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Abstract. We consider a generalised d-dimensional model for asymptotically-scale-

free geographical networks. Central to many networks of this kind, when considering

their growth in time, is the attachment rule, i.e. the probability that a new node is

attached to one (or more) preexistent nodes. In order to be more realistic, a fitness

parameter ηi ∈ [0, 1] for each node i of the network is also taken into account to

reflect the ability of the nodes to attract new ones. Our d-dimensional model takes

into account the geographical distances between nodes, with different probability

distribution for η which sensibly modifies the growth dynamics. The preferential

attachment rule is assumed to be Πi ∝ kiηir−αA
ij where ki is the connectivity of the ith

pre-existing site and αA characterizes the importance of the euclidean distance r for the

network growth. For special values of the parameters, this model recovers respectively

the Bianconi-Barabási and the Barabási-Albert ones. The present generalised model

is asymptotically scale-free in all cases, and its degree distribution is very well

fitted with q-exponential distributions, which optimizes the nonadditive entropy Sq,

given by p(k) ∝ e
−k/κ
q ≡ 1/[1 + (q − 1)k/κ]1/(q−1), with (q, κ) depending uniquely

only on the ratio αA/d and the fitness distribution. Hence this model constitutes

a realization of asymptotically-scale-free geographical networks within nonextensive

statistical mechanics, where k plays the role of energy and κ plays the role of
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temperature. General scaling laws are also found for q as a function of the parameters

of the model.

1. Introduction

Complex networks constitute a powerful tool for the description of many natural,

artificial and social systems. In the last decades hundreds of models have been

proposed to describe them [1–17]. Of particular importance, and representative of many

such systems, are the so-called asymptotically-scale free networks, or simply scale-free

networks. In all those models a major role is played by the attachment rule, that is the

way in which each element (node) of the system (network) gets new connections (links).

The attachment probability for a node to win over the others could be proportional to

its degree (i.e., how many connections it already has). If the system is geographically

constrained, as for ecological systems, power grids, public transportation, social face-

to-face interactions, there will usually be a (inverse) power-law proportionality to the

geographical distance between the nodes. In this case the importance of the distance

between the nodes can be regulated by the introduction of a parameter αA, where A

stands for attachment. Furthermore, if each node has any ability (or inability) to attract

new nodes, a fitness parameter η ∈ [0, 1] can be introduced for every node. The possible

values that the fitness parameter can take, i.e., the fitness parameter distribution, and

the importance of the distances between nodes, open the doors for different models to

emerge. Among the first ones we find the Barabási-Albert model [5] where there is no

dependence on the distances and all the nodes have the same ability to attract new ones

(the fitness parameter equals one for all nodes). A possible extension of this model is the

well-known Bianconi-Barabási one [6], where now the fitness parameter is (introduced

and chosen) uniformly between zero and one.

It turned out that these are particular cases of more general models [9, 14, 15], where

the dependence on the distance of the growing mechanism and therefore the role

of dimensionality of the system is introduced. The nodes are placed in a specific

geographical position (for dimension d = 1, 2 and 3) based on an isotropic distribution;

then the topology of the network is dictated by the degree, the fitness and distances

between nodes.

In this article we generalise the fitness distribution obtaining a new landscape of models

of which the above cited are particular cases. We recover them by tuning a new

introduced parameter (ρ) to particular values as illustrated in the following sections.

2. Model

In the following we describe the procedure we propose for a generalised asymtotically-

scale-free geographical network. We build the network by successively including one

node at a time. We start with the first node placed at the origin, then we add a second
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Figure 1. Fitness distributions P (η) for typical values of ρ ∈ (−∞,∞). The ρ→∞
and ρ → −∞ limits correspond respectively to P (η) = δ(η − 1) and P (η) = δ(η),

δ(x) being the Dirac delta distribution; ρ = 0 corresponds to the uniform distribution

P (η) = 1, η ∈ [0, 1].

node, a third one and so on up to N . In all the simulations we run, we have chosen

N = 10000 as the total number of nodes and we run the simulations 1000 times for

each chosen set of parameters (every run took several days). Each node is located at a

certain Euclidean distance r ≥ 1 from the center of mass of all the preexisting nodes,

and it is picked from a d-dimensional isotropic distribution

p(r) ∝ 1

rd+αG
(1)

where d = 1, 2, 3, and αG > 0 is chosen to make the distribution p(r) normalizable.

Here G stands for Growth to distinguish it from the other parameter introduced here

below. As it was shown in [14], αG does not relevantly affect the growth of the network.

Therefore we shall typically fix it to be αG = 2 in this paper.

