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ABSTRACT
We use the theory of stochastic variational inequalities to
develop a network equilibrium model of the whole supply
chain of electricity markets: power generation, supply, trans-
mission, and consumption. In particular, we take into account
the case where the market demand functions are not exactly
known but are affected by some kind of uncertainty. A dis-
cretization and truncation procedure is used to numerically
solve the stochastic variational inequality model. Monotonic-
ity properties of the operator are investigated and the affine
case is analysed in detail. Finally, numerical experiments show
the impact of different probability densities of the random
variables on the approximated solutions and the scalabil-
ity of the proposed numerical method for real-world sized
problems.
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1. Introduction

Electricity market models have been developed at a very high pace in the last 15
years, also due to the fact that in many countries the electricity power industry
has undergone a transformation from a government-regulated to a competitive
regime. In such a regime, there are several classes of decision makers: power
generators, power suppliers and consumers. Providers that ensure the power
transmission can also be included in the modelling but usually they are not con-
sidered as decision makers. The complexity of the interaction among these three
different groups in the decision process has thus required advancedmathematical
tools. Two main approaches have been developed in the literature to address the
deregulated electric powermarkets: deterministic equilibriummodels (where the
power demand is known in a deterministicmanner) and stochastic programming
models (where the power demand is affected by some kind of uncertainty).

The first approach is based on complementarity and variational inequality
models that describe in a unified way the simultaneous optimization problems
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which arise at the different decision tiers. The reader interested in complemen-
tarity models for energy markets can refer to the excellent tutorial [1] which also
provides numerous related references. A detailed variational inequality model of
the restructured electricity system can be found in [2], while for models which
utilize both Nash equilibrium concepts and variational inequalities we refer to
[3]. In [4], the authors provide a network variational inequality model which
simultaneously describe both the optimization problems of the power genera-
tors and the power suppliers, and the equilibrium conditions at the consumer
markets.

The second approach is based on the use of stochastic programming tech-
niques in order to take into account the uncertainty of the power demand. In [5],
nonlinear stochastic programming methods are used to provide a decision sup-
port tool for optimizing the expansion planning of a semi-liberalized electricity
market. In [6], the authors consider a gamemodel of electricity markets with one
Gaussian random demand, where each player solves an optimization problem
under chance constraints. The book [7] contains a detailed survey on electricity
market models with uncertain data, with stochastic programming techniques,
but does not cover the variational inequality approach. In [8], stochastic pro-
gramming techniques are used to incorporate uncertain wind generation into the
European market electricity. In the very recent paper [9], the authors investigate
a stochastic oligopoly model which takes into account long-term infrastructure
investment decisions. They used the so-called open-loop approach,meaning that
investments and market operation (daily) decisions are assumed to be made
simultaneously. From the technical point of view, their approach is a general-
ization of the classical two-stage stochastic programming to the case of multiple
decision makers.

The first approach has the advantage of considering the equilibriumconditions
of the whole chain of generation, supply and consumption of electric power but
has the inconvenience of assuming that the demand for electricity can be pre-
dicted with certainty. On the other hand, the second approach takes into account
the inherent uncertainty of the power demand, but has the drawback of using
stochastic optimization techniques instead of general equilibrium conditions that
are more suitable to describe the whole system.

The aim of our paper is to merge the best features of both approaches, that
is, we introduce a stochastic equilibrium model for the whole chain of gen-
eration, supply and consumption of electric power, assuming that the power
demand is uncertain. In particular, we model the stochastic equilibrium as the
solution of a system of three stochastic variational inequalities; such a sys-
tem is proved to be equivalent (under mild assumptions) to a single stochastic
variational inequality; we show that the stochastic variational inequality model
can be numerically solved by a well-known approximation/discretization pro-
cedure; we investigate in detail the monotonicity properties of the map of the
stochastic variational inequality, which are useful to prove the convergence of
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the approximation procedure; the affine variational inequality case, which is
the most common in applications, is deeply analysed. Finally, several numeri-
cal experiments show the viability of our approach: we show the convergence of
mean values and standard deviations of the approximated solutions, the impact
of different probability densities of the random variables on the approximated
solutions and how the approximation procedure is able to solve real-world size
problems.

The modelling of market demands as random variables is well established in
Economics and in Finance, as is shown by numerous papers addressing this topic
in the last decades (see e.g. [10–12]). The causes of demand uncertainty may
result from specific aspects of the business and its customers or from external
factors. Moreover, any innovation in technology or service will face a great deal
of demand uncertainty, simply because there is no previous statistical analysis
fromwhich to draw conclusions about demand. Demand can also be reallocated,
in an uncertain way, by the entry of new competitors into the industry. Natural or
human-caused disasters and times of political unrest are examples of external fac-
tors that contribute to both demand and supply uncertainty. In the specific case of
electricity markets, random fluctuations of the temperature in summer or winter
cause an increase in the electricity power needed to run heating and air condi-
tioning or cooling systems. By using historical time series analysis, temperature
probability distributions can be derived and possibly used to model the random
demand of electric power. This is particularly relevant for those countries where
heating is mostly based on electricity (for example, France). Moreover, malfunc-
tions or disruptions of technical nature occur randomly and can be modelled if
detailed knowledge of the robustness and reliability of the various parts of the
generation-distribution chain is available.

Let us recall that while the theory of stochastic programming is a well-
established field of optimization [13], stochastic (or random) formulations of
variational inequalities are much more recent although this topic has undergone
a great development in the last decade. In particular, we exploit in this paper the
rigorous approach to randomvariational inequalities which has been put forward
in [14–17] and applied to several equilibrium problems [18–20]. Stochastic vari-
ational inequalities have also been considered as particular applications of the
methodology of variational convergence for bifunctions studied in [21], but in a
finite-dimensional setting.

This paper is organized as follows. In Section 2,we describe in detail themodel,
define an equilibrium for the whole chain of generation, supply and consumption
of electric power, and derive the random variational inequality that describes
the equilibrium conditions of the markets involved. In Section 3, we summa-
rize the theoretical framework of random variational inequalities and outline an
approximation procedure for their solution. Section 4 is devoted to investigate the
monotonicity properties of the operator which appears in the variational inequal-
ity, which are useful to prove the convergence of our approximation procedure.
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Figure 1. The electric power supply chain.

Section 5 analyses in detail the affine case, while Section 6 is devoted to numerical
experiments. Conclusions are finally drawn in Section 7.

2. Themodel

In this section, we describe the whole chain of generation, supply and con-
sumption of electric power with random demand and derive a stochastic varia-
tional inequality model that describes the equilibrium conditions of the markets
involved. A detailed economic explanation of all the processes involved in the
electricity market, assuming that the power demand is known in a determin-
istic manner, can be found in [4]. We also remark that the model proposed in
[4] includes some constraints in the operator, while in our approach we prefer
to explicitly consider the constraints, both to reduce the number of variables
involved and tomake the study ofmonotonicity properties of the operator clearer
and more connected with the economic model.

The markets’ structure is modelled by a network with three tiers of nodes rep-
resenting the different decision makers: power generators, power suppliers and
consumers (see Figure 1). The network flows do not describe the physical elec-
tric power flows, but the corresponding economic transactions. Moreover, we do
not take into account the physical power transmission network, whichmakes our
model particularly suitable for long-term planning problems. However, the ran-
dom demand functions to be introduced in the sequel (or possible random upper
bounds on the flows) could incorporate (although in an aggregate, not explicit
manner) the effect of possible issues connected to malfunctions in the physical
network.

Power distribution is ensured by transmission service providers which do
not take part in the decision process. There are G power generators in the first
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tier of nodes and S power suppliers in the second tier. The role of suppliers is
to intermediate the transactions between generators and consumers, which are
described by the third tier. Suppliers pay the transmission services to ensure
the physical distribution of electric power. There are T transmission services, K
demand markets and the decision makers of each tier are in competition.

