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Abstract
In this paper, we propose a mass conservative semi-Lagrangian finite difference scheme for
multi-dimensional problems without dimensional splitting. The semi-Lagrangian scheme,
based on tracing characteristics backward in time from grid points, does not necessarily
conserve the total mass. To ensure mass conservation, we propose a conservative correction
procedure based on a flux difference form. Such procedure guarantees local mass conserva-
tion, while introducing time step constraints for stability. We theoretically investigate such
stability constraints from an ODE point of view by assuming exact evaluation of spatial
differential operators and from the Fourier analysis for linear PDEs. The scheme is tested by
classical two dimensional linear passive-transport problems, such as linear advection, rota-
tion and swirling deformation. The scheme is applied to solve the nonlinear Vlasov–Poisson
system and guiding center Vlasov model using high order tracing schemes. The effective-
ness of the proposed conservative semi-Lagrangian scheme is demonstrated numerically by
extensive numerical tests.

Keywords Semi-Lagrangian · Conservative · High order · WENO · Linear stability
analysis · Fourier analysis · Vlasov–Poisson system

1 Introduction

Semi-Lagrangian (SL) schemes have been used extensively in many areas of science and
engineering, including weather forecasting [11,14,26], kinetic simulations [8,12] and fluid
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simulations [16,29], interface tracing [7,27], etc. The schemes are designed to combine the
advantages of Eulerian and Lagrangian approaches. In particular, the schemes are built upon
a fixed computational mesh. Similar to the Eulerian approach, high spatial resolution can be
realized by using high order interpolation/reconstruction procedures or by using piecewise
polynomial solution spaces. On the other hand, in each time step evolution, the scheme
is designed by propagating information along characteristics, relieving the CFL condition.
Typically, the numerical time step size allowed for an SL scheme is larger than that of an
Eulerian approach, leading to gain in computational efficiency.

Among high order SL schemes, depending on solution spaces, different classes of meth-
ods can be designed. For example, a finite difference scheme evolves point-wise values and
realizes high spatial resolution by high order interpolation procedures [17,29], a finite volume
scheme considers integrated cell-averages with high order reconstruction procedures [6,14],
while a finite element method has piecewise continuous or discontinuous polynomial func-
tions as its solution space [11,15,16,20,21]. Each class of the above mentioned SL methods
has its own advantages. For example, the finite element method is more flexible with the
geometry and handling boundary conditions, while the finite difference and finite volume
schemes could perform better in resolving solution structures with sharp gradients, e.g. by
using a weighted essentially non-oscillatory (WENO) procedure. To compare finite differ-
ence and finite volume schemes, finite volume scheme is often considered more physically
relevant and the local mass conservation can be built up in a natural way; while the finite
difference scheme is more computationally efficient for high-dimensional problems, if one
considers schemes of third order or higher.

In this paper, we consider SL finite difference schemes with local mass conservation
property. In fact, many existing SL finite difference schemes are built based on tracing
characteristics backward in time together with a high order interpolation procedure [3].
Typically such schemes do not have localmass conservation property, which is fine for certain
applications. However, for applications in weather forecasting or in kinetic simulations,
ignoring local mass conservation could lead to significant loss of total mass, especially when
the solution with sharp gradients becomes under-resolved by the computational mesh [13].