At each time step, the degree k of each node is updated (after the connections are

created as explained here below). Also a fitness parameter η ∈ [0, 1] is attached to the

new arrived node. The main novelty of the present model is the probability distribution

of η (see Fig. 1) chosen to be

P (η) = (1 + ρ)ηρ, for ρ > 0 (2)

P (η) = 1, for ρ = 0 (3)

P (η) = (1− ρ)(1− η)−ρ, for ρ < 0 (4)
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where the pre-factors (1 + ρ) and (1− ρ) come from normalization. The just introduced

parameter ρ ∈ (−∞,∞) regulates the fitness parameter distribution. The latter can be

tuned to particular values which allows us to recover various well-known models and a

variety of new possibilities that we shall discuss along the paper.

When a new node j is added it will be attached to one of the preexisting nodes i

following the preferential attachment rule

Πi =
kiηir

−αA
ij

Σikiηir
−αA
ij

(αA ≥ 0) (5)

where rij is the geographical distance between nodes i and j, and αA is the parameter

that regulates the importance of distances in the attachment rule (A stands for

Attachment). Clearly, in the αA = 0 limit, distances play no role and the connectivity

is dictated only by how many connections a node already has (i.e. k) and its ability to

get new ones (i.e. η). Basically the topology associated with our model is influenced by

the couple of parameters (αA, ρ), and by the dimensionality d of the system.

Despite its simplicity, the present model is able to reproduce a wide landscape of other

models, some of which are well-known, plus a variety of previously unexplored ones as

we will discuss in the following section.

3. Results

The first natural quantity to study is the final stationary degree distribution of the

network obtained following the growth rules described in the previous section. The

latter is found to be of the form P (k) ∝ e
−k/κ
q , see Fig.2, where the q-exponential

function is defined as

ezq ≡ [1 + (1− q)z]1/(1−q) (z ∈ IR) (6)

if 1 + (1− q)z ≥ 0, and vanishes otherwise, with ez1 = ez.

The distribution P (k) optimizes, under appropriate simple constraints, the

nonadditive entropy [18–21]

Sq = k̄
1−

∑
i p

q
i

q − 1

(∑
i

pi = 1; q ∈ IR;S1 = SBG = −k̄
∑
i

pi ln pi

)
, (7)

where BG stands for Boltzmann-Gibbs, and k̄ is a positive conventional constant.

Since the q-exponential distribution optimizes the nonadditive entropy Sq, this model

constitutes but a particular system within nonextensive statistical mechanics (see [20,21]

for a review), where k plays the role of energy and κ plays the role of temperature. Later

on we show how (q, κ) depend on (αA/d, ρ). As expected we find that the generated

networks are asymptotically scale-free.

As mentioned above, the model sensibly depends on the couple of parameters

(αA, ρ) plus the dimensionality of the system d. In particular, for (αA, ρ) = (0, 0)

and (αA, ρ) = (0,∞) this model recovers respectively the Bianconi-Barabasi [6] and the

Barabasi-Albert [5] ones. Indeed, for ρ = 0 from eq. (3) the fitness probability is equal



A generalised model for asymptotically-scale-free geographical networks 5

Figure 2. Typical examples of P (k) for ρ = −100, as a good approximation

for ρ → −∞ . Left plots: For αA/d = 1 and d = 1, 2, 3 (log–log and q-log–linear

representations). Right plots: For αA/d = 3 and d = 1, 2, 3 (log–log and q-log–linear

representations).

for all nodes and thus the fitness does not play any role in the model, while for ρ→∞
we get a Dirac-delta function centered at η = 1. The region where ρ ∈ [−∞, 0) has

never been explored before. We built networks with ρ varying in the interval [−∞,∞];

as expected and shown in fig. 3 (for extreme cases) the parameter ρ does not affect too

much the topology of the network while αA surely does. Notice in this figure how the

linking and spatial disposition of the nodes are respectively influenced by ρ and by αA.

As anticipated, (q, κ) depend on (αA/d, ρ). Consider first the case q versus ρ, see

fig.4. It is interesting to verify that q varies from a maximum constant value for the

part of the spectrum where ρ → −∞ to a minimum constant value for the part of the

spectrum where ρ → +∞. In the region near ρ = 0 a more drastic change happens

for the values of q (even though all values of q stay in a small interval). In particular

ρ = 0 corresponds to an inflection point for q, ∀αA/d. Observe the collapse of the

curves when αA/d = 1 (the upper set of points) or αA/d = 2 (the middle set of points)

showing the main dependence of q on the ratio αA/d rather than on αA and d taken

independently. The value of q for 0 ≤ αA/d ≤ 1 numerically approaches 3/2, 7/5 and

