection of pairwise adjacent 
vertices spans a simplex.

The definition of a flag complex Δ is equivalent to saying that for all complete subgraphs H = Kl ⊂ Δ1
for l ≥ 3, there exists a (l − 1)-face F ∈ Δl such that H is the first skeleton of F . In particular, if Δ is a 
flag complex, then Δ1 does not contain any Kd−1.

Theorem 4.4. Let Δ be a homogeneous simplicial complex of dimension d −2 ≥ 1 and let AΔ be the associated 
Artinian Gorenstein algebra. A is presented by quadrics if and only if Δ is a facet connected flag complex.

Proof. This is Theorem 3.5 in [10]. �
4.1. Turan algebras

Definition 4.5. Let 2 ≤ a1 ≤ . . . ≤ ad−1 be integers. The Turan complex of order a1, . . . , ad−1, Δ =
T K(a1, . . . , ad−1), is the homogeneous simplicial complex whose facet set is the Cartesian product π =
d−1∏
i=1

{1, 2, . . . , ai}. The associated algebra is called the Turan algebra of order (a1, . . . , ad−1) and denoted by 

TA(a1, . . . , ad−1).

Theorem 4.6. Every Turan algebra TA(a1, . . . , ad−1) is presented by quadrics. Its Hilbert vector is given by 
hk = sk−1 + sd−k−1 where sk = sk(a1, . . . , ad−1) is the elementary symmetric polynomial of order k.

Proof. This is Theorem 3.7 in [10]. �
Lemma 4.7. Let Δ be a simplicial complex of pure dimension d −2 and let AΔ = Q/ Ann fΔ be the associated 
algebra. Then the map μL : Ak−1 → Ak, for k ≤ d

2 , is injective for a general L ∈ A1 if, and only if 
rk Hess((1,k−2),(0,d−k))

f = ed−k+1 and rk Hess((0,k−1),(1,d−k−1))
f = ek−1.

Proof. Since Ak = A(1,k−1) ⊕A(0,k), and, since by Theorem 4.4, dimA(0,k) = ek and

dimA(1,k−1) = dimA(0,d−k) = ed−k,

with a choice of bases consistent with the decomposition as direct sum, we have:

Hess(k−1,d−k)
f =

[
0 Hess((1,k−2),(0,d−k))

f

Hess((0,k−1),(1,d−k−1))
f Hess((0,k−1),(0,d−k))

f

]
(ed−k+1+ek−1)×(ek+ed−k)

,

where the matrices Hess((1,k−2),(0,d−k))
f and Hess((0,k−1),(1,d−k−1))

f have order ed−k+1 × ed−k and ek−1 × ek
respectively.
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The injectivity of μL : Ak−1 → Ak implies ed−k+1+ek−1 ≤ ed−k+ek and rk Hess(k−1,d−k)
f = ed−k+1+ek−1. 

By the shape of the matrix this maximal rank can be achieved if and only if rkHess((1,k−2),(0,d−k))
f = ed−k+1

and rk Hess((0,k−1),(1,d−k−1))
f = ek−1.

Conversely, if rk Hess((1,k−2),(0,d−k))
f = ed−k+1 and rk Hess((0,k−1),(1,d−k−1))

f = ek−1, then rk Hess(k−1,d−k)
f

= ed−k+1 + ek−1 yielding the desired result. �
Lemma 4.8. Let d ≥ 3 be an integer and consider the Turan complex

T K(2(d−1)) := T K(2, . . . , 2)

of dimension d − 1. Let f be the associated form. Then

rk Hess((1,0),(0,d−2))
f < 2d−1.

Proof. Let us write Δ = T K(2(d−1)). First of all note that the rows of Hess((1,0),(0,d−2))
f are indexed by 

the 2d−1 facets xα of Δ and the columns are indexed by the (d − 2)-faces F of Δ. A non zero element of 
Hess((1,0),(0,d−2))

f is a degree one monomial representing the remaining vertex of the facet uα that does not 
belongs to the (d − 2)-face F . For instance, every column F has only two non zero elements, say uij and 
ukj representing the remaining vertex of the two faces that contain F . Furthermore, the other non zero 
elements of the rows i and k are the same.