Let g denote a power generator, Q1
gs the power transacted from generator g to

supplier s and ρ1
gs the unit price that g charges s. The flows and prices between

power generators and suppliers are grouped in two vectorsQ1, ρ1 ∈ R
GS+ , respec-

tively. LetQ2
skt denote the amount of electricity transacted between supplier s and

consumer k via the link corresponding to the transmission provider t and ρ2
skt

the unit price associated with the transaction from s to k via t. The transaction
flows and prices are grouped in two vectors Q2, ρ2 ∈ R

SKT+ , respectively. In the
following, we describe the optimization problems and the related equilibrium
conditions for each tier.

2.1. Equilibrium conditions for the consumers

We start from the bottom level of the network, i.e. the consumers, since we
assume that their demand functions are uncertain and this will affect the equilib-
riumvalues of variables (flows andprices) of the other tiers. Letρ3

k denote the unit
price of electric power associated with the demand market k and assume that its
demand dk can depend in general on the prices at all markets ρ3 = (ρ3

1 , . . . , ρ
3
K),

so as to model competition. As explained in the introduction, seasonal fluctua-
tions in the temperature, possible malfunctions in the network, or changes in the
buying strategy of consumers, suggest that the demand can fluctuate randomly.

Hence, we assume that dk is a random variable, that is dk : � × R
K → R,

where � is the sample space with a probability measure P. Let ĉskt = ĉskt(Q2)

denote the unit transaction cost between the demand market k and the sup-
plier s via the transmission provider t. Since the demand functions are random
variables, an equilibrium between the demand markets and the suppliers can be
defined as a random vector (Q2∗(ω), ρ3∗(ω)) such that for each s, k, t and for
P-almost every ω ∈ � the following relations hold:

dk(ω, ρ3∗(ω))

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
=

S∑
s=1

T∑
t=1

Q2∗
skt(ω) if ρ3∗

k (ω) > 0,

≤
S∑

s=1

T∑
t=1

Q2∗
skt(ω) if ρ3∗

k (ω) = 0,

and

ρ2∗
skt(ω) + ĉskt(Q2∗(ω))

{
= ρ3∗

k (ω) if Q2∗
skt(ω) > 0,

≥ ρ3∗
k (ω) if Q2∗

skt(ω) = 0.
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Equilibrium conditions of this kind (in a deterministic setting) are quite standard
in the modelling of spatially distributed markets (see e.g. [22, Chapter 3]). We
remark that prices are not random variables in our model, but equilibrium prices
at the consumer markets ρ3∗

k (ω) are random because the demand is random.
Moreover, notice that also the equilibrium prices ρ1∗

gs (ω) and ρ2∗
skt(ω) are consid-

ered as random variables because of the uncertainty of the demand functions.
Anyhow, the values of ρ1∗(ω) and ρ2∗(ω) can be derived from the solution of
the variational inequality (4) introduced at the end of this section through the
relations (5) and (6), hence in the above equations they have the role of random
parameters.

The above equilibrium conditions can be expressed in a compact form as
the following stochastic variational inequality: for P-almost every ω ∈ �, find
(Q2∗(ω), ρ3∗(ω)) ∈ R

SKT+K
+ such that

S∑
s=1

K∑
k=1

T∑
t=1

[
ρ2∗
skt(ω) + ĉskt(Q2∗(ω)) − ρ3∗

k (ω)
] · [Q2

skt − Q2∗
skt(ω)]

+
K∑

k=1

[ S∑
s=1

T∑
t=1

Q2∗
skt(ω) − dk(ω, ρ3∗(ω))

]
· [ρ3

k − ρ3∗
k (ω)] ≥ 0,

∀ (Q2, ρ3) ∈ R
SKT+K
+ . (1)

2.2. Equilibrium conditions for the power suppliers

The suppliers acquire electricity from the power generators and sell it to the con-
sumers via the transmission providers. There are several kinds of costs which
are faced by a supplier s and are globally referred to as operating costs and
denoted by cs. Assume that the operating costs depend on bothQ1 andQ2, that is
cs = cs(Q1,Q2). Moreover, we denote the part of transaction cost with the power
generator g paid by the supplier s with ĉgs = ĉgs(Q1). We also consider the trans-
action cost cskt = cskt(Q2) paid by the supplier s to the transmission service t
in order to dispatch the power to the consumer k. The above cost functions are
assumed to be convex and continuously differentiable.

Since each supplier s is a profit-maximizer, it aims to solve, for every ω ∈ �,
the following optimization problem:

max
K∑

k=1

T∑
t=1

ρ2∗
skt(ω)Q2

skt − cs(Q1,Q2) −
G∑

g=1
ρ1∗
gs (ω)Q1

gs

−
G∑

g=1
ĉgs(Q1) −

K∑
k=1

T∑
t=1

cskt(Q2)
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subject to:
K∑

k=1

T∑
t=1

Q2
skt ≤

G∑
g=1

Q1
gs

Q1
gs ≥ 0 ∀ g = 1, . . . ,G,

Q2
skt ≥ 0 ∀ k = 1, . . . ,K, t = 1, . . . ,T.

The objective function represents the difference between the revenue due to the
sell to the consumers and the total cost, while the first constraint imposes that the
total quantity of electricity sold to the consumers is compatible with that bought
from the generators.

The equilibrium conditions for all the suppliers can be equivalently described
by the following stochastic variational inequality: for P-almost everyω ∈ �, find
(Q1∗(ω),Q2∗(ω)) ∈ Cs such that:

G∑
g=1

S∑
s=1

[
∂cs(Q1∗(ω),Q2∗(ω))

∂Q1
gs

+ ∂ ĉgs(Q1∗(ω))

∂Q1
gs

+ ρ1∗
gs (ω)

]
· [Q1

gs − Q1∗
gs (ω)]

+
S∑

s=1

K∑
k=1

T∑
t=1

[
∂cs(Q1∗(ω),Q2∗(ω))

∂Q2
skt

+ ∂cskt(Q2∗(ω))

∂Q2
skt

− ρ2∗
skt(ω)

]
· [Q2

skt − Q2∗
skt(ω)] ≥ 0 (2)

holds for any (Q1,Q2) ∈ Cs, where

Cs =
⎧⎨⎩(Q1,Q2) ∈ R

GS+SKT
+ :

K∑
k=1

T∑
t=1

Q2
skt ≤

G∑
g=1

Q1
gs, ∀ s = 1, . . . , S

⎫⎬⎭ .

2.3. Equilibrium conditions for the power generators

Let qg denote the power output (expressed in watts) of generator g and the
power outputs of all generators are grouped in a vector q ∈ R

G+. The cost of
power generation is given by the function fg = fg(q) which is assumed to be
convex and continuously differentiable for any g = 1, . . . ,G. The generators also
pay part of the cost associated to power transmission to the suppliers. These
costs are described by the convex and continuously differentiable cost functions
cgs = cgs(Q1) for any g and s. The flow conservation law qg = ∑S

s=1Q
1
gs allows

writing fg = fg(Q1) for any g. Since each generator g is a profit-maximizer, it
wants to solve, for every ω ∈ �, the following optimization problem:

max
S∑

s=1
ρ1∗
gs (ω)Q1

gs − fg(Q1) −
S∑

s=1
cgs(Q1)

subject to: Q1
gs ≥ 0 ∀ s = 1, . . . , S.
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The simultaneous solution of the above optimization problems for all the
generators is equivalent to the following stochastic variational inequality: for
P-almost every ω ∈ �, find Q1∗(ω) ∈ R

GS+ such that

G∑
g=1

S∑
s=1

[
∂fg(Q1∗(ω))

∂Q1
gs

+ ∂cgs(Q1∗(ω))

∂Q1
gs

− ρ1∗
gs (ω)

]

· [Q1
gs − Q1∗

gs (ω)] ≥ 0, ∀ Q1 ∈ R
GS
+ . (3)

2.4. Equilibrium conditions for the whole chain

The variational inequalities (1), (2) and (3) describe the noncooperative
behaviour of the decision makers at each tier and the economic subjects at dif-
ferent tiers share some groups of variables. The following equilibrium definition
for the whole supply chain is then natural.

