
Eur. Phys. J. Special Topics 226, 3427–3443 (2017)
c© EDP Sciences, Springer-Verlag 2018

https://doi.org/10.1140/epjst/e2018-00073-1

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Comments on the properties of Mittag-Leffler
function

G. Dattoli1, K. Gorska2, A. Horzela2, S. Licciardi1,3,a, and R.M. Pidatella3

1 ENEA – Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Rome,
Italy

2 H.Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences,
ul.Eliasza – Radzikowskiego 152, 31342 Krakow, Poland

3 Dep. of Mathematics and Computer Science, University of Catania, Viale A. Doria
6, 95125 Catania, Italy

Received 9 August 2017 / Received in final form 18 December 2017
Published online 25 July 2018

Abstract. The properties of Mittag-Leffler function are reviewed
within the framework of an umbral formalism. We take advantage
from the formal equivalence with the exponential function to define
the relevant semigroup properties. We analyse the relevant role in the
solution of Schrödinger type and heat-type fractional partial differen-
tial equations and explore the problem of operatorial ordering finding
appropriate rules when non-commuting operators are involved. We
discuss the coherent states associated with the fractional Schödinger
equation, analyze the relevant Poisson type probability amplitude and
compare with analogous results already obtained in the literature.

1 Introduction

In a previous paper [1], following a suggestion by Cholewinsky and Reneke [2], it has
been shown that, by a proper redefinition of the Newton binomial composition rule,
the semigroup properties of exponential like functions can be recovered, along with
the relevant consequences.

In particular, by introducing the Laguerre Binomial (l−b)

(x⊕l y)n :=
n∑
r=0

(
n
r

)2

xn−ryr (1)

it has been proved that the function

le(x) =

∞∑
r=0

xr

(r!)2
(2)
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called Laguerre exponential l−e, satisfies the following property

le(x⊕l y) = le(y) le(x). (3)

The l−e can be recognized to be linked to the modified Bessel function of first kind
I0(x) according to the identity

le(x) = I0(2
√
x). (4)

We have denoted it as l−e since it is an eigenvalue of the Laguerre derivative operator
[3]

l∂x = ∂x x ∂x. (5)

According to the identity in equation (3) the semigroup property of the ordinary
exponential function is extended to the l−e, provided that the argument composition
rule be replaced by the definition in equation (1). The use of the l−b can exploited
to define the Laguerre exponential through the following procedure of limit [1]. We
note that the following “generalizations” of the properties of ordinary exponential

lim
n→∞

(
1⊕l

( x
n2

))n
= le(x),

le := le(1) = lim
n→∞

(
1⊕l

(
1

n2

))n
= 2.279585302336067 . . . , (6)

in which le = le(1) represents the l-Napier number and the limit can be viewed as
the large index limit of ordinary Laguerre polynomials [1,4]. Within such a context,
the 0-order cylindrical Bessel function J0(x) is given by

lim
n→∞

(
1⊕l

(
−
( x

2n

)2
))n

= J0(x). (7)

The previous remarks show that the point of view originated in reference [2] and pur-
sued in [1] can be usefully extended to the theory of Mittag-Leffler (M−L) functions
[5] and we will see the wealth of consequences of such a restyling.

2 Classical (one-parameter) Mittag-Leffler function

The M−L function has recently become of central importance in the theory of
fractional derivatives [6], this paper is devoted to a systematic investigation of the rel-
evant properties, using different methods, including operational, umbral and integral
representation techniques.

M−L is specified by the series expansion

Eα,1(x) =
∞∑
r=0

xr

Γ(α r + 1)
, ∀x, α ∈ R, α > 0. (8)

Its interest stems from the fact that it realizes to different special functions for dif-
ferent values of α, e.g. for α = 1 it yields the exponential, for α = 1

2 a combination of
Dawson and Gaussian functions and for α = m, m ∈ Z+ provides pseudo exponential
functions and so on.
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Unlike the ordinary exponential, to which it reduces for α = 1, the function
Eα,1(x) is such that

Eα,1(x+ y) 6= Eα,1(x)Eα,1(y) (9)

according to the prescription of reference [1], the redefinition of the Newton binomial
as

(x⊕mlα y)n :=
n∑
r=0

(
n

r

)
α

xn−ryr,

(
n

r

)
α

:=
Γ(αn+ 1)