There have been many attempts to preserve the mass conservation of an SL finite differ-
ence scheme with large time stepping sizes, e.g. [17,19]. However, they are mostly designed
for 1D problems by taking advantage of some special features in a 1D setting. Their general-
ization to high dimensional problems often relies on dimensional splitting which is subject to
splitting errors. In this paper, we propose and investigate a truly multi-dimensional approach
without dimensional splitting errors. To build an SL finite difference scheme with local mass
conservation, one essential framework that we propose to work with is the flux-difference
form. However, by working with the flux difference form, one often may observe time step
constraint for numerical stability. Note that unlike the Eulerian approach, such time step con-
straint does not come from the CFL condition (i.e. numerical domain of dependence should
include the physical domain of dependence), but from numerical stability one employed
for temporal integration. As far as we are aware of, there is little work in quantifying the
stability constraint and in optimizing the numerical strategies balancing stability, accuracy
and computational efficiency. This paper aims to fill such gap, by understanding such time
step constraints. In particular, we investigate the stability of time integration schemes based
on a linear stability analysis around the imaginary axis in the complex plane, assuming the
spatial differentiation is exact. We optimize quadrature rules for time integration by maxi-
mizing the stability interval along the imaginary axis. We further employ Fourier analysis
to study the numerical stability of a fully-discretized scheme. The schemes are applied to
2D passive-transport problems, as well as to nonlinear Vlasov–Poisson (VP), guiding center
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Vlasov model and incompressible Euler system in vorticity stream function formulation, by
using high order characteristics tracing schemes proposed in [18,28]. Finally, we would like
to mention a few of our previous work related to stability of SL finite difference schemes in
a flux-difference form. In [19], a special treatment is introduced to relieve the time step con-
straint for 1D passive transport problems. However, such treatment is not possible for general
high dimensional problems. In [5], the time step constraint is studied by Fourier analysis for
an SL finite difference scheme coupled with integral deferred correction framework.

The paper is organized as follows. The SL finite difference scheme in flux-difference form
is described in Sect. 2. The stability of time integration with quadrature rule is investigated
in Sect. 3, assuming exact evaluation of spatial differentiation operators. We also optimize
temporal integration rules. In Sect. 4, we study the numerical stability of a fully discretized
scheme by Fourier analysis. In Sect. 5, numerical tests are performed for 2D linear passive-
transport problems. In Sect. 6, we apply the scheme to the nonlinear VP system, the guiding
center Vlasov equation and incompressible Euler system.

2 AMass Conservative SL Finite Difference Scheme

In this section, we describe an SL finite difference scheme based on a flux-difference form
to locally preserve mass. The scheme starts from a standard non-conservative procedure
with backward characteristics tracing and high order spatial interpolation. Then a conserva-
tive correction is performed by a flux-difference formulation. We describe the scheme in a
1D linear setting, noting that its extension to nonlinear and high dimensional problems is
straightforward, as long as characteristics can be properly traced backward in time, e.g. see
our numerical examples in Sect. 5.

We consider a 1D linear advection equation,

∂ f

∂t
+ ∂ f

∂x
= 0, f (x, 0) = f 0(x), x ∈ [−π, π]. (2.1)

For simplicity, we assume a periodic boundary condition.We assume a uniform discretization
in spacewith x j = j�x , j = 1, . . . , nx and let f nj be an approximation of the solution at time

tn and position x j . We describe below the conservative SL procedure to update { f n+1
j }nxj=1

from { f nj }nxj=1.
In an Eulerian finite difference method, typically one would firstly approximate the spatial

derivative by a flux difference form to ensure mass conservation, then the system of ODEs
will be evolved in time by a high order numerical integrator such as the Runge-Kutta (RK)
method via the method of lines. In the SL setting, however, we propose to perform the time
integration based on quadrature rules first,

f n+1
j = f nj − ∂

∂x

(∫ tn+1

tn
f (x, t)dt

)
|x=x j ≈ f nj − ∂

∂x
(F(x))|x j , (2.2)

where we let

F(x)
.=

s∑
�=1

f (x, tn + c��t)b��t (2.3)

as a quadrature approximation of
∫ tn+1

tn f (x, t)dt . Here (c�, b�), � = 1, . . . , s are the nodes
and weights of an accurate quadrature formula and f (x j , tn + c��t), � = 1, . . . , s (we
call it stage values) can be approximated via a non-conservative SL scheme via backward
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characteristics tracing and high order spatial interpolation. For the linear equation (2.2),
f (x j , tn + c��t) can be traced back along characteristics to tn at f (x j − c��t, tn), whose
value can be obtained via interpolation from neighboring grid point values { f nj }nxj=1, see our
description for different interpolation procedures in Sect. 4. Then a conservative scheme,
based on a flux-difference form, can be proposed in the spirit of the work by Shu and Osher
[24]. In particular, the scheme can be formulated as

f n+1
j = f nj − 1

�x

(
F̂j+ 1

2
− F̂j− 1

2

)
, (2.4)

where F̂j+ 1
2
comes from WENO reconstruction of fluxes from {F j }nxj=1 with F j