4/3 for ρ approaching −∞, 0 and ∞ respectively. Intriguingly enough, these three
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Figure 3. d = 2 stochastic realizations with N = 100, for typical values of ρ and αA.

values of q respectively correspond to the divergences of the moments 〈k〉, 〈k3/2〉 and

〈k2〉 of a q-exponential distribution:

q =
3

2
for ρ→ −∞ corresponds to < k >→∞ (8)

q =
7

5
for ρ = 0 corresponds to < k

3
2 >→∞ (9)

q =
4

3
for ρ→∞ corresponds to < k2 >→∞ (10)

Similar but opposite behaviour for κ as a function of ρ. More precisely, it goes from

a minimum value, when ρ → −∞ to a maximum value when ρ → +∞; in the region

near ρ = 0, we observe again an inflection point; the κ values change more rapidly than

the q values. In any case all points are distributed in a narrow interval. Notice also the

same collapse of the curves as for the case of q showing the strict dependence of κ on the

ratio αA/d rather than on αA and d taken independently. An inflection point emerges

for both q and κ as functions of ρ for ρ = 0, ∀αA/d. The opposite behaviour of q and
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ρ shows up in the relation that can be observed between the two (see the lowest graph

in fig.4). All the (q, κ) data closely lie within the straight line

q = 1.54− 0.29κ ∀ (αA/d, ρ) (11)

The monotonicity of this relation constitutes a neat indication of the criticality present

in the growing network. Indeed, for each value of q, there is only one value of κ.

A collapse of the data could be observed also by plotting q and κ as functions of αA/d

see fig. 5.

We analised different cases, changing the ρ parameter, and we found that the be-

haviour is very similar for the entire spectrum of ρ. Here we show the case for ρ→ −∞,

that is an interesting, previously unexplored, case. In the top two plots you can see the

dependence of q and κ, for different dimensions, on the values of αA. They have similar

behaviour but differentiate for different dimensions d. In the low two plots, it is shown

the collapse of the curves when one considers q and κ as functions of αA/d. All the

curves collapse in a single universal one. As said, this is true for the whole spectrum

of ρ, showing that our model, with the new introduced parameter is able to reproduce

many well-known models and that the universal dependence of q and κ on αA/d is valid

for ρ ∈ [−∞,∞], therefore it is a universal behaviour for a pletora of various models.

4. Conclusions

Summarising, inspired by previous works on asymptotically scale-free network models

with fitness parameter η, geographical constraints, and attachment tuning parameter

αA, we have presented a generalised network model with a wider spectrum for the fitness

of the nodes. This was achieved by introducing a new probability distribution for the

fitness, eqs.(2-4), namely by considering the parameter ρ that allows us to fix several

different distributions for η. In particular, by fixing ρ = ∞ (and αA = 0) we recover

the Barabási-Albert model, while by fixing ρ = 0 (and αA = 0) it is possible to recover

the Bianconi-Barabási one. The node degree distribution is numerically shown to be

p(k) ∝ e
−k/κ
q . We have also shown that q and κ depend only on ρ and on αA/d. In the

q case (κ case), as functions of ρ ∈ (−∞,∞), all the values lie in a narrow decreasing

(increasing) interval. On the other hand, ρ = 0 turned out to be an inflection point for

both parameters q and κ, ∀αA/d.

It was also shown that q and κ are dependent on the ratio αA/d rather than on αA
and on d taken independently. Interestingly enough, the value of q for 0 ≤ αA/d ≤ 1

numerically approaches 3/2, 7/5 and 4/3 for ρ approaching −∞, 0 and ∞ respectively.

These values of q respectively correspond to the divergences of the moments 〈k〉, 〈k3/2〉
and 〈k2〉 of any q-exponential distribution.

We have also found, an universal relation between q and κ since all the data closely lie

along the critical straight line q = 1.56− 0.36κ, ∀ (αA/d, ρ).

Moreover the herein introduced ρ parameter, does not affect much the topology of the
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Figure 4. Upper plot: q as a function of ρ for αA/d = 1, 2 (d = 1, 2, 3). Middle plot:

κ as a function of ρ for αA/d = 1, 2 (d = 1, 2, 3). Lower plot: Nearly linear relation

between q and κ (for typical values of ρ and d = 1, 2, 3), whose monotonicity denotes

the criticality of the system.
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Figure 5. q and κ as functions of αA (upper plots) and of αA/d (lower plots) for

ρ = −100 and d = 1, 2, 3.

network, whereas αA does. This actually is good news for our model in the sense that it

constitutes a smooth generalization of the ubiquitous asymptotically-scale-free networks.
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