Γ (α (n− r) + 1) Γ(αr + 1)
(10)

allows the conclusion that

Eα,1(x⊕mlα y) = Eα,1(x)Eα,1(y). (11)

The associated sin and cos-like functions defined by

Cα,1(x) =
Eα,1(ix) + Eα,1(−ix)

2
,

Sα,1(x) =
Eα,1(ix)− Eα,1(−ix)

2 i
(12)

also implying that

Eα,1(ix) = Cα,1(x) + i Sα,1(x) (13)

are characterized by the addition formulae

Cα,1(x⊕mlα y) = Cα,1(x)Cα,1(y)− Sα,1(x)Sα,1(y),

Sα,1(x⊕mlα y) = Sα,1(x)Cα,1(y) + Cα,1(x)Sα,1(y) (14)

resembling those of their circular counterpart. It is furthermore worth noting that, if
α = n ∈ N, the M−L function satisfies the eigenvalue equation

nn
(
x
n−1
n

d

dx

)n
En,1(λx) = λEn,1(λx). (15)

It is therefore evident that by introducing the M−L derivative operator

mlD̂x = nn
(
x1− 1

n
d

dx

)n
, (16)

we find

En,1

(
y mlD̂x

)
En,1(x) = En,1 (x⊕mlα y) . (17)
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Accordingly the operator En,1

(
y mlD̂x

)
is a shift operator in the sense that it pro-

vides a shift of the argument of the M−L function according to the composition rule
established in equation (10).

It is also easily inferred, from equation (15), that the α-order fractional derivative
of M−L function, in Riemann-Liouville form1 [7], writes

(
d

dx

)α
Eα,1(λxα) = λEα,1(λxα) +

x−α

Γ(1− α)
, ∀α ∈ R. (18)

For future convenience we introduce the umbral operator ĉ [8], such that

ĉµ
1

Γ(z + 1)

∣∣∣∣
z=0

:=
1

Γ(µ+ 1)
, (19)

in which ϕ0 =
1

Γ(z + 1)

∣∣∣∣
z=0

is defined as “vacuum”. This term, borrowed from Phys-

ical language, is used to stress that the action of the operator ĉ, raised to some power,
is that of acting on an appropriate set of functions (in this case the Euler Gamma

function), by “filling” the initial “state” ϕ0 =
1

Γ(1)
.

A fairly straightforward realization of the operator umbral operator is

ĉµ → eµ∂z ,

ϕz →
1

Γ(z + 1)
(20)

so that

ĉµϕ0 = eµ∂zϕz |z=0=
1

Γ(z + µ+ 1)
|z=0=

1

Γ(µ+ 1)
. (21)

Within the present context, the umbral realization of the M−L function is2

Eα,1(x) =
∞∑
r=0

(ĉαx)
r

=
1

1− ĉαx
. (22)

The rigorous mathematical reasons underlying the operational calculus associated
with the operator ĉ trace back to the Borel transform technique and have been studied
in detail in reference [8]. Noting furthermore that by standard Laplace transform we
have

1

1− ĉαx
=

∫ ∞
0

e−se ĉ
αx sds (23)

1The last term is due to the fact that the fractional derivative in the sense of the Riemann-

Liouville acts on one as follows:

(
d

dx

)α
1 =

x−α

Γ(1 − α)
.

2From this point on, for simplicity of writing, we omit the vacuum ϕ0.
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and that the expansion

e ĉ
αx =

∞∑
r=0

(ĉαx)
r

r!
=
∞∑
r=0

xr

r!Γ(α r + 1)
(24)

yields a 0-order Bessel-Wright function [9]

W (µ)
α (x) =

∞∑
r=0

xr

r!Γ(α r + µ+ 1)
. (25)

We can also conclude that the M−L function is just the Borel transform of W
(0)
α (x),

namely

Eα,1(x) =

∫ ∞
0

e−sW (0)
α (xs)ds. (26)

A straightforward result, obtained for free from equations (22) and (23), is

(
d

dx

)m
Eα,1(x) = ĉα m

∫ ∞
0

e−ssme ĉ
αx sds (27)

and noting that

ĉα meĉ
αξ = W (αm)

α (ξ) (28)

we can eventually end up with

(
d

dx

)m
Eα,1(x) =

∫ ∞
0

e−ssmW (αm)
α (x s)ds. (29)

The elements developed so far show that some of the properties of M−L are obtained
by the use of straightforward means, which provides the backbone of the forthcoming
treatment.

