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In this paper we compare the concepts of pseudoradial spaces and the recently 
defined strongly pseudoradial spaces in the realm of compact spaces. We show that 
MA+ c = ω2 implies that there is a compact pseudoradial space that is not strongly 
pseudoradial. We essentially construct a compact, sequentially compact space X
and a continuous function f : X → ω1 + 1 in such a way that there is no copy of 
ω1 + 1 in X that maps cofinally under f . We also give some conditions that imply 
the existence of copies of ω1 in spaces. In particular, PFA implies that compact 
almost radial spaces of radial character ω1 contain many copies of ω1.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

All spaces are assumed to be Hausdorff.
Recall that a topological space X is pseudoradial if for every non-closed subset A ⊂ X there is a point 

x ∈ A \A and a transfinite sequence 〈xα〉α<κ with range in A and converging to x.
The systematic investigation on the topological properties of pseudoradial spaces was initiated by 

Arhangel’skĭı more than 40 years ago. Since then, several subclasses of pseudoradial spaces have been 
considered by many authors.

Recently the further notion of strongly pseudoradial spaces appeared in the literature [2]. All ordinals in 
this paper will have the order topology when considered as topological spaces.
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1.1 Definition. A topological space X is called strongly pseudoradial if for any non-closed subset A ⊂ X

there is a limit ordinal γ and a continuous map f : γ + 1 → X such that f [γ] ⊂ A and f(γ) /∈ A.

In [2] the authors pointed out that, without any loss of generality, in the above definition the ordinal γ
can be assumed to be a regular cardinal and the function f injective.

Roughly speaking, the difference between pseudoradial and strongly pseudoradial spaces consists in re-
placing transfinite converging sequences with compact ordinals.

As ω + 1 is a compact ordinal, we immediately see that every sequential space is strongly pseudoradial, 
but this is the only case when we can easily determine if a space is of that kind. The passage from ω+ 1 to 
the successor of an uncountable cardinal appears much more difficult. However, a remarkable consequence 
of the proper forcing axiom (PFA) describes a possibility to do it for γ = ω1 (see also [14, Theorem 5.14]).

1.2 Theorem ([1]). PFA implies that in every countably compact regular space of character at most ω1, the 
closure of a subset A can be obtained by first adding all limits of convergent sequences and then adding to 
the resulting set Â all points x for which there is a copy W of ω1 in Â such that W ∪ {x} is homeomorphic 
to ω1 + 1.

1.3 Corollary. PFA implies that every countably compact regular space of character at most ω1 is strongly 
pseudoradial.

On the other hand, the one-point compactification of Ostaszewski’s space shows that a compact pseudo-
radial space may fail to be strongly pseudoradial. This follows from hereditary separability of Ostaszewski’s
space.

A natural question is then whether it is possible to obtain the conclusion of Corollary 1.3 by weakening 
the topological hypothesis on the character. First, by means of a counterexample under Martin’s axiom, we 
were able to show that we cannot remove that hypothesis altogether.

1.4 Theorem. b = c = ω2 implies there is a compact pseudoradial space that is not strongly pseudoradial.

The radial character of a pseudoradial space X is the smallest cardinal κ such that the definition of 
pseudoradiality for X works by taking only transfinite sequences of length not exceeding κ. Thus, the 
following question is natural after considering Corollary 1.3.

1.5 Question. Assume PFA. Is every compact Hausdorff pseudoradial space of radial character at most ω1

strongly pseudoradial?

We were unable to answer Question 1.5. However, we can achieve a partial positive result for a special 
class of pseudoradial spaces, as we now explain.

A sequence {xα : α < κ} converging to a point x is called thin if for any β < κ we have that 
x /∈ {xα : α < β}. A space is called almost radial if in the usual definition of pseudoradiality we replace 
“sequence” with “thin sequence”.

Our counterexample X from Theorem 1.4 is a compact, sequentially compact space X with a point ρ ∈ X

of character ω1 such that there are no countable sequences or copies of ω1 converging to ρ (see Theorem 5.2).
In Section 4 we include several results on existence of copies of ω1. In particular, we highlight the following 

result that contrasts with our counterexample from Theorem 1.4.

1.6 Theorem. Assume PFA. Let X be a compact almost radial space of radial character at most ω1. Then 
every point of X is either the limit of a countable sequence or the limit of a copy of ω1.
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The search of copies of ω1 goes back to [13, Problem 1.3] where Nyikos asks whether there exists a first 
countable, countably compact, non-compact space which does not contain a copy of ω1. Nyikos himself 
proved that a consequence of ♦, which is in fact compatible with MA + c > ω1, gives a positive answer 
to his question (see [8, 19.1]). In [8] Fremlin, assuming PFA, gives sufficient conditions for the existence 
of copies of ω1 for spaces that can be mapped onto ω1 and gives a series of applications. This question 
was also considered under PFA in [1], where other conditions for the existence of copies of ω1 are given. 
Later, Eisworth and Nyikos in [7] give a model of CH in which every first countable, countably compact, 
non-compact space contains a copy of ω1. Also, in [6] Eisworth shows that any perfect pre-image of ω1 with 
countable tightness contains a closed copy of ω1.

2. T -algebras

In order to construct the space from Theorem 1.4, we will use Koszmider’s notion of T -algebra from [12]. 
T -algebras are special kinds of the minimally generated Boolean algebras first studied by Koppelberg [11]. 
All our Boolean algebras will be subalgebras of P(ω)/fin with the order relation ⊂∗ of almost inclusion. 
Section 3 of [4] contains a thorough analysis of the following discussion.

Given a Boolean algebra A ⊂ P(ω) and x ⊂ ω, the Boolean algebra generated by A ∪ {x} is

A(x) = {(a0 ∩ x) ∪ (a1 \ x) : a0, a1 ∈ A}.

Let A ⊂ P(ω) be a Boolean algebra and u an ultrafilter of A. An element x ⊂ ω is called minimal for 
〈A, u〉 if u is the only ultrafilter in A that does not generate an ultrafilter in the Boolean algebra A(x). 
Notice that in this case, ω \ x is also minimal for 〈A, u〉.

Let λ ≤ c and A = {aα+1 : α < λ} ⊂ [ω]ω. For each α ≤ λ, define Bα to be the Boolean algebra generated 
by {aβ+1 : β < α}. We will say that A is a coherent minimal sequence if for every α < λ the filter uα in Bα

generated by {aβ+1 : β < α} is an ultrafilter and aα+1 is minimal for 〈Bα, uα〉.
Let us describe the Stone space of Bλ. Consider α < λ. Let xα the filter in Bλ generated by uα∪{ω\aα+1}. 