If we multiply the row indexed by xα, with α = (j1, . . . , jd−1) where ji ∈ {0, 1} by (−1)j+1+...+jd−1 , 
and by all the variables that do not figure in the row, then we get a matrix M such that every column j
has only two non zero elements and they are opposite, say Mj and −Mj . Summing up the rows, the result 
follows. �
Lemma 4.9. Let Δ be a pure simplicial complex of dimension d − 2 with n facets and let AΔ = Q/ Ann fΔ
be the associated algebra. Let v ∈ V (Δ) be a vertex and denote Δ′ = Δ \ v be the complex obtained from Δ
by deleting v, let n′ be the number of facets of Δ′ and let AΔ′ = Q/ Ann fΔ′ the associated algebra. Then

rk Hess((1,0),(0,d−2))
f = n ⇒ rk Hess((1,0),(0,d−2))

f ′ = n′.

Proof. Let us choose an ordered basis of A(0,1) such that the last n′ vectors represent the faces containing v. 
Let us choose a basis of A(0,d−2) in such a way that the first vectors represent d − 2 faces that does not 
contain v and the last vectors the faces that contain v. The matrix Hess((1,0),(0,d−2))

f with respect to this 
basis is

Hess((1,0),(0,d−2))
f =

[
∗ ∗
0 Hess((1,0),(0,d−2))

f ′

]
.

The zero sub-matrix occurs by our choice of ordered basis. In fact, if Xi represents a face not containing v, 
then Xi(f) does not contain the variable v and since the first vector of A(0,d−2) contains v, the derivative 
is zero. The result easily follows. �
Definition 4.10. Let Δ be a simplicial complex of pure dimension. We say that a new complex Δ′ is 
constructed from Δ attaching a leaf if we add one vertex and one facet, that is, VΔ′ = VΔ ∪ {v} and 
FΔ′ = FΔ ∪ {F} with v ∈ F .

The following Lemma will be useful in the sequel.
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Lemma 4.11. Let Δ be a d − 2 ≥ 2 dimensional simplicial complex and let AΔ be the associated algebra. 
Suppose that AΔ is presented by quadrics and e1 ≤ e2 and ed−1 ≤ ed−2. Let Δ′ be the simplicial complex 
constructed from Δ by attaching a leaf. Then the algebra A′ = AΔ′ associated to Δ′ is presented by quadrics. 
Moreover, if there is L ∈ A1 such that μL : A1 → A2 is injective, then there is L′ ∈ A′ such that μL′ : A′

1 →
A′

2 is also injective.

Proof. It is easy to see that A′ is presented by quadrics by Theorem 4.4. By Lemma 4.7, since e1 ≤ e2 and 
ed−1 ≤ ed−2, we have that A satisfies the injective conjecture if, and only if rk Hess((1,0),(0,d−2))

f = ed−1 and 

rk Hess((0,1),(1,d−3))
f = e1. Since attaching a leaf we still have e′1 ≤ e′2 and e′d−1 ≤ e′d−2 and since it does not 

alter the fact that the rank of the desired mixed Hessians is maximal, the result follows. �
Theorem 4.12. Let A = TA(a1, . . . , ad−1) be the Turan algebra of order (a1, . . . , ad−1) with d ≥ 3 and 
2 ≤ a1 ≤ a2 ≤ . . . ≤ ad−1. Then for all L ∈ A1 the map μL : A1 → A2 is not injective.