We have shown that the umbral formalism is particularly useful for a straight-
forward handling of the M−L. The task of accomplishing the associated algebraic
computation can be even more simplified by assuming for the M−L an exponential
umbral image, according to the prescription3

Eα,1(x) = e αd̂x,

αd̂
κ Γ(z + 1)

Γ(αz + 1)

∣∣∣∣
z=0

=
Γ(κ+ 1)

Γ(ακ+ 1)
. (30)

3It should be noted that the realization of umbral operator αd̂ is the same as in equation (20)
(namely a shift differential operator), the “vacuum” is however realized by a different function
(namely by the ratio of two gamma functions. We have used a different notation, since to avoid a
heavy notation, we will indicate the vacuum as ϕ0.
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Such a restyling is as useful as the previous and indeed we find

∫ ∞
−∞

Eα,1(−x2)dx =
√
π αd̂

− 1
2ϕ0 =

√
π

Γ

(
1

2

)
Γ
(

1− α

2

)
=

π

Γ
(

1− α

2

) (31)

and

∫ ∞
0

Eα,1 (−x γ) dx =
1

γ

Γ

(
1

γ

)
Γ

(
1− 1

γ

)
Γ

(
1− α

γ

)
=

π

γ sin

(
π

γ

) 1

Γ

(
1− α

γ

) ∀α, γ ∈ R+, γ > 1,
α

γ
/∈ Z+. (32)

Equations (31) and (32) can also be obtained by exploiting the properties of the
umbral operator in ĉ-form, although with a slightly more cumbersome effort, as shown
below.

According to the umbral definition (30) we can straightforwardly derive the
Newton binomial (10) by noting that

Eα,1(x)Eα,1(y) = e αd̂1xe αd̂2y = e αd̂1x+αd̂2y, (33)

which holds because αd̂1, αd̂2 are commuting operators separately once acting on the
vacua 1, 2 and specified below

αd̂
κ
b

Γ(zb + 1)

Γ(αzb + 1)

∣∣∣∣
z=0

=
Γ(κ+ 1)

Γ(ακ+ 1)
, b = 1, 2 (34)

and executing the explicit computation we obtain

Eα,1(x)Eα,1(y) =

∞∑
n=0

1

n!

(
αd̂1x+ αd̂2y

)n
= Eα,1(x⊕mlα y), (35)

where the associative sum (x ⊕mlα y) is defined according to the redefined Newton
binomial in equation (10).

2.1 Generalized (two-parameters) Mittag-Leffler function

We will henceforth adopt for the M−L the definition given in [5] and write

Eα, β(x) =
∞∑
r=0

xr

Γ(α r + β)
=

∫ ∞
0

e−sW (β−1)
α (x s)ds, ∀x ∈ R,∀α, β ∈ R+. (36)
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According to the umbral definition in terms of the ĉ-operator, we simply obtain

Eα, β(x) =
ĉ β−1

1− ĉαx
(37)

or, using an exponential umbral image, we write

Eα, β(x) = e α, β d̂ x,

α, β d̂
κ =

Γ(κ+ 1)

Γ(ακ+ β)
. (38)

The extra term containing β does not provide any substantive difference with respect
to the previous discussion and, e.g., the relevant modified binomial coefficient is
defined as (

n

r

)
α, β

:=
Γ(αn+ β)

Γ (α (n− r) + β) Γ(αr + β)
(39)

and consequently

(x⊕mlα,β y)n :=
n∑
r=0

(
n

r

)
α,β

xn−ryr. (40)

To give an example of the reliability of the method we note, e.g., that integrals of the
type ∫ ∞

−∞
Eα, β(−x2) dx = c β−1

∫ ∞
−∞

dx

1 + ĉαx2
=
π

2
ĉβ−

α
2 −1 =

π

Γ
(
β − α

2

) (41)

are easily obtained by noting that they derive from the identity∫ ∞
−∞

dx

1 + aαx2
= π a−

α
2 (42)

upon replacing a with ĉ and after applying the so far discussed rules.
The same procedure extended to the representation (38) yields∫ ∞

−∞
Eα,β(−x2)dx =

∫ ∞
−∞

e−α, β d̂ x
2

dx =
√
π
(
α, β d̂

)− 1
2

=
π

Γ
(
β − α

2

) . (43)