Definition 2.1: A random vector (Q1∗(ω),Q2∗(ω), ρ3∗(ω)) is a supply chain
equilibrium if (1), (2) and (3) hold simultaneously for somepricesρ1∗(ω), ρ2∗(ω).

The supply chain equilibria are related to the solutions of a single stochastic
variational inequality, as the following result shows.

Theorem 2.1: If (Q1∗(ω),Q2∗(ω), ρ∗
3 (ω)) is a supply chain equilibrium, then it

solves the following stochastic variational inequality: for P-almost every ω ∈ �,
(Q1∗(ω),Q2∗(ω), ρ∗

3 (ω)) ∈ C := Cs × R
K+ and

G∑
g=1

S∑
s=1

[
∂fg(Q1∗(ω))

∂Q1
gs

+ ∂cgs(Q1∗(ω))

∂Q1
gs

+ ∂cs(Q1∗(ω),Q2∗(ω))

∂Q1
gs

+ ∂ ĉgs(Q1∗(ω))

∂Q1
gs

]
· [Q1

gs − Q1∗
gs (ω)]

+
S∑

s=1

K∑
k=1

T∑
t=1

[
∂cs(Q1∗(ω),Q2∗(ω))

∂Q2
skt

+ ∂cskt(Q2∗(ω))

∂Q2
skt

+ ĉskt(Q2∗(ω)) − ρ3∗
k (ω)

]
· [Q2

skt − Q2∗
skt(ω)]

+
K∑

k=1

[ S∑
s=1

T∑
t=1

Q2∗
skt(ω) − dk(ω, ρ3∗(ω))

]
· [ρ3

k − ρ3∗
k (ω)] ≥ 0,

∀ (Q1,Q2, ρ3) ∈ C. (4)



OPTIMIZATION 9

Conversely, if (Q1∗(ω),Q2∗(ω), ρ3∗(ω)) solves the stochastic variational
inequality (4) and the prices ρ1∗(ω) and ρ2∗(ω) are defined as follows:

ρ1∗
gs (ω) := ∂fg(Q1∗(ω))

∂Q1
gs

+ ∂cgs(Q1∗(ω))

∂Q1
gs

, ∀ g = 1, . . . ,G, s = 1, . . . , S, (5)

ρ2∗
skt(ω) := ρ3∗

k (ω) − ĉskt(Q2∗(ω)),

∀ s = 1, . . . , S, k = 1, . . . ,K, t = 1, . . . ,T, (6)

then (Q1∗(ω),Q2∗(ω), ρ3∗(ω)) is a supply chain equilibrium.

Proof: The first part follows from the hypotheses in a straightforward fashion
since (4) is the sum of variational inequalities (1), (2) and (3).

For the second part, if in (4) we set Q1 = Q1∗(ω) and Q2 = Q2∗(ω), then

K∑
k=1

[ S∑
s=1

T∑
t=1

Q2∗
skt(ω) − dk(ω, ρ3∗(ω))

]
· [ρ3

k − ρ3∗
k (ω)] ≥ 0

holds for any ρ3 ≥ 0. Therefore, the validity of (1) follows from (6). Moreover, if
in (4) we set ρ3 = ρ3∗(ω), then

0 ≤
G∑

g=1

S∑
s=1

[
∂fg(Q1∗(ω))

∂Q1
gs

+ ∂cgs(Q1∗(ω))

∂Q1
gs

+ ∂cs(Q1∗(ω),Q2∗(ω))

∂Q1
gs

+ ∂ ĉgs(Q1∗(ω))

∂Q1
gs

]
· [Q1

gs − Q1∗
gs (ω)]

+
S∑

s=1

K∑
k=1

T∑
t=1

[
∂cs(Q1∗(ω),Q2∗(ω))

∂Q2
skt

+ ∂cskt(Q2∗(ω))

∂Q2
skt

+ ĉskt(Q2∗(ω)) − ρ3∗
k (ω)

]
· [Q2

skt − Q2∗
skt(ω)]

=
G∑

g=1

S∑
s=1

[
∂cs(Q1∗(ω),Q2∗(ω))

∂Q1
gs

+ ∂ ĉgs(Q1∗(ω))

∂Q1
gs

+ ρ1∗
gs (ω)

]
· [Q1

gs − Q1∗
gs (ω)]

+
S∑

s=1

K∑
k=1

T∑
t=1

[
∂cs(Q1∗(ω),Q2∗(ω))

∂Q2
skt

+ ∂cskt(Q2∗(ω))

∂Q2
skt

− ρ2∗
skt(ω)

]
· [Q2

skt − Q2∗
skt(ω)]
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holds for any (Q1,Q2) ∈ Cs, that is (2) holds. Finally, (3) directly follows
from (5). �

We remark that the economic meaning of condition (5) is that, at equilibrium,
the price that a power generator charges a power supplier must be equal to the
sum of the marginal production cost plus the marginal transaction cost.

In the following, it will be useful to rewrite the variational inequality (4) in
a compact form. We denote by 〈a, b〉 the Euclidean scalar product between two
vectors a, b and by ‖a‖ the Euclidean norm of a. We define the vector of vari-
ables x = (Q1,Q2, ρ3) and the operator F : � × R

GS+SKT+K → R
GS+SKT+K as

follows:

F(ω, x) := (
F1(Q1,Q2), F2(Q1,Q2, ρ3), F3(ω,Q2, ρ3)

)
, (7)

where

F1gs(Q
1,Q2) = ∂fg(Q1)

∂Q1
gs

+ ∂cgs(Q1)

∂Q1
gs

+ ∂cs(Q1,Q2)

∂Q1
gs

+ ∂ ĉgs(Q1)

∂Q1
gs

,

F2skt(Q
1,Q2, ρ3) = ∂cs(Q1,Q2)

∂Q2
skt

+ ∂cskt(Q2)

∂Q2
skt

+ ĉskt(Q2) − ρ3
k ,

F3k(ω,Q
2, ρ3) =

S∑
s=1

T∑
t=1

Q2
skt − dk(ω, ρ3).

Then, the compact form of (4) is the following: for P-almost every ω ∈ �, find a
random vector x∗(ω) ∈ C such that

〈F(ω, x∗(ω)), x − x∗(ω)〉 ≥ 0, ∀ x ∈ C. (8)

Following [14,16], instead of (8) we consider its integral version: find x∗ ∈ Lp,
with p ≥ 2, such that x∗(ω) ∈ C for P-almost every ω ∈ � and∫

�

〈F(ω, x∗(ω) ), x − x∗(ω)〉 dP(ω) ≥ 0 (9)

holds for any x ∈ Lp such that x(ω) ∈ C for P-almost every ω ∈ �. The reason
to consider (9) is that since its solution x∗ = x∗(ω) belongs to some Lp space
(where p ≥ 2 depends on F(ω, ·)) it has finite first and second order moments.
In particular, we are interested in computing the approximated mean value and
variance of the solution with respect to the probability measure P. Notice that
if problems (8) and (9) are uniquely solvable, then they are equivalent provided
that the solution of (8) is an Lp function (see Remark 3.1).

For the reader’s convenience, we now recall the following general result
(see, e.g. [23]) that ensures the solvability of an infinite-dimensional variational
inequality like (9).
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Theorem 2.2: Let E be a reflexive Banach space and let E∗ denote its topological
dual space. We denote the duality pairing between E and E∗ by 〈·, ·〉E,E∗ . Let K be a
nonempty, closed, and convex subset of E and A : K → E∗ be monotone and con-
tinuous on finite-dimensional subspaces of K. Consider the variational inequality
problem of finding u ∈ K such that

〈Au, v − u〉E,E∗ ≥ 0, ∀ v ∈ K.