.= F(x j ).
We refer to [23] for the basic principle and detailed procedures of WENO reconstruction.
Also, Sect. 4 provides detailed discussions on different reconstruction procedures. It can be
shown that the mass conservation is locally preserved due to the flux difference form (2.4).

Such conservative correction procedure can be directly generalized to problems with non-
constant velocity fields in a multi-dimensional setting without any difficulty, e.g. rotation
and swirling deformation. In addition to the procedures described above, a high order ODE
integrator such as a RK method can be employed to locate the foot of a characteristic accu-
rately. For example, we consider a 2D problem with a prescribed velocity field a(x, y, t) and
b(x, y, t)

ft + (a(x, y, t) f )x + (b(x, y, t) f )y = 0.

Let the set of grid points

x1 < · · · < xi < · · · < xnx , y1 < · · · < y j < · · · < yny (2.5)

be a uniform discretization of a 2D rectangular domain with xi = i�x and y j = j�y. The
foot of characteristic emanating from a 2D grid point, say (xi , y j ) at t�

.= tn + c��t can
be located by solving the following final-value problem accurately with a high order RK
method,

dx

dt
= a(x, y, t),

dy

dt
= b(x, y, t), x(t�) = xi , y(t�) = y j . (2.6)

Once the foot of characteristic located, say at (x�
i , y

�
j ), then f (xi , y j , t�) can be evaluated

by approximating f (x�
i , y

�
j , t

n) via a high order 2D interpolation procedure [23]. A 2D
conservative scheme based on a flux-difference form can be formulated as

f n+1
i j = f ni j − 1

�x

(
F̂i+ 1

2 , j − F̂i− 1
2 , j

)
− 1

�y

(
Ĝi, j+ 1

2
− Ĝi, j− 1

2

)
, (2.7)

where F̂i± 1
2 , j comes from WENO reconstruction of fluxes from {Fi j }nxi=1 for all j with

Fi j
.= F(xi , y j ) ≈ �t

s∑
�=1

f (xi , y j , t
n + c��t)b�.

The procedure for WENO reconstruction is the same as the 1D case for all j and we again
refer to the review paper [23]. Similarly, Ĝi, j± 1

2
comes fromWENO reconstruction of fluxes

from {Fi j }nyj=1 for all i .
To generalize the conservative SL scheme to nonlinear systems, a problem-dependent

high order characteristics tracing procedure needs to be designed for solving the final-value
problem in the formofEq. (2.6), butwith thevelocityfielddependingon theunknown function
f . In many cases, a high order RKmethod could not be directly applied. In [18], a high order
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multi-dimensional characteristics tracing scheme for the VP system is proposed, and in
[28], it has been generalized for the guiding center Vlasov system and the incompressible
Euler system in the vorticity-stream function formulation. Both can be applied in the above
proposed conservative SL framework.

We close this section by making the following remark to motivate our discussions in the
following two sections. There are two issues in the scheme formulation that contribute to the
stability property of the aboveproposedSL scheme.One is the discretizationby the quadrature
rule (2.3). This part of stability is viewed as an ODE stability (assuming exact evaluation
of spatial operators) and is investigated carefully in Sect. 3. The other issue concerns the
spatial discretization, and can be explained by observing the following situation: if one
changes the time stepping size slightly (could be arbitrary small), the root of characteristics
x j − c��t could come from a different grid cell, leading to a different interpolation stencil
in the implementation. This aspect is investigated in Sect. 4.