Proof. For a1 = . . . = ad−1 = 2, the result follows by Lemma 4.8 and Lemma 4.7. For each ai > 2 we can 
delete vertices until to obtain T K(2d−1) and by Lemma 4.9 and Lemma 4.7 the result follows. �
5. Algebras presented by quadrics

The WLP works in codimension n ≤ 2, it is an open problem in codimension n = 3 and there are 
algebras not satisfying it in codimension n ≥ 4. Nevertheless, examples of Artinian algebras failing WLP 
were sporadic and the only systematic way to produce it were making the Hilbert vector non unimodal (see 
[1–3]). In recent times the first author, in [9], constructed families of algebras failing WLP. We recall the 
following result:

Theorem 5.1. [9] For each pair (N, d) /∈ {(3, 3), (3, 4), (4, 4), (3, 6)} with N ≥ 3 and with d ≥ 3 there exist 
standard graded Artinian Gorenstein algebras A = ⊕d

i=0Ai of codimension N + 1 and socle degree d, with a 
unimodal Hilbert vector that do not satisfy the WLP.

On the other hand, for algebras presented by quadrics there was a conjecture posed in [20,21]:

Conjecture 5.2 (Migliore–Nagel WLP Conjecture). Any Artinian Gorenstein algebra presented by quadrics, 
over a field K of characteristic zero, has the Weak Lefschetz Property.

The conjecture has been disproved by us in [10, Cor. 3.8]. In this section we study this phenomena in 
more details. We look for minimal examples of algebras presented by quadrics failing WLP.

5.1. Artinian Gorenstein algebras with odd socle degree

Let A be a standard graded Artinian Gorenstein algebra with socle degree three, then A = Q/ AnnQ(f)
with f ∈ R a homogeneous polynomial of degree 3. Corollary 2.5 applied to this case tells us that A satisfies 
the WLP if and only if hessf �= 0.

By a result due to Dimca–Papadima, see [7, Thm. 1], if f is not a reduced polynomial and f̃ is its radical, 
then hessf = 0 if and only if hess̃f = 0. For quadratic polynomials not defining a cone, hessf̃ �= 0, so we 
can restrict ourselves to reduced cubic polynomials. Furthermore, if f = f1f2 and hessf = 0, then all the 
components of X = V (f) ⊂ P

n are developable, yielding hessfi ≡ 0 (mod fi), in this case f = l1l2l3 and X
is an arrangement of hyperplanes passing through a PN−2, which is a cone as soon as N ≥ 2. So, from now 
on, we can restrict ourselves to the case that f is an absolutely irreducible polynomial.
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Let us recall Perazzo’s construction which works like an atom for the constructions of forms with vanishing 
Hessian not defining a cone (see the Appendix of [9]).

Definition 5.3. A Perazzo polynomial is (up to a projective transformation) a form of type:

f =
s∑

i=1
xigi(u) + h(u) ∈ K[x, u]

with gi ∈ K[u]d−1 linearly independent and algebraically dependent and h ∈ K[u]d.

Theorem 5.4. [24,13] Perazzo hypersurfaces are not cones and have vanishing Hessian. Suppose that N ≤ 6, 
and let X = V (f) ⊂ P

N be an irreducible cubic hypersurface which is not a cone and such that hessf = 0. 
Then, up to a projective transformation, f is a Perazzo polynomial.

Corollary 5.5. Let A be a standard graded Artinian Gorenstein K-algebra of socle degree 3. If A is presented 
by quadrics and codimA ≤ 7, then A satisfies the WLP.

Proof. Suppose that A does not have the WLP . Then by the Hessian criterion, Corollary 2.5, hessf = 0. 
For N ≤ 6, by Theorem 5.4 and by [13, Thm. 5.2,5.3,5.4], if f is an irreducible cubic polynomial such that 
hessf = 0, then, up to a projective transformation, either f = xu2

1 + yu1u2 + zu2
2 + h(u) or N = 6 and 

f = x0g0(u) + . . .+x3g3(u) +h(u). Let us suppose, without loss of generality, that x2
4 occurs as a monomial 

only in g2. In both cases, if we consider the associated standard graded Artinian Gorenstein one can verify 
directly that X3

2 ∈ AnnQ(f) is a minimal generator. �
The next example was treated from the geometric point of view in [13, p. 803, Example 6]. By Corollary 5.5

it is a counter-example of minimal codimension and minimal socle degree for the MN-conjecture.