Then, a necessary and sufficient condition for the above problem to be solvable is
the existence of δ > 0 such that at least a solution of the variational inequality:

find uδ ∈ Kδ such that 〈Auδ , v − uδ〉E,E∗ ≥ 0, ∀ v ∈ Kδ

satisfies ‖uδ‖ < δ, where Kδ = {v ∈ K : ‖v‖ ≤ δ}.

3. Methodology

In this section, we briefly recall some basic notions about random variational
inequalities of the kind (9) (see [14,16] for more details). For the sake of sim-
plicity, in what follows we set N: = GS+ SKT +K so that x ∈ R

N and F : � ×
R
N → R

N . In our model we assume that the random and the deterministic
variables appearing in F are separated, i.e.

F(ω, x) = Z(ω)G(x) + H(x) − b − R(ω)c, (10)

where (�,A, P) is a probability space, R and Z are given real random variables
defined on �, the maps G,H : R

N → R
N are given and b, c ∈ R

N are two given
vectors.

Consider the following stochastic variational inequality: for P-almost every
ω ∈ �, find x̂ := x̂(ω) ∈ C such that

〈Z(ω)G(x̂) + H(x̂), x − x̂〉 ≥ 〈R(ω) c + b , x − x̂〉, ∀ x ∈ C, (11)

whereC is a closed convex subset ofRN . We assume that Z,G andH are such that
F is a Carathéodory function, that is, for each fixed x ∈ R

N the function F(·, x)
is measurable with respect toA, whereas for P-almost every ω ∈ � the function
F(ω, ·) is continuous.

Definition 3.1: Given any ω ∈ �, the map F(ω, ·) is monotone if and only if

〈F(ω, x) − F(ω, x̃), x − x̃〉 ≥ 0, ∀ x, x̃ ∈ R
N ;

F(ω, ·) is strongly monotone uniformly with respect to ω ∈ � if and only if there
exists α > 0 such that

〈F(ω, x) − F(ω, x̃), x − x̃〉 ≥ α‖x − x̃‖2, ∀ ω ∈ �, ∀ x, x̃ ∈ R
N .
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The strong monotonicity of F(ω, ·) is sufficient to ensure the existence of a
unique solution to (11). Other sufficient conditions can be given to guarantee
the existence of solutions, but the strong monotonicity also plays a crucial role
in the convergence theorem at the end of this section and it is verified in several
applications as shown in Section 4.

Since we are only interested in solutions with finite first and second order
moments, we consider an integral variational inequality instead of the varia-
tional inequality (11). For a fixed p ≥ 2, we consider the reflexive Banach space
Lp(�, P,RN) of random vectors V from � to R

N such that the expectation
(p-moment) is finite, that is

EP(‖V‖p) =
∫

�

‖V(ω)‖p dP(ω) < ∞.

For subsequent developments, we need the following growth condition

‖F(ω, x)‖ ≤ α(ω) + β(ω)‖x‖p−1, ∀ x ∈ R
N , (12)

where α ∈ Lq(�, P) with p−1 + q−1 = 1 and β ∈ L∞(�, P). Due to the above
growth condition, the Nemytskii operator F̂ associated to F, acts from
Lp(�, P,RN) to Lq(�, P,RN) and is defined by

F̂(V)(ω) := F(ω,V(ω)), ω ∈ �.

We introduce the following closed and convex set:

CP := {V ∈ Lp(�, P,RN) : V(ω) ∈ C for P-almost every ω ∈ �}.
We assume that R ∈ Lq(�, P) and, without any loss of generality, it is nonnega-
tive (otherwise we can use the standard decomposition in the positive part and
the negative part). Moreover, we assume that Z ∈ L∞(�, P) and its support, i.e.
the set of possible outcomes, is the interval [z, z) ⊂ (0,∞). Equipped with these
notations, we consider the following Lp formulation of (11): find Û ∈ CP such
that ∫

�

〈Z(ω)G(Û(ω)) + H(Û(ω)), V(ω) − Û(ω)〉 dP(ω)

≥
∫

�

〈b + R(ω) c,V(ω) − Û(ω)〉 dP(ω), ∀ V ∈ CP. (13)

The integrals above are well posed due to the growth condition (12).

Remark 3.1: Problems (8) and (9) (and hence in particular problems (11) and
(13)) are equivalent if their solution is unique, in the sense that from the integral
formulation we obtain a pointwise solution that is only defined P-a.s. on the sam-
ple space� and that coincides there with the pointwise (i.e. parametric) solution
of (8). Conversely, if the solution of (8) belongs to Lp, it also solves (9).
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Furthermore, if F(ω, ·) is strictly monotone, so is F̂, hence both (11) and (13)
have a unique solution. If F(ω, ·) is strongly monotone, uniformly with respect
to ω ∈ �, then F̂ is strongly monotone and, again, both (11) and (13) have a
unique solution. In the latter case, we can also prove norm convergence of our
approximation procedure (see Theorem 3.1). It is also worth noticing that the
uniform strong monotonicity holds in the affine case under suitable assumptions
(see Section 5).

To get rid of the abstract sample space �, we consider the joint distribu-
tion P of the random vector (R,Z) and work with the special probability space
(R2,B(R2),P). For simplicity, we assume that R and Z are independent random
variables. We set

r = R(ω), z = Z(ω), y = (r, z).

The variational inequality (11) reads: for P-almost every y ∈ R
2, find x̂(y) ∈ C

such that

〈z G(x̂(y)) + H(x̂(y)), x − x̂(y)〉 ≥ 〈rc + b, x − x̂(y)〉, ∀ x ∈ C. (14)

In order to obtain the integral formulation of (14), consider the space
Lp(R2,P,RN) and introduce the closed and convex set

CP := {v ∈ Lp(R2,P,RN) : v(y) ∈ C for P-almost every y ∈ R
2}.

We also assume that the probability measures PR and PZ of R and Z have the
probability densities ϕR and ϕZ, respectively. Therefore, we have

dPR(r) = ϕR(r) dr, dPZ(z) = ϕZ(z) dz.

Notice that v ∈ Lp(R2,P,RN) means that the function (r, z) 
→ ϕR(r)ϕZ(z)
belongs to the Lebesgue space Lp(R2,RN)with respect to the Lebesgue measure.

Therefore, we can define the probabilistic integral variational inequality: find
û := û(y) ∈ CP such that∫ ∞

0

∫ z

z
〈z G(û) + H(û), v − û〉 ϕR(r)ϕZ(z) dy

≥
∫ ∞

0

∫ z

z
〈b + r c, v − û〉 ϕR(r)ϕZ(z) dy, ∀ v ∈ CP. (15)

For the reader’s convenience, we now provide some details on the numerical
approximation of the solution û and show how to compute a sequence of step
functions {ûn} which converges strongly in Lp to û. First, we need a discretiza-
tion of the space X := Lp(R2,P,RN). We introduce a sequence {πn} of partitions
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of the support

ϒ := [0,∞) × [z, z)

of the probability measure P induced by the random variables R and Z. For this,
we set πn = (πR

n ,πZ
n ), where

πR
n := (r0n, . . . , r

NR
n

n ),

πZ
n := (z0n, . . . , z

NZ
n

n ),

0 = r0n < r1n < . . . rN
R
n

n = n,

z = z0n < z1n < . . . zN
Z
n

n = z,

|πR
n | := max

{
rin − ri−1

n : i = 1, . . . ,NR
n
} → 0 for n → +∞,

|πZ
n | := max

{
zjn − zj−1

n : j = 1, . . . ,NZ
n

}
→ 0 for n → +∞.