3 Temporal Discretization and Stability

3.1 Linear stability functions and stability regions

We first investigate the linear stability of quadrature rules for temporal discretization (2.3) in
anODEsetting, by assuming an exact evaluation of spatial derivative inEq. (2.2). In particular,
we look for the evolution of a Fourier mode, identified by a Fourier variable ξ ∈ [−π, π],
assuming exact evaluation of spatial interpolation and reconstruction procedure mentioned
above. Such a discrete Fourier mode at time tn = n�t , will be denoted by,

f nξ (x) = (Q(ξ))neixξ/�x , i = √−1, (3.1)

where Q(ξ) is the amplification factor associated with ξ . After plugging such ansatz into the
expression for the flux, Eq. (2.3), and taking into account Eq. (3.1), we have:

F(x) =
s∑

�=1

b� f
n(x − c��t)�t = Qn(ξ)

s∑
�=1

b� exp [iξ (x − c��t) /�x] �t

Using such expression in Eq. (2.2) gives:

f n+1
j = f nj − Qn(ξ) exp(iξ x/�x)

�t

�x
iξ

s∑
�=1

b� exp(−iξc��t/�x)

from which we deduce

Q(ξ) = 1 − iξa
s∑

�=1

b� exp(−ic�ξa), (3.2)

where a = �t/�x denotes the Courant number. The scheme is stable if

|Q(ξ)| ≤ 1, ∀ξ ∈ [−π, π].

Such stability property is closely related to the linear stability of the quadrature rule, which
can be studied by the stability region for a scalar linear ODE.
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3.2 Relation with A-Stability

Let us recall the definition of A-stability. Consider the scalar ODE

w′(t) = λw(t), w(0) = 1 (3.3)

and λ ∈ C. The solution after one time step is given by

w(�t) = eλ�t = ez,

where we set z ≡ λ�t . Such solution is stable if and only if 	(z) ≤ 0, i.e. if and only if
	(λ) ≤ 0. Consider now the following identity

ez = 1 + z
∫ 1

0
eαz dα. (3.4)

This is really an identity, because
∫ 1
0 eαz dα = (ez − 1)/z =: ϕ(z). Now let us approximate

the integral appearing in Eq. (3.4) by a quadrature formula, whose nodes and weights are,
respectively, c� and b�, � = 1, . . . , s. Then one obtains the following approximation of the
exact solution of Eq. (3.3) after one time step:

R(z) = 1 + z
s∑

�=1

b�e
c�z . (3.5)

It is clear that in general it is not true that |R(z)| ≤ 1 if 	(z) ≤ 0. Neglecting all other
approximations, the core reason of the instability of the SL conservative method relies on
the lack of unconditional stability in the approximation of ez by R(z) for z purely imaginary.
This relation can be immediately applied to the study of the stability of the SL conservative
scheme, since comparing Eq. (3.2) with Eq. (3.5), one has

Q(ξ) = R(−iξa).

Because ξ ∈ [−π, π], the stability problem can be stated as follows: look for the largest
interval I ∗ ≡ [−y∗, y∗] of the imaginary axis such that |R(iy)| ≤ 1, ∀y ∈ I ∗. Then the
maximum CFL number for the SL scheme that guarantees stability will be

a∗ = y∗/π (3.6)

Below, we report the stability regions for the following commonly used quadrature rules in
the left panel of Fig. 1.

1. midpoint: q1 = 1/2, w1 = 1.
2. trapezoidal: q1 = 0, q2 = 1, w1 = w2 = 1/2.
3. Simpson: q1 = 0, q2 = 1/2, q3 = 1, w1 = w3 = 1/6, w2 = 2/3.
4. two-point Gauss–Legendre formulas (GL2): q1 = 1

2 − 1
2
√
3
, q2 = 1

2 + 1
2
√
3
, w1 = w2 =

1/2.