Example 5.6. In P7 consider the cubic hypersurface X = V (f) ⊂ P
7, given by

f =

∣∣∣∣∣∣∣
x0 x1 x2
x3 x4 x5
x6 x7 0

∣∣∣∣∣∣∣ ∈ K[x0, . . . , x7].

As pointed out in [13, p. 803, Example 6], X represents a tangent section of the secant variety of the Segre 
variety Seg(P2 × P

2) ⊂ P
8. After a linear change of coordinates we can rewrite f as a (Perazzo) bigraded 

polynomial of monomial square free type:

f = x1u1u2 + x2u2u3 + x3u3u4 + x4u4u1 ∈ R = K[x1, x2, x3, x4, u1, u2, u3, u4].

Notice that f1f3 = u1u2u3u4 = f2f4, hence by the Gordan–Noether criterion, hessf = 0. Let A =
Q/ AnnQ(f) be the associated algebra, of codimension 8 and socle degree 3. By the Hessian Lefschetz 
criterion, Theorem 2.5, A does not satisfy the WLP. On the other hand, since its graph is a square, by 
Theorem 4.4 it is presented by quadrics. Indeed, one can verify that

I = (u2
4, u2u4, x2u4, x1u4, u

2
3, u1u3, x4u3, x1u3, u

2
2, x4u2, x3u2, x2u2 − x3u4, x1u2 − x4u4,

u2
1, x4u1 − x3u3, x3u1, x2u1, x1u1 − x2u3, x

2
4, x3x4, x2x4, x1x4, x

2
3, x2x3, x1x3, x

2
2, x1x2, x

2
1).

Example 5.7. Consider the algebras A = Q/ AnnQ(f) of codimension r = 9, 11. For r = 9, take f = x1u1u2+
x2u2u3+x3u3u4+x4u4u1+w2u1 and for r = 11, take f = x1u1u2+x2u2u3+x3u3u4+x4u4u1+x5u5u1+w2u1. 
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For both we have, f1f3 = f2f4, hence by Gordan–Noether criterion and the Hessian criterion, A does not 
have the WLP. One can verify that in all the cases AnnQ(f) is generated by quadrics.

Lemma 5.8. Let R = K[u1, . . . , um] be the polynomial ring. Let G = (V, E) be a connected graph such that 
V = {u1, . . . , um} and E is given by square free quadratic monomials. If |E| = |V |, then G has a unique 
circuit C and furthermore:

(1) If |C| is even, then det∇G = 0;
(2) If |C| is odd, then det∇G �= 0

Proof. Recall that a graph (V, E) is a tree if it is connected and if |V | − 1 = |E|. First of all let us show 
that the gradient matrix of any tree has maximal rank. Let T = (V ′, E′) be a tree where V ′ = {u1, . . . , um}
and E′ = {g1, . . . , gm−1}. By induction on m ≥ 2, the result is trivial for m = 2. Let us suppose that for 
any tree with |V ′| = m ≥ 2, the gradient matrix has maximal rank. Let T̃ be a tree with |T̃ | = m + 1, 
T̃ = T ∪ gm where gm = ujum+1, hence

∇T̃ =
[
∇T ∗
0 uj

]
.

The claim follows.
Let T ⊂ G be a generating tree of G, then T = (V, E′) with |E′| = |V | − 1, since |V | = |E|, G contains a 

unique circuit, say C = {u1u2, u2u3, . . . , uk−1uk, uku1} and let us suppose that E = E′ ∪ uku1.
Since G \ u1uk = T is a tree, ∇G = (∇T |∇gm) where

∇T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2 0 . . . 0 ∗
u1 u3 . . . 0 ∗
0 u2 . . . 0 ∗
...

...
. . .

...
...

0 0 . . . uk ∗
0 0 . . . uk−1 ∗
0 0 . . . 0 N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and ∇G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2 0 . . . 0 ∗ uk

u1 u3 . . . 0 ∗ 0
0 u2 . . . 0 ∗ 0
...