These partitions give rise to the exhausting sequence {ϒn} of subsets ofϒ , where
each ϒn is given by the finite disjoint union of the intervals:

Inij := [ri−1
n , rin) × [zj−1

n , zjn)

For each n ∈ N, we consider the space of the R
N-valued step functions on ϒn,

extended by 0 outside of ϒn:

Xn :=
⎧⎨⎩vn : R

2 → R
N : vn(r, z) =

NR
n∑

i=1

NZ
n∑

j=1
vnij 1Inij (r, z), with vnij ∈ R

N

⎫⎬⎭ ,

where 1I denotes the {0, 1}-valued characteristic function of the subset I. To
approximate an arbitrary function w ∈ Lp(R2,P,R), we employ the mean value
truncation operator μn

0 associated to the partition πn given by

μn
0w :=

NR
n∑

i=1

NZ
n∑

j=1
(μn

ijw) 1Inij ,

where

μn
ijw :=

⎧⎪⎨⎪⎩
1

P(Inij)

∫
Inij
w(y) dP(y) if P(Inij) > 0 ;

0 otherwise.

Analogously, for a Lp vector function v = (v1, . . . , vN), we define

μn
0v := (μn

0v1, . . . ,μ
n
0vN),
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for which one can prove that μn
0v converges to v in Lp(R2,P,RN). Since our

objective is to approximate the random variables R and Z, we introduce

ρn =
NR
n∑

i=1
ri−1
n 1Inij , σn =

NZ
n∑

j=1
zj−1
n 1Inij ,

then

ρn(r, z) → ρ(r, z) = r, in Lq(R2,P),

σn(r, z) → σ(r, z) = z, in L∞(R2,P).

Combining the above ingredients, for n ∈ N, we consider the following dis-
cretized variational inequality: find ûn ∈ Xn ∩ CP such that for every vn ∈ Xn ∩
CP, we have ∫ ∞

0

∫ z

z
〈σn(y)G(ûn) + H(ûn), vn − ûn〉 dP(y)

≥
∫ ∞

0

∫ z

z
〈b + ρn(y) c, vn − ûn〉 dP(y).

The above approximated variational inequalities can be split in a finite number
of finite-dimensional variational inequalities, one for each interval Inij , that is for
every n ∈ N and for every i, j find ûnij ∈ C such that

〈zj−1
n G(ûnij) + H(ûnij), v

n
ij − ûnij〉 ≥ 〈b + ri−1

n c, vnij − ûnij〉, ∀ vnij ∈ C. (16)

Clearly, we can reconstruct the solutions ûn as follows:

ûn =
NR
n∑

i=1

NZ
n∑

j=1
ûnij 1Inij ∈ Xn.

We recall the following convergence result (see [16]).

Theorem 3.1: If F(ω, ·) is strongly monotone uniformly with respect to ω ∈ �

and the growth condition (12) holds, then the sequence {ûn} converges strongly in
Lp(R2,P,RN) to the unique solution û of (15).

A consequence of the norm convergence stated in Theorem 3.1 is that both the
mean value and variance of the solution û of (15) can be approximated through
convergent sequences. The knowledge of themean value of the equilibrium solu-
tion has clear practical implications for all the decision makers involved in the
supply chain (generators, suppliers and consumers). However, also the knowl-
edge of the variance of the equilibrium solution can provide useful information
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(e.g. to power generators and suppliers). In fact, it is well known that electric
power cannot be easily and efficiently stored and the purchased electricity must
be completely used or wasted so as to keep the distribution grid balanced. Thus,
both shortage and surplus may cause an additional cost: the former one because
the missing electricity must be acquired when needed, at a price usually greater
than in the day ahead market, the latter because the electricity must be sold at a
price usually smaller than the purchase price, or, even worse, wasted. Therefore,
the variance of the equilibrium solution provides significant insights on the risk
of possible additional cost the producers and suppliers may incur in and may be
helpful in planning recovery strategies.

4. Monotonicity properties

Since the theory of random variational inequalities outlined in the previous
section is based on the monotonicity properties of the operator, in this section
we give sufficient conditions to ensure the (strong) monotonicity of the map F
defined in (7). We introduce three maps: A : R

GS → R
GS defined as

Ags(Q1) = ∂fg(Q1)

∂Q1
gs

+ ∂cgs(Q1)

∂Q1
gs

− ρ1
gs,

B : R
GS+SKT → R

GS+SKT defined as

B(Q1,Q2) = (B1(Q1,Q2), B2(Q1,Q2)),

where

B1gs(Q
1,Q2) = ∂cs(Q1,Q2)

∂Q1
gs

+ ∂ ĉgs(Q1)

∂Q1
gs

+ ρ1
gs,

B2skt(Q
1,Q2) = ∂cs(Q1,Q2)

∂Q2
skt

+ ∂cskt(Q2)

∂Q2
skt

− ρ2
skt ,

and D : � × R
SKT+K → R

SKT+K defined as

D(ω,Q2, ρ3) = (D2(Q2, ρ3), D3(ω,Q2, ρ3))

where

D2
skt(Q

2, ρ3) = ρ2
skt + ĉskt(Q2) − ρ3

k , D3
k(ω,Q

2, ρ3)

=
S∑

s=1

T∑
t=1

Q2
skt − dk(ω, ρ3).

Notice that ρ1 and ρ2 have the role of parameters in the definition of the above
three maps. Then, it is easy to check that

F1 = A + B1, F2 = B2 + D2, F3 = D3. (17)



OPTIMIZATION 17

Theorem 4.1:

(a) If A, B and D(ω, ·) are monotone, then F(ω, ·) is monotone;
(b) If D(ω, ·) is strongly monotone uniformly with respect to ω ∈ �, one out of A

or B is strongly monotone while the other is monotone, then F(ω, ·) is strongly
monotone uniformly with respect to ω ∈ �.

Proof: Let x = (Q1,Q2, ρ3) and x̃ = (Q̃1, Q̃2, ρ̃3). Then the following equalities
hold:

〈F(ω, x) − F(ω, x̃), x − x̃〉
= 〈F1(x) − F1(̃x),Q1 − Q̃1〉

+ 〈F2(x) − F2(̃x),Q2 − Q̃2〉
+ 〈F3(ω, x) − F3(ω, x̃), ρ3 − ρ̃3〉

= 〈A(Q1) − A(Q̃1) + B1(Q1,Q2) − B1(Q̃1, Q̃2),Q1 − Q̃1〉
+ 〈B2(Q1,Q2) − B2(Q̃1, Q̃2) + D2(Q2, ρ3) − D 2(Q̃2, ρ̃3),Q2 − Q̃2〉
+ 〈D3(ω,Q2, ρ3) − D3(ω, Q̃2, ρ̃3), ρ3 − ρ̃3〉

= 〈A(Q1) − A(Q̃1),Q1 − Q̃1〉
+ 〈B(Q1,Q2) − B(Q̃1, Q̃2), (Q1,Q2) − (Q̃1, Q̃2)〉
+ D(ω,Q2, ρ3) − D(ω, Q̃2, ρ̃3), (Q2, ρ3) − (Q̃2, ρ̃3)〉

(a) It follows directly from the above equalities.
(b) Assume that D(ω, ·) is strongly monotone uniformly with respect to ω ∈

� with constant αD. If A is strongly monotone with constant αA and B is
monotone, then we have

〈F(ω, x) − F(ω, x̃), x − x̃〉 ≥ αA‖Q1 − Q̃1‖2 + αD‖(Q2, ρ3) − (Q̃2, ρ̃3)‖2

≥ min{αA,αD} ‖x − x̃‖2,

that is F(ω, ·) is strongly monotone uniformly with respect to ω ∈ � with
constant min{αA,αD}. Similarly, if A is monotone and B is strongly mono-
tone with constant αB, we have

〈F(ω, x) − F(ω, x̃), x − x̃〉 ≥ αB‖(Q1,Q2) − (Q̃1, Q̃2)‖2

+ αD‖(Q2, ρ3) − (Q̃2, ρ̃3)‖2

≥ min{αB,αD} ‖x − x̃‖2,

that is F(ω, ·) is strongly monotone uniformly with respect to ω ∈ � with
constant min{αB,αD}. �
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5. The affine case

In most applications, the cost functions are quadratic and the demand func-
tions are affine, thus yielding to an affine variational inequality. In this case, it
is important to verify under which assumptions the monotonicity properties of F
investigated in Section 4 are fulfilled. In what follows, after specifying the func-
tional form of all the cost and demand functions, we derive the operatorsA,B and
D introduced previously and analyse their matrix structure. We recall that for an
affine operator the strong monotonicity is equivalent to the positive definiteness
of its Jacobian matrix. Moreover, the boundedness of z = Z(ω) allows proving
that the strong monotonicity is uniform with respect to the random variable ω.