3 The Mittag-Leffler functions and fractional calculus

Let us now consider the following Cauchy problem [10,11] ∂αt F (x, t) = ∂2
xF (x, t) +

t−α

Γ(1− α)
f(x)

F (x, 0) = f(x)
(44)

defining a PDE resembling a kind time-fractional diffusive equation. According to
the previous discussion and to the fact that the M−L, “Eα,1(tα)”, is an eigenfunction
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Fig. 1. Solution of equation (44) for f(x) = e−x
2

. (a) α = 1.5. (b) α = 3.5.

of the fractional derivative operator according to the definition (18), if we trust the
formalism developed so far, we can obtain the relevant solution in the form [11]

F (x, t) = Eα,1(tα∂2
x) f(x), (45)

where Eα,1(t α∂2
x) is the evolution operator for the problem under study.

The relevant action on the initial function can be expressed as

F (x, t) =
1√
2π

∫ +∞

−∞
Eα,1(−tαk2) f̃(k) ei k xdk, (46)

where f̃(k) is the Fourier transform of f(x)4.
Examples of solutions are reported in Figure 1, which clearly display a behaviour

which is not simply diffusive but also anomalous5 (for further comments see Ref. [11]).
The introduction of the Pseudo-Exponential Operator (PEO), “Eα,1

(
tα∂2

x

)
”,

is of central importance for our forthcoming discussion, its role and underlying
computational rules should be therefore carefully understood.

We remind therefore that, regarding ordinary evolution problems, ruled by an
equation of the type {

∂tF (x, t) = Ô F (x, t),

F (x, 0) = f(x)
(47)

with Ô being a not specified operator acting on the x variable, the semigroup property
of the exponential ensures that the associated evolution operator

Û(t) = e t Ô (48)

produces a shift of the time variables which can be expressed as

Û(t2)F (x, t1) = F (x, t2 + t1). (49)

4We observe that equation (46) can be recast in terms of Levy distribution according to reference
[11].

5The variance of x depend on time and is proportional to
2t α

Γ(1 + α)
according to equation (20)

in [10,11].
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The extension of such a property to evolution driven by PEO requires some caution.
We first note that if6

f(x) = S(x, t̄) = Eα,1(t̄ αÔ)s(x) (50)

with s(x) initial condition, then

Eα,1(t αÔ)f(x) = Eα,1(tαÔ)
(
Eα,1

(
t̄ αÔ

)
s(x)

)
= S(x, t⊕mlα t̄). (51)

The role of PEO as time translation operator holds therefore in a broader sense.
Before proceeding further, let us consider the following operator

Φα

(
Â, B̂

)
= Eα,1

(
Â+ B̂

)
,[

Â, B̂
]

= ÂB̂ − B̂Â = k1̂, (52)

where the operators Â and B̂ are not commuting each other, but their commutator,
k, commutes either with Â and B̂ (k, 1̂ are a non-necessarily real number and the
unit operator, respectively).

In the case of ordinary exponential we find, by the use of the Weyl identity [12],
the ordering rule

eÂ+B̂ = eÂeB̂e−
k
2 . (53)

In close analogy, using equation (30) to write the M−L function, we get

Eα,1

(
Â+ B̂

)
= e αd̂(Â+B̂) = e αÂ+αB̂ ,

αŜ = αd̂Ŝ (54)

and noting that [
αÂ, αB̂

]
= αd̂

2k (55)

we can therefore write

e αÂ+αB̂ = e αÂe αB̂e−
k
2 αd̂

2

. (56)

To understand the meaning of the previous result we consider the following PDE ∂αt F (x, t) = (a x− b ∂x)F (x, t) +
t−α

Γ(1− α)
,

F (x, 0) = e−x
2

.