Since aα+1 is minimal for 〈Bα, uα〉, xα ∩ Bα+1 is an ultrafilter (thus, proper) in Bα+1. By recursion it is 
possible to show that, xα ∩ Bβ is in fact an ultrafilter in Bβ for all α < β ≤ λ. It is not hard to conclude 
that the Stone space of Bλ is equal to Xλ = {uλ} ∪ {xα : α < λ}.

Let α < λ. Then the clopen set defined by ω \ aα+1 in the Stone space misses {xβ : α < β < λ} ∪ {uλ}. 
Thus, the segment {xβ : β ≤ α} is open. This easily implies that the Stone space of Bλ is scattered.

Next, we define T -algebras. First, given t ∈ 2<c such that dom(t) = α + 1 for some α, we define 
t� = (t �α)�(1 − t(α)). Each T -algebra will be defined by using a tree. A subtree T of 2<c is called acceptable
if the following two conditions hold:

(i) the domain of each member of T is a successor ordinal,
(ii) if t ∈ T and α < dom(t), then t �α+1∈ T , and
(iii) for all t ∈ 2<c, t ∈ T if and only if t� ∈ T .

For each p ∈ 2≤c, o(p) will denote its order type. Given an acceptable tree T ⊂ 2<c, a T -algebra is a 
Boolean algebra generated by a sequence {at : t ∈ T} ⊂ [ω]ω such that the following properties hold

(a) given t ∈ T , {at�α+1 : α + 1 < o(t)} is a coherent minimal sequence, and
(b) given t ∈ T , at = ω \ at� .

It turns out that the Stone space of a T -algebra is easy to describe. In fact, the set of ultrafilters of a 
T -algebra A = {at : t ∈ T} is in one-to-one correspondence with the set bT of branches of T . Given p ∈ bT , 
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{ap�α+1 : α < dom(p)} generates the ultrafilter that corresponds to p. So without loss of generality, we will 
identify the Stone space of A with bT .

It also turns out that some of the topological properties of bT can be checked by looking at the topology 
generated by the branches. For every branch p ∈ bT , by property (a) in the definition of T -algebra, there is a 
topological space Xp = {xp�α : α < o(p)} ∪{p} defined by the coherent minimal sequence {ap�α+1 : α < o(p)}
as described above.

Given p, q ∈ bT with p �= q, we define p ∧q to be the largest common predecesor of p and q. Thus, o(p ∧q)
is the ordinal α such that p �α= q�α but p(α) �= q(α).

Fix p ∈ bT . Then there is a continuous function πp : bT → Xp that projects the Stone space of the 
T -algebra onto the branch space. For every q ∈ bT \ {p}, πp(q) = xp�o(p∧q) and πp(p) = p. Equivalently, for 
every α < o(p)

π←
p (xp�α) = {q ∈ bT : o(p ∧ q) = α}.

The relation we are interested in is summarized with the following results.

2.1 Lemma ([5, Proposition 3.4]). Let p ∈ bT , S ⊂ bT \ {p}. Then p ∈ clbT (S) if and only if 
p ∈ clXp

({πp(q) : q ∈ S}).

2.2 Lemma ([5, Proposition 3.4]). Let p ∈ bT and {pn : n < ω} ⊂ bT \ {p}. Then {pn : n < ω} converges to 
p in bT if and only if {πp(pn) : n < ω} converges to p in Xp.

Since we are interested in copies of ω1, we would like to find a necessary condition for the existence of 
copies of ω1 that can be checked in branches and avoided through careful construction of the T -algebra.

2.3 Lemma. Let f : ω1 + 1 → bT be an embedding. Then there is a closed, unbounded set S ⊂ ω1 such that 
(πf(ω1) ◦ f) �S is one-to-one and increasing. Thus, Xf(ω1) contains a copy of ω1 + 1.

Proof. Let p = f(ω1). First, notice that the fibers of points of Xp \ {p} under πp ◦ f are all countable. 
Otherwise, there is an uncountable R ⊂ ω1 and β < o(p) such that (πp ◦ f)[R] = {xp�β}. This would imply 
that ap�β+1 and ω \ ap�β+1 define clopen sets that separate p = (πp ◦ f)(ω1) from (πp ◦ f)[R] in Xp, which 
contradicts the continuity of πp ◦ f .

Thus, there is an increasing enumeration {ξ(α) : α < ω1} of the set {β < o(p) : ∃α < ω1(πp(f(α)) =
xp�β)}. For each α < ω1, let Rα = {β < ω1 : πp(f(β)) = xp�ξ(α)}. We shall recursively define an increasing 
injective function σ : ω1 → ω1 and an element sα ∈ Rσ(α) for each α < ω1.

For every non-limit ordinal α < ω1, let σ(α) = min(ω1 \ σ[α]) and let sα be the first element of Rσ(α). 
Now assume that α < ω1 is a limit ordinal. Define sα = sup{sβ : β < α} < ω1, then there exists γ < ω1
such that sα ∈ Rγ . We then define σ(α) = γ.

Assume that for some δ < α we have that γ ≤ σ(δ). By continuity, {(πp ◦ f)(sβ) : β < α} converges to 
(πp ◦ f)(sα). However, initial segments are open in Xp so {xp�β : β ≤ ξ(σ(δ))} is an open set that contains 
(πp ◦ f)(sα) and misses {(πp ◦ f)(sβ) : δ < β < α}. This is a contradiction so we obtain that σ(α) > σ(δ)
for all δ < α.

This completes the construction and it easily follows that the set S = {sα : α < ω1} has the properties 
required. �

In our arguments below, we will construct our acceptable tree T by recursion. So we will have the typical 
situation where we have constructed a tree T ′ which will eventually be a subtree of T . Clearly, at this point 
of the construction, it is possible to consider the space of branches bT ′ of T ′. We will use the notation we 
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defined for the branch space on bT ′. Also, notice that if q ∈ bT ′ and p ∈ bT is such that q ⊂ p, then there 
is a projection map πp

q : Xp → Xq where πp
q (x) = x if x ⊂ q and πp

q (x) = q if q ⊂ x ⊂ p.

3. Proof of Theorem 1.4

We will assume b = c = ω2 in this section. In order to construct the space required in Theorem 1.4, we 
will construct a sequence {tα : α < c} ⊂ 2<c with the property that for all β < c there is α < β and i ∈ 2
such that tβ = (tα)�i. Then our acceptable tree will be

T = {(tα)�i : α < c, i ∈ 2}.