As it is apparent from the plot, midpoint and Simpson’s rule do not include a portion of
the imaginary axis, while the trapezoidal rule and the two-point Gauss–Legendre rule do.
The boundary of the stability region of the trapezoidal rule intersects the imaginary axis at
π , and therefore the maximum CFL number that guarantees linear stability for the conser-
vative scheme is π/π = 1. The two point Gauss–Legendre quadrature formula provides
a wider stability interval, since in this case y∗ ≈ 5.43, giving a maximum CFL number of
approximately 5.43/π = 1.72. Higher order Gauss–Legendre quadrature formulas, hereafter
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Fig. 1 Stability region for midpoint, trapezoidal, Simpson’s and two-point Gauss–Legendre rules (left) and
GLs with s = 2, 3, 4, 5 (right)

Fig. 2 R(iy)2 − 1 versus y for GL3, GL4, GL5 formulas. GL3 and GL5 is observed to be unstable

denoted by GLs, where s indicates the number of nodes, may provide wider stability interval,
as is illustrated in the right panel of Fig. 1. To better appreciate the stability region, we plot
in Fig. 2 |R(iy)|2 − 1 as a function of y. GL4 is observed to have better stability property,
as |R(iy)|2 − 1 ≤ 0 for an interval with boundary y∗ ≈ 6.2765 leading to a maximum
CFL number of approximately 6.2765/π = 1.99. Gauss–Legendre rule formulas with odd
number of points, such as GL3 and GL5, are unstable near the origin, see the right panel of
Fig. 1 as well as Fig. 2.
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3.3 Maximize the Stability Interval on Imaginary Axis

In order to analyze the stability of quadrature formulas, let us consider the expression R(iy)
from Eq. (3.5), and write it in the form

R(iy) = 1 + iy(Cs(y) + i Ss(y)) = 1 − ySs(y) + iyCs(y) (3.7)

where

Cs(y) ≡
s∑

�=1

b� cos(c�y), Ss(y) ≡
s∑

�=1

b� sin(c�y). (3.8)

The stability condition therefore becomes

|R(iy)|2 = 1 − 2ySs(y) + y2
(
C2
s (y) + S2s (y)

) ≤ 1.

Such condition can be written in the form

yFs(y) ≥ 0, (3.9)

where

Fs(y) ≡ Ss(y) − 1

2
y
(
C2
s (y) + S2s (y)

)
. (3.10)

The problem of finding quadrature formulas with the widest stability region can be stated
as: determine the coefficients b = (b1, . . . , bs) and c = (c1, . . . , cs) so that the interval in
which (3.9) is satisfied is the widest.

Rather than directly solving this optimization problem, we consider a particular case of
quadrature formulas, i.e. those for which the nodes are symmetrically located with respect
to point 1/2 in the interval [0, 1]. The choice is motivated by the observation that several
quadrature formulas have a symmetric distribution of nodes and weights around the center
of the integration interval. Furthermore, such an assumption greatly simplifies the derivation
and analysis of the methods. Among such formulas we restrict to the case in which s even,
as the schemes are observed to be unstable for odd s, see Fig. 2.

Let us denote by c̃� = 1 − 2c�, � = 1, . . . , s. Then c� = (1 − c̃�)/2. Since the nodes are
symmetric and the quadrature formula is interpolatory, we have

c̃� = −c̃s−�+1, b� = bs−�+1. (3.11)

The absolute stability function R(iy) can then be written, after simple manipulations, as

R(iy) = 1 − 2y sin(y/2)C̃s(y) + 2iy cos(y/2)C̃s(y),

where

C̃s(y) ≡
s/2∑
�=1

b� cos(c̃�y/2),

leading to
|R(iy)|2 = 1 − 4y sin(y/2)C̃s(y) + 4y2C̃2

s (y). (3.12)

The function Fs(y) can then be written, after simple manipulations

Fs(y) = 2C̃s(y)
(
sin(y/2) − yC̃s(y)

)
. (3.13)

Then the stability condition (3.9) becomes

C̃s(y)
(
sin(y/2) − yC̃s(y)

)
≥ 0.
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Because function Fs contains the product of two factors, the condition to ensure that the
function does not change sign at roots is that the two factors vanish simultaneously at simple
roots, therefore C̃s(y) has to vanish also at the same points yk > 0 at which sin(y/2) −
yC̃s(y) = 0. There is no need to impose that C̃s vanishes at the origin, since, because of
symmetry, yFs(y) does not change sign at the origin.