(57)

Being the initial function just a constant, we can cast the relevant solution in the
form

F (x, t) = e αd̂ t
α(ax−b∂x)e−x

2

(58)

6The integral representation of Ûα = Eα,1(t αÔ) is given in equation (12) in [11].
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by setting therefore

αÂ = αd̂ t
αa x,

αB̂ = −αd̂ tαb ∂x (59)

being

[
αÂ, αB̂

]
=
(
αd̂
)2

a b t2α (60)

we end up with

F (x, t) = e αd̂ t
α a x−αd̂

2

2 t2α a be−αd̂t
αb ∂xe−x

2

= e a x (αd̂tα)− ab2 (αd̂ tα)
2

e−(x− αd̂ t
α b)

2

. (61)

The r.h.s. can be treated by using the properties of Hermite Kampé de Fériét
polynomials

Hn(x, y) = n!

bn2 c∑
r=0

xn−2ryr

(n− 2r)!r!
, (62)

whose generating function writes

∞∑
n=0

tn

n!
Hn(x, y) = ext+yt

2

(63)

accordingly we end up with the following explicit solution

F (x, t) = e−x
2

ex (a+2b)(αd̂tα)−( a2b+1)(αd̂ tα)
2
b2

= e−x
2
∞∑
r=0

(
αd̂t

α
)r

r!
Hr

(
x(a+ 2b),−b2

( a
2b

+ 1
))

= e−x
2
∞∑
r=0

tαr

r!

Γ(r + 1)

Γ(αr + 1)
Hr

(
x(a+ 2b),−b2

( a
2b

+ 1
))

= e−x
2
∞∑
r=0

tαr

Γ(αr + 1)
Hr

(
x(a+ 2b),−b2

( a
2b

+ 1
))

. (64)

We point out that equation (64) can be also obtained from equation (58), with the
integral form of the evolution operator (50) given in equation (12) in [11], or the
ĉ-umbral representation of equations (22) and (23) and the exponential generat-
ing function in (61). The solution F (x, t) of the Cauchy fractional problem (57),
in equation (64), has been plotted vs. x for different times in Figure 2.

The relevant meaning and the link with fractional Poisson processes, as well, will
be discussed in the forthcoming sections.
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Fig. 2. Cauchy fractional problem solution F (x, t) vs. x for different t and α values. (a)
t = 0.5. (b) t = 1. (c) t = 3.

4 Non-standard statistical effects and Mittag-Leffler functions

In this section we will consider a time fractional Schrödinger equation regarding a
process implying the emission and absorption of photons. We will assume that the
relevant dynamics is ruled by the M−L Schrödinger equation written in terms of
α-time fractional derivative

iα ∂αt | Ψ 〉 = Ĥ | Ψ 〉+ iα
t−α

Γ(1− α)
| Ψ(0) 〉,

Ĥ = iα Ω
(
â− â+

)
, (65)

where â, â+ are annihilation, creation operators satisfying the commutation bracket
“[â, â+] = 1̂”, [13]. The constant Ω in equation (65) has the dimension of t−α.

It should be noted that in writing the fractional version of the Schrödinger equa-

tion, we have assumed that the l.h.s. operator is “

(
i
d

dt

)α
” and not “i

(
d

dt

)α
”. There

is not a general consensus on such a choice [14,15]7, which should be driven by an
educated guess on the concept of the “hermiticity” of the operators entering a frac-
tional Schrödinger equation. The present choice retains the hermiticity in the usual
sense of the left hand side, namely((

i
d

dt

)α)+

=

(
i
d

dt

)α
(66)

7Although the paper in reference [15] deals with a fractional spatial form of the Schrödinger
equation, the points raised are relevant also for the topics treated here.
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but regarding the right hand side

Ĥ+ 6= Ĥ. (67)

Further comments on these points will be provided in the concluding section. It should
be however noted that at least on the formal side the problem could be avoided by
considering the equation written as

∂αt | Ψ 〉 = Ω
(
â− â+

)
| Ψ 〉+

t−α

Γ(1− α)
| Ψ(0) 〉. (68)

The choice of the appropriate system of units in which the equation should be
written is a further aspect of the problem to be carefully considered, but will not be
discussed here. For further comments we address the reader to reference [14], where
the rescaling of the variables in terms of Planck units has been proposed.

If we work in a Fock basis and choose the “physical” vacuum (namely the state
of the quantized electromagnetic field with no photons) as the initial state of our
process, namely

| Ψ 〉 |t=0=| 0 〉 (69)

we can understand how the field ruled by a fractional Schrödinger equation evolves
from the vacuum. The comparison with the ordinary Schrödinger counterpart is inter-
esting because, in this case, the field is driven from the vacuum into a coherent
state, displaying an emission process in which the photon counting statistics follows
a Poisson distribution [13].