We will also recursively define a T -algebra {at : t ∈ T} (with the notation of Section 2) along with the 
definition of the tree. Then the branch space bT will be the space we are looking for. Clearly, bT is compact.

For α < ω1, define tα ∈ 2α to be such that tα(β) = 0 for all β < α and let {atα+1 : α < ω1} be 
any strictly ⊂∗-decreasing sequence of infinite subsets of ω. We remark that by the discussion above, both 
(tα)�0 = tα+1 and (tα)�1 = t∗α+1 will be in T , and both atα+1 and at∗α+1 = ω \ atα+1 are defined, for every 
α < ω1. Let ρ ∈ 2ω1 be such that ρ(β) = 0 for all β < ω1.

Clearly, the topology defined on Xρ = {xtα : α < ω1} ∪ {ρ} is the order topology. For sake of notational 
simplicity, for each α < ω1, the filter xtα will be denoted by yα. Once we have the tree T completely defined, 
if p ∈ bT is such that ρ ⊂ p, then the function πp

ρ ◦ πp maps bT onto Xρ. We make a record of this fact as 
follows.

3.1 Claim. Xρ is naturally homeomorphic to ω1 + 1.

In fact, in our construction, ρ will never be extended so ρ ∈ bT (see Claim 3.5 below). However, even 
before we know that, we can already prove that bT has uncountable tightness.

3.2 Claim. There exists p ∈ bT such that ρ ⊂ p and p has uncountable tightness in bT .

Proof. For each α < ω1, choose any qα ∈ bT such that tα+1 ⊂ qα and qα(α + 1) = 1 �= tα+2(α + 1). Define 
A = {qα : α < ω1} and let p ∈ bT be any complete accumulation point of A. We claim that there is no 
countable subset of A with p in its closure.

First, notice that p extends ρ. Otherwise, there is some β < ω1 such that tα+1 ⊂ p for α < β and 
p(β) �= tβ+1(β). Then ω \ atβ+1 is in the ultrafilter defined by p but not in the ultrafilter defined by qα for 
all β ≤ α < ω1. Thus, we obtain a contradiction.

Now, let N ⊂ ω1 be countable, we will show that {qα : α ∈ N} does not have p in its closure. Let β < ω1
be an upper bound of N . If α ∈ N , by the definition of qα, ω \ atα+1 is in the ultrafilter defined by qα. Since 
atβ+1 ⊂∗ atα+1 , ω \ atβ+1 is in the ultrafilter defined by qα. Thus, atβ+1 gives a neighborhood of q that does 
not contain qα, for all α ∈ N . Thus, the conclusion follows. �

So we are left to define {tα : ω1 ≤ α < c} and we will do this by recursion. Given ω1 ≤ α < c, let Tα be 
the nodes of the tree that have been defined before step α, that is, the set {(tβ)�i : β < α, i ∈ 2}. On step 
α ∈ c \ ω1, we will choose tα among bTα, the branches of Tα (notice that all branches are of length < c), 
and define a(tα)�0 and a(tα)�1. Consider a surjective function e = (e0, e1) : c \ ω1 → (c \ ω1) × c such that 
for all α < c, e0(α) < α.

It is known that under c ≤ ω2, every sequentially compact, compact space is pseudoradial. This was 
proved by Šapirovskĭı under CH [15] and by Juhász and Szentmiklóssy under c = ω2 [10]. Thus, in order to 
make the space pseudoradial, it is enough to make it sequentially compact.
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Let ω1 ≤ α < c. Let {f〈α,β〉 : β < c} ⊂ ωTα be an enumeration of all increasing ω-sequences of elements 
of Tα. In other words, f〈α,β〉 : ω → Tα is such that f〈α,β〉(n) ⊂ f〈α,β〉(n + 1) for all n < ω. We will require 
the following inductive assumption.

(a)α For every ω1 ≤ β < α, there are Aβ ∈ [ω]ω and q ∈ bTα such that fe(β)[Aβ ] ⊂ q and {xfe(β)(n) : n ∈
Aβ} converges to q in Xq.

3.3 Claim. (a)α for all ω ≤ α < ω1 implies that bT is sequentially compact.

Proof. By Lemma 2.2, bT is sequentially compact if and only if for every increasing ω-sequence f of elements 
of T , there is a branch p extending f such that some subsequence of f converges to p in Xp. Indeed, f = fe(β)
for some β < ω1, and this implies that {xfe(β)(n) : n ∈ Aβ} converges to some p ∈ bT . To see this, notice 
that (a)α is preserved under limits in the following sense: if λ ≤ c is a limit ordinal and {qα : α < λ} ⊂ T

are such that {xfe(β)(n) : n ∈ Aβ} converges to qα in Xqα for all α < λ, then {xfe(β)(n) : n ∈ Aβ} converges 
to q =

⋃
{qα : α < λ} in Xq. �

Next we would like to add some inductive hypothesis so that at the end of the construction, we obtain 
a point with no copies of ω1 converging to it. Our strategy will be to never split the branch ρ ∈ bTω1 so 
that it remains a branch of bT at the end of the construction, and kill all possible copies of ω1 converging 
to it. According to Lemma 2.3, we can test convergence to ρ just by looking at copies of ω1 contained in 
Xρ. Also, all copies of ω1 contain copies of the ordinal

ω·2 + 1 = {ω · n + m : n, n < ω}

which is homeomorphic to the one-point compactification of the free union of countably many convergent 
sequences.

So the strategy will be to consider all copies of ω·2 + 1 contained in Xρ and make sure that they are not 
lifted to copies of ω·2 +1 in bT . Thus, let {s(α) : α < c} be the set of all continuous bijective functions with 
domain ω·2 + 1 and image contained in ω1. We require the following inductive assumption.

(b)α For every ω1 ≤ β < α, there are Cβ ∈ [ω]ω, a function ϕβ ∈ ωω, and t ∈ Tα with ts(ω·2) ⊂ t such 
that at ∈ ys(ω·n) and at� ∈ ys(ω·n+ϕβ(n)) for every n ∈ Cβ .

So assume that we are in step α < c of the construction. We need to choose tα, Aα, Cα, ϕα and define 
the partition ω = a(tα)�0 ∪ a(tα)�1.