Theorem 5.1: Assume that, for any g = 1, . . . ,G, s = 1, . . . , S, k = 1, . . . ,K,
t = 1, . . . ,T, the cost and demand functions are defined as follows:

fg(Q1) = 1
2(Q

1)T
gQ1 + (ϕg)T Q1 with 
g ∈ R
GS×GS, ϕg ∈ R

GS,
cgs(Q1) = 1

2γgs (Q
1
gs)

2 + γ ′
gs Q1

gs with γgs ≥ 0, γ ′
gs ∈ R,

cs(Q1) = 1
2γs

(∑G
g=1Q

1
gs

)2
with γs > 0,

ĉgs(Q1) = 1
2 γ̂gs (Q

1
gs)

2 + γ̂ ′
gs Q1

gs with γ̂gs ≥ 0, γ̂ ′
gs ∈ R,

cskt(Q2) = 1
2γskt (Q

2
skt)

2 + γ ′
skt Q

2
skt with γskt ≥ 0, γ ′

skt ∈ R,
ĉskt(Q2) =

(
�̂Q2 + γ̂

)
skt

with �̂ ∈ R
SKT×SKT , γ̂ ∈ R

SKT ,
d(ω, ρ3) = z� ρ3 + δ + r c with � ∈ R

K×K , δ, c ∈ R
K , r, z ∈ R.

(18)
where, in the last line, r = R(ω) and z = Z(ω) are two random variables, with
0 < z < z < z. Then, the following statements hold:

(a) The maps A, B, D(ω, ·) and F(ω, ·) are affine for any ω ∈ �.
(b) If the scalars γgs are sufficiently large, then A is a strongly monotone.
(c) B is monotone. Moreover, if γ̂gs and γskt are sufficiently large, then B is strongly

monotone.
(d) If T = 1, �̂ is positive definite and� is negative definite, thenD(ω, ·) is strongly

monotone uniformly with respect to ω ∈ �.

Proof:

(a) For any g = 1, . . . ,G the matrix 
g and the vector ϕg can be written as


g =

⎛⎜⎜⎜⎜⎝



g
1



g
2
...



g
G

⎞⎟⎟⎟⎟⎠ , ϕg =

⎛⎜⎜⎜⎜⎝
ϕ
g
1

ϕ
g
2
...

ϕ
g
G

⎞⎟⎟⎟⎟⎠ , where 

g
i ∈ R

S×GS,

ϕ
g
i ∈ R

S, ∀ i = 1, . . . ,G.
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Then, the map A is affine with A(Q1) = Ã Q1 + a, where

Ã =

⎛⎜⎜⎜⎜⎝

1

1


2
2
...


G
G

⎞⎟⎟⎟⎟⎠+

⎛⎜⎝γ11 0
. . .

0 γGS

⎞⎟⎠ , a =

⎛⎜⎜⎜⎜⎝
ϕ1
1

ϕ2
2
...

ϕG
G

⎞⎟⎟⎟⎟⎠+

⎛⎜⎝γ ′
11
...

γ ′
GS

⎞⎟⎠− ρ1.

The map B is affine with

B(Q1,Q2) =
(
B̃1 0
0 B̃2

)(
Q1

Q2

)
+
(
b1

b2

)

where

B̃1 =

⎛⎜⎝� . . . �
... . . . ...
� . . . �

⎞⎟⎠+

⎛⎜⎝γ̂11 0
. . .

0 γ̂GS

⎞⎟⎠ , with

� =

⎛⎜⎝γ1 0
. . .

0 γS

⎞⎟⎠ ,

B̃2 =

⎛⎜⎝γ111 0
. . .

0 γSKT

⎞⎟⎠ , b1 =

⎛⎜⎝γ̂ ′
11
...

γ̂ ′
GS

⎞⎟⎠+ ρ1, b2 =

⎛⎜⎝γ ′
111
...

γ ′
SKT

⎞⎟⎠− ρ2.

Finally, for any ω ∈ �, the map D(ω, ·) is affine with

D(ω,Q2, ρ3) = D̃

(
Q2

ρ3

)
+
(

γ̂ + ρ2

−δ − R(ω) c

)
,

where D̃ =
(

�̂ D23
D32 −Z(ω) �

)
,

where D23 and D32 are suitable matrices with 0, 1 or −1 entries.
Therefore, it follows from (17) that also the map F(ω, ·) is affine for any ω.

(b) If the positive scalars γgs are given sufficiently large, then the matrix (Ã +
ÃT)/2 is diagonal dominant and positive definite, thus the mapA is strongly
monotone.

(c) It is easy to check that the matrices B̃1 and B̃2 are positive semidefinite, thus
the map B is monotone. Furthermore, if the scalars γ̂gs and γskt are given
sufficiently large, then B̃1 and B̃2 are diagonal dominant and positive definite,
thus B is strongly monotone.
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(d) If T = 1, then the matrices D23 and D32 have a special structure, that is

D23 =

⎛⎜⎝−IK×K
...

−IK×K

⎞⎟⎠ = −DT
32,

where IK×K is the identity matrix of order K. Therefore the matrix

D̃ + D̃T

2
=
(

(�̂ + �̂T)/2 0
0 −Z(ω)(� + �T)/2

)
.

Since �̂ is positive definite, � is negative definite and Z(ω) > z > 0, there
exists α > 0 such that the minimum eigenvalue of (D̃ + D̃T)/2 is grater or
equal to α for any ω ∈ �. Therefore, the map D(ω, ·) is strongly monotone
with constant α uniformly with respect to ω ∈ �. �

6. Numerical experiments

We now report some numerical results for the stochastic network equilibrium
model by exploiting the approximation procedure described in Section 3. The
approximation procedure has been implemented inMATLAB R2018a and tested
on an Intel Core i7 system at 2.5GHz with 16GB of RAM running under macOS
10.13. At each iteration n, a finite-dimensional variational inequality as (16)
has to be solved for any interval Inij . Since any of these problems has an affine
and strongly monotone map, it has been reformulated as an equivalent convex
quadratic optimization problem (see [24]) and solved by means of the built-in
function quadprog from the optimization toolbox.

In the following, Section 6.1 considers two instances of the problem with
three power generators, two power suppliers, three demand markets and a sin-
gle transmission service provider for each supplier. The convergence of the mean
values and the standard deviations of the approximated solutions, according to
Theorem 3.1, are shown. Section 6.2 shows the impact of different probability
densities of the random variables R and Z on the mean values and the standard
deviations of the approximated solutions. Finally, Section 6.3 shows the scalability
of the numerical approximation procedure for real-world sized problems.

6.1. Convergence ofmean values and standard deviations of the
approximated solutions

We consider two examples with three power generators, two power suppliers,
three demand markets and a single transmission service provider for each sup-
plier, that is G = 3, S = 2, K = 3 and T = 1. The cost and demand functions,
inspired by [4], are defined as in (18) so that the map F can be written in the
form (10) and F(ω, ·) is affine for any ω ∈ �. Moreover, it is easy to check that
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the map F(ω, ·) is strongly monotone uniformly with respect to ω, hence the
convergence of the approximation procedure is guaranteed by Theorem 3.1.