The solution of the evolution problem in equation (65) can, according to the rules
developed in the previous sections8, be written as

| Ψ 〉 = e αd̂ t
α Ω (â−â+) | 0 〉

= e−
( αd̂ tα Ω)2

2 e−( αd̂ tα Ω) â+

e( αd̂ t
α Ω) â | 0 〉. (70)

The use of the identities

(â+)n | 0 〉 =
√
n! | n 〉,

â | 0 〉 = 0 (71)

and the remarks of the previous section allows the derivation of the explicit solution
in equation (70) as

| Ψ 〉 = e−
( αd̂ tα Ω)2

2 e−( αd̂ tα Ω)â+

| 0 〉 = e−
( αd̂ tα Ω)2

2

∞∑
n=0

(
− αd̂ t

α Ω
)n

√
n!

| n 〉. (72)

8In particular, in according to equation (53), we assume that Â = −
(
αd̂ tα Ω

)
â+ and

B̂ =
(
αd̂ tα Ω

)
â. Furthermore, since

(
αd̂ tα Ω

)
and â, â+ are commuting operators, we can

set
[
Â, B̂

]
=
(
αd̂ tα Ω

)2
.
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The probability amplitude of finding the state | Ψ > in a photon number state | m >
is just given by

〈m | Ψ 〉 = e−
( αd̂ tα Ω)2

2 ·

(
− αd̂ t

α Ω
)m

√
m!

, (73)

which is formally equivalent to a Poisson probability amplitude.

The use of the properties of the αd̂ operator finally yields the probability
distribution

αpm(t) = | 〈m | Ψ 〉 |2= e−( αd̂ tα Ω)
2

·

(
αd̂ t

α Ω
)2m

m!
=
Xm

m!
e(α, 2)
m (−X),

X = (tα Ω)
2
,

e(α, 2)
m (−X) =

∞∑
r=0

(−1)r

r!

Γ(2(r +m) + 1)

Γ(2(r +m)α+ 1)
Xr, ∀X,m,α ∈ R, α ≤ 1, (74)

which evidently reduces to a Poisson amplitude for α = 1 and in which we have used

the following definition for the function e
(α, 2)
m (−X)

e(α, β)
s (ξ) :=

∞∑
r=0

ξ r

r!

Γ(β(r + s) + 1)

Γ(β(r + s)α+ 1)
, ∀α, β ∈ R, β > 0, α >

1

β
. (75)

It can be checked that the probability (74) is properly normalized, being

∞∑
m=0

αpm = 1. (76)

Furthermore regarding the evaluation of the average number of emitted photons
we proceed as it follows

〈 m 〉 =
∞∑
m=0

m αpm =
∞∑
m=0

m
Xm

m!
e(α, 2)
m (−X)

= e−(αd̂ 2X)
∞∑
m=1

(
αd̂

2X
)m

(m− 1)!
= αd̂

2X =
2X

Γ(2α+ 1)
(77)

and an analogous procedure allows the evaluation of the r.m.s. of the emitted photons,
namely

σ 2
m = 〈 m2 〉 − 〈 m 〉2 = αd̂

4X2 + αd̂
2X −

(
2X

Γ(2α+ 1)

)2

(78)

= 2X

[
2X

(
6

Γ(4α+ 1)
− 1

(Γ(2α+ 1))
2

)
+

1

Γ(2α+ 1)

]
. (79)
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We define the Mandel parameter

Qα =
σ 2
m − 〈 m 〉
〈 m 〉

= 2X

(
6

Γ(4α+ 1)
− 1

(Γ(2α+ 1))
2

)
Γ(2α+ 1). (80)

The behaviour of Qα vs. α, for different values of t, is shown in Figure 3. Albeit this
type of problems deserves a dedicated analysis, we point out that a process of photon
emission ruled by a fractional Schrödinger equation is fixed by a power law (recall

that X = (tαΩ)
2
), furthermore the presence of a region with Q < 0 indicates the

possibility of photon bunching. These are clearly pure speculations since the physical
process ruled by equation (65) has not been defined. The photon emission probability
vs. X and different α is given in Figure 4.

Further comments on the present results and the link with previous investigations
will be provided in the following concluding section.