First, we explain how to choose Aα. Let q∅ =
⋃

fe(α) and B∅ = ω; then it is easy to see that in Xq∅ , 
{xfe(α)(n) : n ∈ B∅} converges to q∅. If there is q ∈ bTα such that {xfe(α)(n) : n ∈ B∅} converges to q in Xq, 
we define Aα = ω. Otherwise, there exists q′∅ ∈ Tα such that {xfe(α)(n) : n ∈ B∅} converges to q′∅ in Xq′∅

but 
for i ∈ 2, {xfe(α)(n) : n ∈ B∅} does not converge to (q′∅)�i in X(q′∅)�i. Let qi = (q′∅)�i for i ∈ 2. Then by 
the definition of T -algebra, there is a partition B∅ = ω = B0 ∪ B1 such that {xfe(α)(n) : n ∈ Bi} converges 
to qi for i ∈ 2. Continuing in this fashion, by recursion on <ωω, we try to construct a sequence of nodes 
{qs : s ∈ <ωω} ⊂ Tα and a sequence of sets {Bs : s ∈ <ωω} ⊂ [ω]ω such that {xfe(α)(n) : n ∈ Bs} converges 
to qs in Xqs . If there is some s such that there is a branch q ∈ bTα with {xfe(α)(n) : n ∈ Bs} converging 
to q in Xq, we define Aα = Bs. Otherwise, given s ∈ <ωω, we can always choose incompatible qs�0, qs�1
above qs and a partition Bs = Bs�0 ∪Bs�1 as required. Assume that we never stopped in the construction 
(otherwise, we are done). For each ϕ ∈ ωω, let qϕ = ∪{qs : s ⊂ ϕ} and let Bϕ be any pseudointersection of 
{Bs : s ⊂ ϕ}; it easily follows that {xfe(α)(n) : n ∈ Bϕ} converges to qϕ in Xqϕ . The set {Bϕ : ϕ ∈ ωω} is of 
size c and |Tα| < c, so this means that there is ψ ∈ ωω such that qψ ∈ bTα. Define Aα = Bψ and let r = qψ. 
Then {xf (n) : n ∈ Aα} converges to r ∈ bTα in Xr.
e(α)
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The next step is to choose tα ∈ bTα and Cα ∈ [ω]ω. Consider the copy of ω·2 given by {ys(α)(ξ) : ξ ∈ ω·2}
in Xρ. By an argument similar to the one in the previous paragraph, it is possible to find Cα ⊂ ω and some 
tα ∈ bTα such that 

⋃
s(α) ⊂ tα and the sequence {ys(α)(ω·n) : n ∈ Cα} converges to tα in Xα.

Recall that according to (a)α+1, we need to preserve the convergence of each sequence fe(β)�Aβ
for all 

β ≤ α. Since we are choosing to split tα, we only need to worry about those sequences with fe(β)[Aβ ] ⊂ tα
(and in fact only those that converge to tα).

Thus, we have to define ϕα : ω → ω \ {0} in such a way that the sequence {ys(α)(ω·n+ϕα(n)) : n ∈ Bα} is 
almost disjoint with each of fe(β)[Aβ ] for all β ≤ α. Consider the set

S =
{
β ≤ α : sup(fe(β)[Aβ ]) = s(α)(ω·2)

}

Let β ≤ α. If β /∈ S, there is nothing to worry about. Otherwise, there exists a function ψβ : ω → ω such 
that for every n < ω,

{
ys(β)(ω·n+m) : ψβ(n) ≤ m

}
∩
{
fe(β)(n) : n ∈ Aβ

}
= ∅.

Consider also the following result the proof of which, being standard, we shall omit.

3.4 Lemma. Assume that we have a topological space with underlying set ω·2 + 1 that satisfies the following 
properties.

(1) Every point of the form ω · n + m with n < ω and 0 < m < ω is isolated.
(2) For each n < ω, {ω · n + m : m < ω} converges to ω · (n + 1).
(3) {ω · n : n < ω} converges to ω·2.
(4) ω·2 has character strictly less than b.

Then there exists ϕ : ω → ω \ {0} such that {ω · n + ϕ(n) : n < ω} converges to ω·2.

This implies that we can choose ϕα : Cα → ω \ {0} such that {ys(α)(ω·n+ϕα(n)) : n ∈ Cα} converges to tα
in Xtα .

By b = ω2 we can further assume that for every β ∈ S we have that {n ∈ Cα : ϕα(n) ≤ ψβ(n)} is finite. 
Thus, we obtain that {ys(α)(ω·n+ϕα(n)) : n ∈ Cα} is almost disjoint from fe(β)[Aβ ] for all β ≤ α.

So all that remains is to define the partition ω = a(tα)�0 ∪ a(tα)�1 in such a way that (a)α+1 and (b)α+1
hold. For the sake of notational simplicity, let zn = ys(α)(ω·n+ϕα(n)) for all n ∈ Cα. Given a ∈ Btα \ utα , we 
will denote its associated clopen set as

a∗ = {xt : t ⊂ tα, a ∈ xt}.

For each n ∈ Cα, since zn is a point of first countability of Xtα so let {c(n, m) : m < ω} ⊂ Btα define a 
local open base at zn.

Assume β < o(tα). The point xtα�β is not a limit point of {zn : n ∈ Cα} (in Xtα). By normality, there 
are open sets Uβ and Vβ with Uβ ∩Vβ = ∅ such that xtα�β ∈ Uβ and {zn : n ∈ Cα} ⊂∗ Vβ . Then there exists 
a function gβ : Cα → ω such that {n ∈ Cα : c(n, gβ(n))∗ �⊂ Vβ} is finite.

Now, let ω1 ≤ β ≤ α. We know that {zn : n ∈ Cα} is almost disjoint with fe(β)[Aβ ] so we can find a 
function hβ : Cα → ω such that {n ∈ Cα : fe(β)[Aβ ] ∩c(n, gβ(n))∗ �= ∅} is finite. Also, there exists a function 
h : Cα → ω such that for all n < ω, ys(α)(ω·n) /∈ c(n, h(n)).

The set of functions

{gβ : β < o(tα)} ∪ {hβ : ω1 ≤ β ≤ α} ∪ {h}
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is of size < b so there exists g : Cα → ω that bounds them all mod finite. We obtain an open set W =⋃
{c(n, g(n))∗ : n ∈ Cα} of Xtα with the following properties:

(i) {zn : n ∈ Cα} ⊂ W ,
(ii) the only limit point of W in Xtα is tα,
(iii) {ys(α)(ω·n) : n ∈ Cα} ∩W = ∅, and
(iv) for every ω1 ≤ β < ω1 such that fe(β)[Aβ ] ⊂ tα then one of the two following conditions holds:

(a) {xfe(β)(n) : n < ω} ∩W is finite, or
(b) {xfe(β)(n) : n < ω} does not converge to tα in Xtα .