...
. . .

...
...

...
0 0 . . . uk ∗ 0
0 0 . . . uk−1 ∗ u1
0 0 . . . 0 N 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Where in the last row 0 represents 0(m−k,1) and N is a square matrix of order m − k such that det(N) �= 0, 
since ∇T has maximal rank. Using the Laplace expansion, we get

det(∇G) = det(N)u1u2 . . . uk(1 + (−1)k−1).

The result follows. �
Proposition 5.9. Let f ∈ K[x1, . . . , xn, u1, . . . , um](1,2) be a bigraded cubic polynomial of monomial square 
free type and let G = (E, V ) be the associated graph. Then A is presented by quadrics if, and only if, G is 
connected and triangle free, in this case we have the following possibilities:

(1) If G is a tree, then A has the WLP;
(2) If G contains only one circuit C, then either

(a) |C| is even and A does not have the WLP or
(b) |C| ≥ 5 is odd and A has the WLP

(3) If G contains at least two circuits, then A does not have the WLP.
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Proof. The characterization of the graphs that represent algebras presented by quadrics follows from The-
orem 4.4. We recall a very well known result that a set of n monomials in n variables are algebraically 
independent if and only if the incidence matrix has determinant different by zero (see, for instance, [23], 
Lemma 1.1). Since the incidence matrix of a graph of monomials is the gradient matrix evaluated in 
u1 = 1, . . . , um = 1, the first and the second cases easily follow. In the last case n > m hence the gi
are algebraically dependent. The result follows from the Hessian criterion, Corollary 2.5 and the Gordan–
Noether Theorem. �
Corollary 5.10. For all r ≥ 8 there exist standard graded Artinian Gorenstein K-algebras of socle degree 3
and codimA = r, presented by quadrics, not satisfying the WLP.

Proof. For the second one, if r = 9, 11 the result follows from Examples 5.6 and 5.7.
For all r = 2q ≥ 8 start with the square and then attach leaves as in Lemma 4.11 and the result follows. 

For all r = 2q + 1 ≥ 13 start with the hexagon together with the central diagonal and then attach leaves as 
in Lemma 4.11 and the result follows. �
Lemma 5.11. Let f ∈ K[x1, . . . , xr] be a homogeneous polynomial of degree deg(f) = 2k − 1 and such that 
hessk−1

f = 0 and let f̃ = uvf ∈ K[x1, . . . , xn, u, v]. Then hessk
f̃

= 0.

Proof. Let R = K[x1, . . . , xr] and R̃ = K[x1, . . . , xr, u, v] and let Q and Q̃ be the associated rings of 
differential operators. Let A = Q/ AnnQ(f) and let Ã = Q̃/ AnnQ̃(f). Applying twice Lemma 3.2, we get

Ãk = Ak−2UV ⊕Ak−1U ⊕Ak−1V ⊕Ak.

Therefore,

Hessk
f̃

=

⎡
⎢⎢⎢⎣

0 0 0 ∗
0 0 Hessk−1

f ∗
0 Hessk−1

f 0 ∗
∗ ∗ ∗ 0

⎤
⎥⎥⎥⎦ .

Since dimAk = dimAk−1, using Laplace expansion on the second block row, it is easy to check that 
hessk−1

f = 0 ⇒ hessk
f̃

= 0. �
Corollary 5.12. There exist standard graded Artinian Gorenstein algebras A presented by quadrics of socle 
degree d = 2k + 1 ≥ 3 that do not satisfy the weak Lefschetz property if codimA ≥ d + 5.

Proof. By Corollary 5.10, for all r ≥ 8 exist fr ∈ R = K[x1, . . . , xr]3 such that hessfr = 0 and Ar is 
presented by quadrics. Let

f̃ = f̃r,k = fru1 . . . u2k−2 ∈ R̃ = K[x1, . . . , xr, u1, . . . , u2k−2].

We have deg f̃ = 2k + 1 ≥ 3. Let Ã = Q̃/ AnnQ̃(f̃). Then

codim Ã = 2k − 2 + r ≥ 2k + 6 = d + 5.