Example 6.1: The cost and demand functions are defined as follows:

f1 = 5(Q1
11 + Q1

12)
2 + (Q1

11 + Q1
12)(Q

1
21 + Q1

22) + 2(Q1
11 + Q1

12)

f2 = 2.5(Q1
21 + Q1

22)
2 + (Q1

11 + Q1
12)(Q

1
21 + Q1

22) + 2(Q1
21 + Q1

22)

f3 = 0.5(Q1
31 + Q1

32)
2 + 0.5(Q1

11 + Q1
12)(Q

1
31 + Q1

32) + 2(Q1
31 + Q1

32)

c11 = 0.5(Q1
11)

2 + 3.5Q1
11

c12 = 0.5(Q1
12)

2 + 3.5Q1
12

c21 = 0.5(Q1
21)

2 + 3.5Q1
21

c22 = 0.5(Q1
22)

2 + 3.5Q1
22

c31 = 0.5(Q1
31)

2 + 2Q1
31

c32 = 0.5(Q1
32)

2 + 2Q1
32

c1 = 0.5(Q1
11 + Q1

21 + Q1
31)

2

c2 = 0.5(Q1
12 + Q1

22 + Q1
32)

2

ĉgs = 0, ∀ g = 1, 2, 3, ∀ s = 1, 2

csk1 = 0, ∀ s = 1, 2, ∀ k = 1, 2, 3

ĉsk1 = Q2
sk1 + 5, ∀ s = 1, 2, ∀ k = 1, 2, 3

d1 = −2zρ3
1 + 1500 + r

d2 = −2zρ3
2 + 1100 + r

d3 = −2zρ3
3 + 1200 + r

where z = Z(ω) and r = R(ω) are two random variables. We assume that z is
uniformly distributed in the interval [0.5, 1.5] and r is uniformly distributed in
[−100, 100]. At each iteration, each of the two intervals has been partitioned into
Nd subintervals. Tables 1 and 2 show the convergence of the mean values and the
standard deviations of the approximate solution obtained for different values of
Nd, respectively.

Example 6.2: The data of Example 6.2 are the same of Example 6.1 except the
demand functions which are defined as

d1 = −2zρ3
1 − 1.5zρ3

2 + 1500 + r

d2 = −1.5zρ3
1 − 2zρ3

2 + 1100 + r

d3 = −1.5zρ3
1 − 2zρ3

3 + 1200 + r
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Table 1. Mean values of the approximated solution of Example 6.1.

Nd

Variables 16 32 64 128 256 512 1024

Q111 15.79 15.56 15.45 15.39 15.37 15.35 15.35

Q112 15.79 15.56 15.45 15.39 15.37 15.35 15.35

Q121 33.34 32.86 32.62 32.50 32.44 32.41 32.40

Q122 33.34 32.86 32.62 32.50 32.44 32.41 32.40

Q131 128.02 126.16 125.25 124.79 124.57 124.45 124.40

Q132 128.02 126.16 125.25 124.79 124.57 124.45 124.40

Q211 119.63 118.28 117.61 117.28 117.11 117.03 116.99

Q212 15.78 15.28 15.03 14.91 14.85 14.82 14.80

Q213 41.74 41.03 40.67 40.50 40.41 40.37 40.35

Q221 119.63 118.28 117.61 117.28 117.11 117.03 116.99

Q222 15.78 15.28 15.03 14.91 14.85 14.82 14.80

Q223 41.74 41.03 40.67 40.50 40.41 40.37 40.35

ρ3
1 705.65 695.91 691.12 688.74 687.56 686.96 686.67

ρ3
2 601.80 592.91 588.53 586.37 585.29 584.75 584.48

ρ3
3 627.77 618.66 614.18 611.96 610.85 610.30 610.03

Table 2. Standard deviations of the approximated solution of Example 6.1.

Nd

Variables 16 32 64 128 256 512 1024

Q111 4.87 4.73 4.66 4.62 4.61 4.60 4.59

Q112 4.87 4.73 4.66 4.62 4.61 4.60 4.59

Q121 10.28 9.99 9.84 9.76 9.72 9.71 9.70

Q122 10.28 9.99 9.84 9.76 9.72 9.71 9.70

Q131 39.32 38.20 37.62 37.34 37.19 37.12 37.08

Q132 39.32 38.20 37.62 37.34 37.19 37.12 37.08

Q211 27.13 26.48 26.15 25.98 25.90 25.86 25.84

Q212 11.86 11.44 11.22 11.12 11.06 11.03 11.02

Q213 15.62 15.14 14.89 14.77 14.71 14.68 14.66

Q221 27.13 26.48 26.15 25.98 25.90 25.86 25.84

Q222 11.86 11.44 11.22 11.12 11.06 11.03 11.02

Q223 15.62 15.14 14.89 14.77 14.71 14.68 14.66

ρ3
1 204.37 198.66 195.75 194.29 193.55 193.19 193.00

ρ3
2 189.09 183.60 180.81 179.41 178.70 178.35 178.17

ρ3
3 192.90 187.36 184.54 183.12 182.41 182.05 181.88

where z is uniformly distributed in [0.5, 1.5] and r is uniformly distributed
in [−100, 100]. Tables 3 and 4 show the convergence of the mean values and
the standard deviations of the approximate solution obtained for different val-
ues of Nd, respectively. Moreover, we remark that the mean values of variables
Q2
12,Q

2
13,Q

2
22,Q

2
23 are close to zero since the equilibrium prices ρ3

2 and ρ3
3 of

the demand markets 2 and 3 are very lower than the price ρ3
1 associated with

market 1.
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Table 3. Mean values of the approximated solution of Example 6.2.

Nd

Variables 16 32 64 128 256 512 1024

Q111 11.03 10.91 10.85 10.82 10.81 10.80 10.79

Q112 11.03 10.91 10.85 10.82 10.81 10.80 10.79

Q121 23.28 23.03 22.90 22.84 22.81 22.80 22.79

Q122 23.28 23.03 22.90 22.84 22.81 22.80 22.79

Q131 89.55 88.58 88.10 87.86 87.75 87.69 87.66

Q132 89.55 88.58 88.10 87.86 87.75 87.69 87.66

Q211 123.18 122.01 121.43 121.14 121.00 120.92 120.89

Q212 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q213 0.68 0.50 0.42 0.39 0.37 0.36 0.35

Q221 123.18 122.01 121.43 121.14 121.00 120.92 120.89

Q222 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q223 0.68 0.50 0.42 0.39 0.37 0.36 0.35

ρ3
1 535.73 530.17 527.44 526.08 525.41 525.07 524.90

ρ3
2 222.43 216.48 213.56 212.12 211.40 211.04 210.86

ρ3
3 278.15 271.48 268.20 266.57 265.76 265.35 265.15

Table 4. Standard deviations of the approximated solution of Example 6.2.

Nd

Variables 16 32 64 128 256 512 1024

Q111 2.34 2.28 2.25 2.23 2.23 2.22 2.22

Q112 2.34 2.28 2.25 2.23 2.23 2.22 2.22

Q121 4.95 4.82 4.75 4.72 4.70 4.69 4.69

Q122 4.95 4.82 4.75 4.72 4.70 4.69 4.69

Q131 18.92 18.42 18.17 18.04 17.98 17.95 17.93

Q132 18.92 18.42 18.17 18.04 17.98 17.95 17.93

Q211 24.81 24.45 24.26 24.16 24.11 24.09 24.08

Q212 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q213 2.71 2.26 2.02 1.90 1.84 1.81 1.79

Q221 24.81 24.45 24.26 24.16 24.11 24.09 24.08

Q222 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q223 2.71 2.26 2.02 1.90 1.84 1.81 1.79

ρ3
1 110.06 107.45 106.13 105.46 105.13 104.96 104.88

ρ3
2 130.43 125.53 123.05 121.80 121.17 120.86 120.70

ρ3
3 146.08 141.27 138.80 137.56 136.93 136.61 136.46

6.2. The impact of the probability densities of the randomparameters on the
solution

Wenow showhowmuch the (approximated) solution of the stochastic variational
inequality is sensitive to the choice of the probability densities of the randomvari-
ables z and r. We solved Example 1 described in Section 6.1 considering three
different probability densities: uniform, truncated normal and exponential. In
particular, we assumed that z varies in the interval [0.5, 1.5] with either uniform
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Table 5. The impact of different probability densities on the
mean values of the approximated solution of Example 6.1.