Thus, we define

a(tα)�0 =
⋃

{c(n, g(n)) : n ∈ Cα},

and a(tα)�1 = ω \ a(tα)�0. From properties (i) to (iv) above it is easy to see that both (a)α+1 and (b)α+1

will hold. Thus, we have finished our construction.
Notice that in our construction, the branches that we split in every step have subsequences of Xρ con-

verging to them. Thus, we can infer the following.

3.5 Claim. The branch ρ ∈ bTω1 is never split, so ρ ∈ bTα.

By inductive hypothesis (a)α for all α ∈ c \ ω1 we obtain that bT is sequentially compact (Claim 3.3). 
Since c = ω2 we obtain, as discussed above, that bT is pseudoradial.

Finally, we prove that bT is not strongly pseudoradial. We will prove that this property fails at ρ ∈ bT . If 
bT were strongly pseudoradial, there would be an infinite cardinal κ and an embedding f : κ + 1 → T such 
that f [κ] ⊂ bT \ {ρ} and f(κ) = ρ. By Claims 3.2 and 3.5, and by the fact that ρ has character ω1 in bT , 
we obtain that κ = ω1. By Lemma 2.3, we may assume that πρ ◦ f is injective. Since πρ ◦ f is continuous, 
it is an embedding so (πρ ◦ f)[ω1] is a copy of ω1 contained in Xρ. So in particular, there is a copy of 
ω·2 + 1 contained in Xρ, we may assume that the first one in our enumeration is {ys(γ)(ξ) : ξ ∈ ω·2 + 1}. 
According to Lemma 2.2, there is q ∈ bT such that ys(γ)(ω·2) ⊂ q and {ys(γ)(ξ) : ξ ∈ ω·2} ∪ {q} ⊂ Xq is 
homeomorphic to ω·2 + 1. But then, according to (b)γ+1, it easily follows that the sets {ys(ω·n) : n ∈ Cγ}
and {ys(ω·n+ϕγ(n)) : n ∈ Cγ} are separated by clopen sets of Xq. This is a contradiction so indeed bT is not 
strongly pseudoradial.

4. Forcing copies of ω1

Here we give a generalization of several results ([8], [1] and [6]) concerning the existence of a proper 
forcing that forces a copy of ω1.

Let X be any completely regular countably compact non-compact space with a base B of open sets such 
that X ∈ B and ∅ /∈ B. Given x ∈ X, Bx will denote {B ∈ B : x ∈ B}. For a subset H of X, we consider 
the ω-closure of H

clω(H) =
⋃

{a : a ∈ [H]≤ℵ0}.

Say that H is ω-closed if clω(H) = H.
Suppose that F is a countably complete maximal free filter of ω-closed subsets of X. Choose any regular 

cardinal κ such that X, B, F , ω1 ∈ H(κ).
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4.1 Definition. For any countable set M , we define the trace of the filter F as

Tr(F ,M) =
⋂

{F ∩M : F ∈ M ∩ F}.

We will need the following fact. We refer the reader to [3] for the use of elementary submodels in topology.

4.2 Lemma. For any countable elementary submodel M ≺ H(κ), such that F ∈ M , then for any subset H
of X that is in M , then

(1) if H ∩ Tr(F , M) is not empty, then H ∈ F+,
(2) if H ∈ F+ then H ∩M contains Tr(F , M).

Proof. Assume that H ∈ M and that H ∩ Tr(F , M) �= ∅. Since Tr(F , M) ⊂ (
⋂

F) ∩ M , it follows that 
H ∩F ∩M �= ∅ for all F ∈ F ∩M . By elementarity, it follows that H ∩F �= ∅ for all F ∈ F so H ∈ F+. By 
the maximality of F and elementarity, clω(H) ∈ F ∩M . Again by elementarity, clω(H)∩M is contained in 
H ∩M . This completes the proof. �

We next define a poset PX,B,F,κ.

4.3 Definition. A condition p ∈ PX,B,F,κ is a function with domain Mp such that, for each M, M1 ∈ Mp,

(1) Mp is a finite ∈-chain of countable elementary submodels of H(κ), each containing ω1, X, B, and F ,
(2) p(M) = 〈xp(M), Up(M), Fp(M)〉 is an element of X × [B]<ℵ0 × [F ]<ℵ0 ,
(3) xp(M) ∈ Tr(F , M),
(4) if M ∈ M1, then p(M) ∈ M1.

We define p ≤ q provided:

(5) Mq ⊂ Mp,
(6) for each M ∈ Mq, xp(M) = xq(M), Fq(M) = Fp(M), and Uq(M) ⊂ Up(M),
(7) for each M1 ∈ Mq and M ∈ (Mp \Mq) ∩M1 such that Mq ∩M1 ∈ M , then xp(M) ∈ U for any U such 

that xq(M1) ∈ U and U ∈ Uq(M2) for some M2 ∈ Mq with M1 ⊂ M2.

We can rephrase the complicated last condition with the help of the following definitions: for q ∈ P and 
M ∈ Mq, let

U(q,M) = Bxq(M) ∩
⋃

{Uq(M1) : M ⊂ M1 ∈ Mq}.

Then let W (q, M) =
⋂

U(q, M) if U(q, M) �= ∅ and W (q, M) = X otherwise. An alternative way to state 
the last condition is that

(7’) if M ∈ Mp \Mq and if M1 is the ∈-minimal element of Mq containing M , then xp(M) ∈ W (q, M1).

We can notice that it then follows that W (p, M) ⊂ W (q, M1). This is a key property to have to ensure that 
PX,B,F,κ is transitive.

We do not include a proof that PX,B,F,κ is proper because we will give a proof of a stronger statement, 
Theorem 4.8 below. However, we do prove the following.

4.4 Proposition. If G ⊂ PX,B,F,κ is a generic filter, then:
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(1) MG =
⋃
{Mp : p ∈ G} is an uncountable ∈-chain,

(2) CG = {M ∩ ω1 : M ∈ MG} is a cub subset of ω1, and
(3) for each M ∈ MG such that M ∩ω1 = δ is a limit point of CG, F ∩M =

⋃
{F ∩M ′ : M ′ ∈ MG ∩M}.

Proof. Let us use P to denote PX,B,F,κ. We omit the easy proof that MG and CG are uncountable. For 
each countable M ≺ H(κ) such that F ∈ M , let {F (M, n) : n ∈ ω} be an enumeration of F ∩M .

Claim 1: For each δ ∈ ω1 and n ∈ ω, the following set is dense in P:

Dδ,n = {p ∈ P : (∃M ∈ Mp) such that either
(δ ⊂ M and (∀q ≤ p) (

⋃
(M ∩Mq) =

⋃
(M ∩Mp))) or

(M ∩ ω1 = δ and (∃M1 ∈ Mp ∩M) (F (M,n) ∈ Fp(M1)))}.