5 Final comments

The process we have described so far and the derivation of the associated fractional
Poisson probability amplitude are different from what is usually quoted in the liter-
ature. Without entering into the phenomenology of the fractional Poisson processes
we note that the equation governing the generating function of the distribution itself
is given by [16]

Gα(s, t) = Eα,1 (−(1− s) Ω tα) . (81)

By the use of the umbral notation we can expand the previous generating function
as

Gα(s, t) = e αd̂ s (Ω tα)e− αd̂ (Ω tα)

=

∞∑
m=0

sm
αd̂

m

m!
(Ωtα)m

∞∑
n=0

αd̂
n

n!
(−Ωtα)n

=
∞∑
m=0

smαPm(t), (82)

where

αPm(t) =
(Ωtα)m

m!

∞∑
n=0

(n+m)!

Γ(α(n+m) + 1)

(−Ωtα)n

n!
(83)

is the fractional Poisson distribution, introduced in references [16,17], and derived
here within the framework of our umbral formalism. According to the methods we
have envisaged to calculate average and r.m.s. values, by setting

αPm(t) =

(
αd̂ Ω tα

)m
m!

e−αd̂ Ω tα (84)
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Fig. 3. Mandel parameter Qα vs. α, for different values of t.

we find, for the first order moment,

〈 m 〉 =

∞∑
m=0

m

(
αd̂ Ω tα

)m
m!

e−αd̂ Ω tα =
(Ω tα)

Γ(α+ 1)
(85)

and, for the variance,

σ2(t) =
∞∑
m=0

m2
αPm(t)−

( ∞∑
m=0

m αPm(t)

)2

=

∞∑
m=1

m

(
αd̂ Ω tα

)m
(m− 1)!

e−αd̂ Ω tα −
(

(Ω tα)

Γ(α+ 1)

)2

=
2 (Ω tα)

2

Γ(2α+ 1)
+

(Ω tα)

Γ(α+ 1)
− (Ω tα)

2

(Γ(α+ 1))
2 (86)

in agreement with the results obtained in references [16,17].
We like to stress that this paper has clarified some questions regarding the han-

dling of fractional PDE of M−L type and of the associated operator ordering. Most
of the conclusions drawn here have required a critical understanding of the concept of
semi-group properties associated with the M−L function and has opened the way to
some speculation yielding a different definition of the fractional Poisson distribution.

Before closing the paper a few left open points should be clarified.
We go back to the time fractional Schrödinger reported in equation (65) and write

it using an Hermitian version of the Ĥ-operator, namely

(i∂t)
α | Ψ 〉 = Ĥ | Ψ〉+ iα

t−α

Γ(1− α)
| 0 〉,

Ĥ = Ω
(
â+ â+

)
. (87)
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Fig. 4. Probability distribution “αpm” vs. (Ωtα)2. (a) m = 1. (b) m = 2. (c) m = 4.

The use of the ordering procedure outlined in the previous sections provides the
solution of equation (87) in the form

| Ψ 〉 = e αd̂Ω(−it)α(â+â+) | 0 〉 = e
(−1)α(αd̂ Ω tα)2

2

∞∑
n=0

(
(−i)αΩ tααd̂

)n
√
n!

| n 〉. (88)

The associated probability amplitude of finding | Ψ 〉 into number state reads

〈m | Ψ 〉 = e
(−1)α(αd̂ Ω tα)2

2

(
(−i)αΩ tααd̂

)m
√
m!

(89)

thus finding for the for the square amplitude

| 〈m | Ψ 〉 |2= e(αd̂ Ω tα)
2

cos(π α)

(
Ω tααd̂

)2m

m!
, (90)

which does not appear to be properly normalized.
It is finally worth mentioning that the coherent states, we have introduced in

this paper, are different from those discussed in reference [17], where they have been
assumed to be provided by

| ζ 〉 =
∞∑
n=0

ζn√
n!
e(α,1)
n

(
−1

2
| ζ |2

)
| n 〉, (91)
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where ζ is a complex quantity.
In the case discussed here we have assumed that they are generated via a

Schrödinger like process of fractional type.
In conclusion, the article has shown that a wise combination of umbral and oper-

ational methods may become quite a powerful tool to deal with problems emerging in
fractional calculus, with the associated special functions and with the physical pro-
cesses they may describe. One of the main output of the method, we have proposed,
is the introduction in the procedure of analytical means associated with the operator
ordering, according to the suggestions put forward in the past in reference [19].

In a forthcoming publications we will extend our point of view to problems
requiring time ordering procedures [12,20] which will be handled by an appropriate
redefinition of the Dyson series [21].
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