By Lemma 3.1, since Ar is presented by quadrics, Ã is also presented by quadrics.
By Lemma 3.2 and by induction on k, we get that the Hilbert vector of Ã are maximal.
By induction on k and Lemma 5.11, hessk(f̃) = 0, hence, by the Strong Lefschetz Hessian criterion, 

Corollary 2.5, Ã does not have the WLP. �
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5.2. Artinian Gorenstein algebras with even socle degree

Notice that Lemma 3.2 and Lemma 3.1 together with the Hessian criterion Corollary 2.5 and the inductive 
procedure allows us to produce for any socle degree d ≥ 3 and codimA ≥ d +5 Artinian Gorenstein algebras 
presented by quadrics that do not satisfy the SLP, but this construction, in even socle degree is not enough 
to failure of the WLP.

Remark 5.13. Let f ∈ K[x1, . . . , xn, u1, . . . , um](1,3) be a quartic bihomogeneous polynomial of bidegree 

(1, 3) of monomial square free type. By Lemma 5.8 and by Lemma 4.7, rk Hess(1,2)f is maximal if and only 

if rk Hess((1,0),(0,2))f = n.

Example 5.14. Let A be the algebra associated to the complex T K(2, 2, 3) \ e where e is an edge having two 
incident faces, it has codimension 17 and it does not have the WLP. Indeed, |V | = 7, |E| = 15 and |F | = 10
but the matrix Hess((0,1),(2,0))f does not have maximal rank.

Corollary 5.15. For all r ≥ 16 there exist standard graded Artinian Gorenstein K-algebras of socle degree 4
and codimA = r, presented by quadrics and not satisfying the WLP.

Proof. For codimension r = 2q ≥ 14, start with the Turan algebra TA(2, 2, 2) of codimension 14, which 
by Corollary 4.12 does not have the WLP and attach leaves as in Lemma 4.11 and the result follows. 
For codimension r = 2q + 1 ≥ 17, start with the Turan algebra TA(2, 2, 3) of codimension 17, which by 
Corollary 4.12 does not have the WLP and attach leaves to conclude the result. �
Lemma 5.16. Let A = Q/ AnnQ(f) be a standard graded Artinian Gorenstein algebra of socle degree 2q
with f ∈ K[x1, . . . , xn] and let f̃ ∈ K[x1, . . . , xn, u, v] be f̃ = fuv. If rk Hess(q−1,q)

f < dimAq−1, then 

rk Hess(q,q+1)
f̃

< dim Ãq.

Proof. Let R = K[x1, . . . , xr] and R̃ = K[x1, . . . , xr, u, v] and let Q, Q̃, A, Ã as usual. Applying twice 
Lemma 3.2, we get

Ãk = Ak−2UV ⊕Ak−1U ⊕Ak−1V ⊕Ak.

Therefore,

Hess(q,q+1)
f̃

=

⎡
⎢⎢⎢⎢⎣

0 0 0 Hess(q−2,q+1)
f

0 0 Hess(q−1,q)
f V Hess(q−1,q+1)

f

0 Hess(q−1,q)
f 0 U Hess(q−1,q+1)

f

Hess(q,q−1)
f V Hessqf U Hessqf 0

⎤
⎥⎥⎥⎥⎦ .

Multiplying the second block row by U and the third one by −V and summing up we got a block row of 
type. [

0 −V Hess(q−1,q)
f U Hess(q−1,q)

f 0
]
.

Since, by hypothesis, rk Hess(q−1,q)
f is not maximal, the result follows. �

Corollary 5.17. For given integers, n, d = 2k ≥ 4 such that c ≥ d + 12, there exist standard graded Artinian 
Gorenstein algebras presented by quadrics of socle degree d and codimension c.



4282 R. Gondim, G. Zappalà / Journal of Pure and Applied Algebra 223 (2019) 4268–4282
Proof. The result follows by induction in the same way as Corollary 5.12. �
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