Informally speaking, the first condition asserts that δ is not a limit of CG; the second condition asserts that 
δ ∈ CG and that the element F (M, n) of M will appear in every M ′ ∈ MG with M1 ∈ M ′ ∈ M .

Proof of Claim 1: Let p1 ∈ P be arbitrary. It is easy to extend p1 so as to ensure that δ ∈
⋃

Mp1 . Let δ∗
be the minimum of the set {M ∩ ω1 : (∃p∗ < p1) M ∈ Mp∗ and δ ≤ M ∩ ω1}. Choose p2 ≤ p1 such that 
δ∗ ∈ {M ∩ ω1 : M ∈ Mp2}.

Suppose first that δ∗ = δ and let M ∈ Mp2 be such that δ∗ = M ∩ω1. If p2 /∈ Dδ,n then the first clause in 
the definition must fail. Therefore we may choose some q ≤ p2 such that M∩Mq �= ∅ and M1 =

⋃
(M∩Mq), 

the maximum element of M ∩Mq, is not in Mp2 . Simply define q∗ where the only change from q is that 
F (M, n) is in Fq∗(M1). Since M1 is the maximum element of Mq ∩M and since F (M, n) is evidently in M , 
it follows that q∗ ∈ P and through routine checking that q∗ is also below p2. Therefore q∗ is in Dδ,n.

Now we assume that δ < δ∗ and again that p2 is not in Dδ,n. Let M be the element of Mp2 with M∩ω1 =
δ∗ > δ and note that (by the failure of the first clause) there is a q ≤ p2 such that 

⋃
(M∩Mq) �=

⋃
(M∩Mp2). 

Choose such a q and again let M1 be the maximum element of M∩Mq. Fix any strictly descending sequence 
{Fα : α ∈ ω1} ⊂ F that is an element of M1. Note that Fδ ∈ M since {Fα : α ∈ ω1} ∈ M . We now define 
an extension p of p2 that is in Dδ,n. Set Mp equal to Mp2 ∪ {M1} and p2 ⊂ p. To define p we just have 
to choose the value for p(M1). We let p(M1) = 〈xq(M1), Uq(M1), {Fδ}〉. Since we already have that q is an 
extension of p2, it is routine to check that p is also an extension of p2. We check that p satisfies the first 
condition of Dδ,n. If q < p and M1 ∈ M ′ ∈ Mq ∩ M , then p(M1) ∈ M ′, implying that δ ∈ M ′, and this 
contradicts the definition of δ∗.

Claim 2: If G ⊂ P is a filter that meets Dδ,0 for all δ ∈ ω1, then C = {M ∩ ω1 : (∃p ∈ G) M ∈ Mp} is a 
closed and unbounded subset of ω1.

Proof of Claim 2: For δ ∈ ω1, the fact that G meets Dδ,0 implies that C \ δ is not empty. To show that C is 
closed we assume δ /∈ C and show that it is not a limit point of C by showing that C ∩ δ has a maximum 
element. Choose p ∈ G ∩Dδ,0 and let M ∈ Mp be as in the definition of Dδ,0. Since δ is not in C, δ ∈ M . 
If Mp ∩M is empty, let β = 0, otherwise let M̄ be the maximum element of Mp ∩M , and let β = M̄ ∩ω1. 
It now follows that for all q ≤ p in G and M ′ ∈ Mq ∩M , then M ′ ∩ ω1 is less than or equal to β. It thus 
follows that C is disjoint from the interval (β, δ).

Claim 3: If G is a filter that meets Dδ,n for all δ ∈ ω1 and n ∈ ω, then condition (3) will hold.

Let M ∈ MG such that δ = M ∩ ω1 is a limit. We will prove that each element F (M, n) ∈ F ∩M is in 
some M ′ ∈ MG ∩M . We may choose p ∈ G ∩Dδ,n such that M ∈ Mp.

First, we argue that the first clause in Dδ,n does not hold. Since δ is a limit of CG, M ∩MG is infinite. 
But M ∩Mp is finite so there must exist q ∈ G such that M ∩Mq �⊂ M ∩Mp. Any common extension of 
p and q contradicts the first clause.
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Thus, the second clause holds. Let M1 ∈ Mp ∩M such that F (M, n) ∈ Fp(M1). Since δ is a limit of CG, 
there exists M ′ ∈ MG be such that M1 ∩ ω1 < M ′ ∩ ω1 < δ. Let q ∈ P with q ≤ p and M ′ ∈ Mq. Then 
M1 ∈ M ′ are elements of Mq, by the last condition in the definition of q ∈ P it follows that q(M1) ∈ M ′. 
This implies that Fp(M1) = Fq(M1) ∈ M ′ so F (M, n) ∈ M ′. �

Now, assume that G ⊂ P is a filter. This implicitly defines a function

f : CG → {xp(M) : p ∈ G, M ∈ Mp}

where M ∩ ω1 ∈ CG is sent to xp(M). Moreover, if G is generic, then CG is homeomorphic to ω1 by (b) in 
Proposition 4.4.

4.5 Lemma. If G ⊂ PX,B,F,κ is a generic filter, then X contains a copy of ω1 with the subspace topology 
inherited from B.

Proof. Given x ∈ X and U ∈ Bx, the set

Ex,U = {p ∈ PX,B,F,κ : ∃M ∈ Mp (x = xp(M)) ⇒ ∃M ′ ∈ Mp \M (U ∈ Up(M ′))}

is easily seen to be dense in PX,B,F,κ.
Now we prove that f is continuous, let δ ∈ CG and xδ = f(δ). It is enough to prove that every time 

U ∈ B with xδ ∈ U there exists β < δ such that {xα : β < α ≤ δ} ⊂ U .
This is clearly true when δ is not a limit, so assume in the following that δ is a limit. Let p ∈ G ∩Ex,U be 

such that there is M ∈ Mp with xδ = xp(M). We may assume that M ∩M �= ∅ and let M1 =
⋃

(M ∩M). 
Define β = M1 ∩ ω1. If β < α < δ, there is q ∈ G and M2 ∈ Mq with M2 ∩ ω1 = α. We may assume that 
q ≤ p. Since p ∈ Ex,U , U ∈ Up(M ′) for some M ′ ∈ Mp \M . By the last condition in the definition of q ≤ p, 
it follows that xq(M2) ∈ U .