Variables U-N U-E N-N N-E

Q111 16.58 15.47 15.54 14.50

Q1
12 16.58 15.47 15.54 14.50

Q1
21 35.00 32.65 32.80 30.61

Q1
22 35.00 32.65 32.80 30.61

Q1
31 134.34 125.39 125.96 117.55

Q132 134.34 125.39 125.96 117.55

Q211 121.58 117.45 116.68 112.80

Q212 19.39 15.26 16.26 12.38

Q2
13 44.94 40.80 41.36 37.48

Q2
21 121.58 117.45 116.68 112.80

Q222 19.39 15.26 16.26 12.38

Q2
23 44.94 40.80 41.36 37.48

ρ3
1 736.11 691.59 693.39 651.61

ρ3
2 633.92 589.39 592.98 551.19

ρ3
3 659.47 614.94 618.08 576.30

or truncated normal (with mean value 1 and standard deviation 0.125) distri-
bution, while r varies in the interval [0, 200] with either truncated normal (with
mean value 100 and standard deviation 25) or exponential (with parameter equal
to 0.1) distribution. The four different combinations of probability densities of z
and r are denoted by U-N, U-E, N-N and N-E; for instance, U-N means that z
has a uniform distribution, while r has a truncated normal distribution and so
on. Both intervals [0.5, 1.5] and [0, 200] have been partitioned into 1024 subin-
tervals in the approximation procedure. Tables 5 and 6 report the mean values
and the standard deviations of the approximated solution of Example 1 obtained
by using the four different combinations of probability densities.

As Table 5 shows, the solutions can vary considerably from the first to the
fourth column. For instance, Q2

22 changes of about 36%, while ρ3
2 of about 23%.

We assume that these distributions are derived from collections of market’s data
in a given time window and can thus be used to analyse the average behaviour of
consumers and design future market strategies. We recall that the flows Q1 and
Q2 in our model represent the financial transactions flows and the analysis of the
mean values over a given time interval can provide information about how the
various companies in competition react to the demand perturbations.

As to the analysis of standard deviations, which is missing, to the best of our
knowledge, in most random models of electricity markets, we notice that, for
a given pair of probability distributions, the ratio between the standard devi-
ation and the corresponding mean value is approximately constant for all the
variables. On the other hand, it can change considerably according to different
distributions. Indeed, this value is about 0.30 for columns 2–3 in Tables 5 and 6,
while it is about 0.10 for columns 4–5. Higher values of standard deviations are
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Table 6. The impact of different probability densities on the stan-
dard deviations of the approximated solution of Example 6.1.

Variables U-N U-E N-N N-E

Q111 4.90 4.57 1.91 1.77

Q112 4.90 4.57 1.91 1.77

Q121 10.35 9.65 4.03 3.73

Q1
22 10.35 9.65 4.03 3.73

Q1
31 39.57 36.90 15.41 14.26

Q1
32 39.57 36.90 15.41 14.26

Q2
11 27.05 25.82 10.78 10.28

Q2
12 12.06 10.81 4.53 3.96

Q2
13 15.78 14.54 6.08 5.53

Q2
21 27.05 25.82 10.78 10.28

Q2
22 12.06 10.81 4.53 3.96

Q2
23 15.78 14.54 6.08 5.53

ρ3
1 205.45 192.20 80.26 74.57

ρ3
2 190.46 177.18 74.00 68.25

ρ3
3 194.20 180.93 75.56 69.83

associated to periods of strong volatility of markets, which are becoming more
frequent, because of the ever increasing connections among the economies of
different countries.

6.3. Scalability of the proposed approach

In this section, we show how the proposed numerical method scales for real-
world sized problems. We consider a set of random generated instances, where
the number G of power generators is between 3 and 8, the number S of power
suppliers is between 2 and 25 (with a single transmission service provider for each
supplier, i.e. T = 1) and the number K of demand markets is between 3 and 12
(see columns 1–3 of Table 7). The cost and demand functions have been chosen
as in (18), where the elements of matrices 
g are uniformly distributed in the
interval (0, 1/GS), the elements of vectors ϕg are uniformly distributed in (1, 2),
γgs and γ ′

gs are uniformly distributed in (2, 3), γs = 1 for any s, γ̂gs = γ̂ ′
gs = γskt =

γ ′
skt = 0 for any g, s, k, t, the matrix �̂ is equal to the identity matrix, γ̂skt = 5 for

any s, k, t, the matrix � is defined as

� = −

⎛⎜⎜⎜⎜⎜⎜⎝
a1 b1 0

0 . . . . . .
. . . . . . . . .

0 aK−1 bK−1
0 bK aK

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where ak are uniformly distributed in (1, 2) and bk are uniformly distributed in
(0, 1) for any k = 1, . . . ,K; the elements of vector δ are uniformly distributed
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Table 7. Scalability of the discretization procedure (CPU times in seconds).

Nd

G S K # variables 64 128 256

3 2 3 15 5.49 20.59 81.94
4 5 4 44 10.06 40.21 160.68
5 10 6 116 38.04 152.20 609.29
6 15 8 218 115.49 462.00 1833.66
7 20 10 350 346.00 1391.17 5586.22
8 25 12 512 813.57 3232.08 12896.10

in (1000, 1300), while c = (1, . . . , 1). In this framework, it is possible to verify
that the assumptions of Theorems 4.1 and 5.1 are satisfied, hence the map F(ω, ·)
is strongly monotone uniformly with respect to ω and the convergence of the
approximation procedure is guaranteed by Theorem 3.1. Finally, random vari-
ables z and r are uniformly distributed in the intervals [0.5, 1.5] and [−100, 100],
respectively.

Table 7 shows the CPU times needed for solving the six random generated
instances. In particular, columns 1–3 report the number of power generators,
power suppliers and demand markets of each instance; column 4 reports the
number of variables of the stochastic variational inequality to be solved; columns
5–7 report the CPU times (in seconds) of the numerical approximation proce-
dure, where each interval of the random variables is divided in 64, 128 or 256
subintervals.

The numerical results show that the proposed numerical method solves real-
world sized problems with a good accuracy within satisfactory times. Moreover,
we notice that the approximation procedure has been implemented using a
sequential algorithm, that is the independent deterministic variational inequali-
ties are solved one at a time. It is clear that parallel computing techniques could
be used profitably to improve the running times.

7. Conclusions

In this paper, we propose a stochastic variational inequality model for the whole
chain of electricity markets, from generators to consumers. In particular, our
approach takes into account random perturbations of the consumers’ demand.
Monotonicity properties of the operator of the variational inequality and the
case of quadratic cost and linear demand functions are investigated in detail.
Numerical experiments show the impact of different probability densities of the
randomvariables on the approximated solutions and the scalability of the numer-
ical approximation procedure for real-world sized problems. Our approximation
procedure for the stochastic variational inequality yields to a large number of
deterministic and independent variational inequalities, hence through paral-
lelization one could increase the number of independent random variables in the
model.Moreover, themodel could be further refined by including the description
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of the physical network, or the investment strategies (see [9]). These last points
are beyond the scope of this paper and are left to future research.
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