This shows that f : CG → X is continuous. Recall that CG is homeomorphic to ω1. Even if f is not 
a homeomorphism, we claim that some restriction of f is an embedding of ω1 to X. Indeed, consider the 
Čech-Stone extension βf : βCG → βX. The only case in which βf is not an embedding is if it is not injective 
and this can only happen if there is α ∈ CG such that βf(ω1) = f(α). Such an α is unique because f is 
injective. So βf � (CG \ (α + 1)) = f � (CG \ (α + 1)) is an embedding. Since CG \ (α+1) is homeomorphic 
to ω1, the statement of the lemma follows. �

Now we formulate a strong generalization that encompasses PFA results such those for first countable 
spaces ([8]), or spaces of countable tightness ([6]), or even spaces with character at most ω1 ([1]).

4.6 Definition. Let X be a countably compact space. A function ϕ will be called suitable if the domain of 
ϕ is the set of all closed subsets of X, and for all B ∈ dom(ϕ), ϕ(B) = B.

4.7 Definition. If X is countably compact, ϕ is a suitable function on X, and F is a maximal free filter of 
closed subsets of X, then the poset Pϕ

X,B,F,κ is the subposet of PX,B,F,κ consisting of all those p ∈ PX,B,F,κ

satisfying that xp(M) ∈ ϕ(Tr(F , M)) for all M ∈ Mp.

For example, if X is ω-bounded and of countable tightness, then (under PFA) ϕ may be all those points 
of relative countable character ([6]).

4.8 Theorem. If ϕ is suitable, then Pϕ
X,B,F,κ is proper.
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Proof. Let P = PX,B,F,κ and let P ∈ H(θ) for a regular cardinal θ. Also let M be a countable elementary 
submodel of H(θ) such that P ∈ M . Then to prove that P is proper, it suffices to prove that for any p ∈ P
with M ∩ H(κ) ∈ Mp, then p is an (M, P)-generic condition. Equivalently, if D ∈ M is any dense open 
subset of P, we must show there is an r ∈ D ∩M that is compatible with p.

By extending p we may assume that p ∈ D. Let Mp \ M be enumerated in increasing order as 
{Mp

0 , · · · , M
p
�−1}. Note that Mp

0 = M ∩ H(κ). An important property of P is that p̄ = p � (Mp ∩ M)
is itself an element of P and is in M .

Say that q ∈ P end-extends p̄ if q ≤ p̄ and Mp̄ is an initial segment of Mq. Now let D� be the set of 
q ∈ D that end-extend p̄ and satisfy that |Mq \Mp̄| = �. It follows that D� ∈ M . For q ∈ D�, let Mq \Mp̄

be enumerated as {M q
i : i < �} and let {xq

i : i < �} enumerate {xq(Mq
i ) : i < �}. We leave the reader to 

verify that if r ∈ D� ∩M is such that {xr
i : i < �} is a subset of W (p, Mp

0 ), then r is compatible with p. So, 
it becomes our task to show there is such an r ∈ D� ∩M .

In order for this proof to work, we have to argue in Mp
0 rather than in M . To this end, we work with the 

set

T� = {�xq = 〈xq
i : i < �〉 : q ∈ D�}.

It is immediate that T� ∈ M ∩H(κ) = Mp
0 . For any �xq ∈ T� and 0 < j < �, let �xq � j denote 〈xq

i : i < j〉
and �xq � 0 is the empty sequence.

Of course T� ⊂ X�, we will recursively define a sequence Tj ⊂ Xj for j < �. For any j < � and tuple 
�x ∈ Tj , we let

H(�x, Tj+1) = {y ∈ X : �x�y ∈ Tj+1}.

Then, by recursion,

Tj = {�x ∈ Xj : H(�x, Tj+1) ∈ F+}.

This recursion is definable in Mp
0 , hence for any j < � and �x ∈ Mp

j , H(�x, Tj+1) is an element of Mp
j . It 

recursively follows from Lemma 4.2 that �xp � j ∈ Tj for each j < �. This means that the empty sequence is 
an element of T0 ∩Mp

0 , implying that H(∅, T1) ∈ F+ ∩Mp
0 .

By Lemma 4.2, Tr(F , Mp
0 ) is contained in the closure of H(∅, T1) ∩ Mp

0 . Choose any x0 ∈ W (p, Mp
0 ) ∩

H(∅, T1) ∩Mp
0 . By recursion, suppose we have chosen �xj = 〈x0, . . . , xj−1〉 ∈ Tj ∩Mp

0 so that, for each i < j, 
xi ∈ W (p, Mp

0 ). At step j, there is xj ∈ H(�xj , Tj+1) ∩W (p, Mp
0 ) ∩Mp

0 because H(�xj , Tj+1) ∈ F+. Once we 
have chosen �x� ∈ T� ∩Mp

0 , we choose, by elementarity, r ∈ D� ∩M such that �x� = �xr
� . �

4.9 Theorem. Assume PFA. Let X be a completely regular, countably compact, non-compact space with the 
property that every time Y ⊂ X is separable, C is closed in X and C ⊂ Y then C has a dense set of points 
with character al most ω1 in C. Then X contains a copy of ω1.

Proof. Let F be any maximal free closed filter. Define the function ϕ as follows. For any countable M ≺ H(κ)
such that X, F ∈ M , ϕ(Tr(F , M)) is the set of points of Tr(F , M) that have relative character at most 
ω1. For any closed set B ⊂ X not of this form, let ϕ(B) = B. It should be clear that ϕ ∈ H(κ). By the 
assumption of the theorem, ϕ is a suitable function. Let B be the set of all non-empty open subsets of X.

Let P = Pϕ
X,B,F,κ. We want to identify ω1-many dense subsets of P so that any filter G meeting them 

is enough to ensure that CG is a cub and that f is a homeomorphism. The proof in Proposition 4.4 shows 
that there is a family of ω1-many dense sets that will guarantee that CG is a cub. As noted in the proof of 
Lemma 4.5, we only need G to capture sufficiently many neighborhoods of each xδ in order to ensure that 
f is continuous.
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For each separable B in the domain of ϕ and each x ∈ ϕ(B), let {U(B, x, α) : α ∈ ω1} ⊂ Ux be chosen 
so that {B ∩ U(B, x, α) : α ∈ ω1} is a local base for x in B. For each α ∈ ω1, let

Eα = {p ∈ P : (∀M ∈ Mp ∃M ′ ∈ Mp \M) U(Tr(F ,M), xp(M), α) ∈ Up(M ′)}.

It is easy to see that Eα is a dense subset of P.
Now we assume that G is a filter on P and that G ∩Eα and G ∩Dδ,n are not empty for all α, δ ∈ ω1 and 

n ∈ ω. As usual, let {xα : α ∈ CG} enumerate the image of CG by the above mentioned generic function f .
As discussed in the proof of Lemma 4.5, it is enough to prove that f is continuous. Let δ ∈ CG be a 

limit point of CG and let I be any cofinal sequence of CG ∩ δ. By the definition of Dδ,n, it follows that 
{β ∈ I : xβ ∈ F (M, n)} is a cofinite subset of I. Therefore the set of limit points of {xβ : β ∈ I} is a subset 
of B = Tr(F , M). In addition, for each α ∈ ω1, since G ∩Eα ∩Dδ,0 is not empty, {xβ : β ∈ I} \U(B, xδ, α)
is finite. It then follows that xδ is the unique accumulation point of {xβ : β ∈ I}. �

We also include the following which shows that in some cases, we can control the point of convergence 
of the copy of ω1.

4.10 Corollary. Assume PFA. Let K be a compact Hausdorff space, X ⊂ K be with the hypothesis of 
Theorem 4.9 and assume that S ∈ [X]ω1 has all its complete accumulation points in K \X. Then there is 
a copy of ω1 contained in X that converges to some complete accumulation point of S.

Proof. Let S = {xα : α < ω1} be an enumeration. For each β < ω1, let

Fβ = X ∩ {xα : β ≤ α < ω1}.

Let F be a maximal filter of closed sets that extends {Fα : α < ω1} and proceed with the proof of 
Theorem 4.9.

For each α < ω1, it is easy to prove that the set

Dα = {p ∈ P : ∃M ∈ Mp (Fα ∈ Fp(M))}

is dense in P. So we may assume that G ∩Dα �= ∅ for all α < ω1.
If p ∈ G ∩Dα and M ∈ Mp is such that Fα ∈ Fp(M), then it follows that for any γ ∈ CG with M∩ω1 < γ, 

xγ ∈ Fα. Thus,

⋂

α<ω1

{xp(M) : ∃p ∈ G,∃M ∈ Mp (α < M ∩ ω1)} ⊂
⋂

α<ω1

Fα,

which implies the statement of this Corollary. �
Recall that according to Šapirovski’s result [9, 3.20, p. 71], any compact space of size < 2ω1 has a dense 

set of points of character ≤ ω1. A space is ω-bounded if every countable subset has compact closure. Thus, 
the following result follows from Theorem 4.9.

4.11 Corollary. PFA implies that any ω-bounded non-compact space of cardinality at most c, contains a copy 
of ω1.

4.12 Corollary. PFA implies that any pseudoradial space non-sequential space with radial character at most 
ℵ1 contains a copy of ω1.
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Proof. If K is such a space, then K has uncountable tightness. This implies it has a (converging) free 
ω1-sequence. So K has a subspace X that has a perfect mapping onto ω1. With no loss of generality, X has 
density equal to ℵ1. Let X be an element of an elementary submodel M of H(θ) (some suitably large θ) 
such that Mω1 ⊂ M and |M | = 2ω1 = ω2. Since K is pseudoradial and has radial character ω1, it follows 
that X is ω-bounded and is contained in M . Now apply the previous Corollary. �

Finally, we prove the result announced in the Introduction.

Proof of Theorem 1.6. Let p ∈ X and assume that there is a no countable sequence converging to p. Since 
X is almost radial, there is a thin sequence S = {xα : α ∈ κ} converging to p. As observed in [13, Lemma 
5.6], we may assume that S is free. Since X has radial character ω1 then κ = ω1. After this, apply the 
arguments in Corollaries 4.10 and 4.12 to complete the proof. �
5. Some final comments and questions

Let us start this section by making an observation of the proof of Theorem 1.4. In every step ω1 ≤ α < c

we can inductively notice that for every p ∈ bT there is some subset of {yβ : β < ω1}, below p that has p
in its closure. From this, the following follows easily.

5.1 Proposition. For every α < ω1, let pα ∈ bT such that πρ(pα) = yα. Then the set {pα+1 : α < ω1} is a 
free ω1-sequence dense in bT .

Notice also that we only used c = ω2 to show that the space is pseudoradial but b = c is enough for the 
following.

5.2 Theorem. Assume b = c. Then there exists a compact, sequentially compact space X and a continuous 
function π : X → ω1 + 1 such that every time e : ω1 + 1 → X is an embedding there exists α < ω1 such that 
(π ◦ e)[ω1 + 1] ⊂ α ∪ {ω1}.

Assume PFA. Then the counterexample X from Theorem 1.4 can be constructed and Theorem 1.6 holds. 
This means that X cannot satisfy the hypothesis of Theorem 1.6: X is either of radial character c = ω2 or 
X is not almost radial. However, we don’t know which one of the two conditions. The only thing we know 
is that because of Corollary 1.3, X has character ω2. So besides Question 1.5 we can also ask the following.

5.3 Question. Does it follow from MA + c = ω2 that there is a almost radial compact Hausdorff space that 
is not strongly pseudoradial?

At first, when the authors of this paper attempted the proof of Theorem 1.4, we intended to kill all copies 
of ω1. However, we were not able to give this construction. As we can see from the proof, we were able to 
kill all copies of ω1 that converge to the distinguished point ρ, but there might exist other copies of ω1 in 
other branches of the tree T .

From these considerations, one may naturally ask whether it is consistent with MA that there exists a 
compact, sequentially compact space of uncountable tightness that contains no topological copies of ω1.

Consider Nyikos’ example of a first countable space X that maps onto ω1 but has no copies of ω1. 
The construction of this example can be found in [8, 19.1]. Essentially, Nyikos example has underlying 
set ω1 × {0, 1} and it can be easily checked that any subspace of the form (α + 1) × {0, 1}, α < ω1, is a 
compact metric space open in X. Thus, the one-point compactification of X is sequentially compact, has 
uncountable tightness and has no copies of ω1 + 1. Nyikos’ example can be constructed from a statement 
that is a consequence of ♦ and that is preserved under ccc forcings. We conclude the following.
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5.4 Corollary. It is consistent with MA and c of arbitrary large size that there is a compact, sequentially 
compact space of uncountable tightness that contains no topological copies of ω1 + 1.

Again, by considering the result by Juhász and Szentmiklóssy [10] that pseudoradiality follows from 
sequential compactness under c = ω2 we obtain the following.

5.5 Corollary. It is consistent with MA+c = ω2 that there is a compact pseudoradial space of radial character 
ω1 that is not strongly pseudoradial.

Besides our Main Question 1.5, we may also ask the following.

5.6 Question. Does it follow from MA + c = ω2 that there exists a pseudoradial space (of radial character 
ω1) that contains no topological copies of ω1?
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