In order to determine the coefficients that define the quadrature formula for maximizing
the stability interval on imaginary axis, we proceed as follows. Because of the symmetry
constraints (3.11),wehave tofind s coefficients, i.e.b1, . . . , bs/2 and c̃1, . . . , c̃s/2 by imposing
a total of s conditions. Such conditions will be a balance between accuracy and stability. If
we want that the quadrature formulas have degree of precision s − 1, i.e. if we want that they
are exact for polynomials of degree less or equal to s − 1, we have to impose

1

2

∫ 1

−1
ζ 2k dζ =

s∑
�=1

b�(c̃�)
2k, k = 0, . . . , s/2 − 1. (3.14)

We only impose the condition for even polynomials, since for odd polynomials the conditions
are automatically satisfied because of the symmetry. The condition that C̃s(y) vanishes when
sin(y/2) − yC̃s(y) vanishes becomes

C̃s(2πk) = 0, k = 1, . . . , s/2. (3.15)

For k = 0 the stability condition (3.15) ismarginally satisfied since C̃s(0) = ∑s/2
�=1 b� = 1/2.

Eqs. (3.14) and (3.15) constitute a nonlinear set of equations for the s coefficients b1, . . . , bs/2
and c̃1, . . . , c̃s/2. Because the equations are nonlinear, we have to resort to Newton’s method
for their solution. In practice, for large values of s, it is hard to find an initial guess which
lies in the convergence basin of Newton’s method. We had to resort to a relaxed version of
Newton’s method, coupled with continuation techniques, in order to solve the system.

We numerically compute nodes and weights for s = 2, 4, 6, 8, 10, 12 and check a pos-
teriori whether the stability condition is actually satisfied. The following phenomena are
observed:

• s = 2: the quadrature nodes and weights are consistent with those of the two-point
Gauss–Legendre formula.

• s = 4, 8, 12: In Fig. 3 we plot the functions |Rs(iy)|2−1 (left panel) and the correspond-
ing stability regions in the complex plane (right panel) for s = 4, 8, 12. A wide interval
with stability on the imaginary axis is shown. We report the coefficients in Table 1. Only
s/2 coefficients are reported, since the other satisfy the symmetry relation (3.11). We
also report the maximum CFL number a∗ = y∗/π [see Eq. (3.6)].

• s = 6 and s = 10: In Fig. 4, we plot the functions |Rs(iy)|2 − 1 for s = 6 and s = 10.
It is observed that |Rs(iy)|2 ≥ 1 for any interval containing the origin, i.e. these two
quadrature formulas are not stable.

The stability regions for the quadrature formulas obtained for s = 4, 8, 12 reported in
Table 1 are computed under the assumption that one considers the exact space dependence of
the Fourier mode, so that the only error is in time integration. In reality there are several other
causes of errors, that may affect the stability region of the quadrature. In the next section, we
take spatial discretization into account and quantify the corresponding stability interval.
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Fig. 3 Left: plot of |R(iy)|2 for the symmetric quadrature formulas with s = 4, 8, 12. Right: plot of stability
regions for the corresponding quadrature formulas. These formulas show a wide stability interval on the
imaginary axis, thus allowing, in principle, large CFL numbers

Fig. 4 Plot of |R(iy)|2 − 1 for the symmetric quadrature formulas with s = 6, 10. Such formulas are not
stable because the stability region do not contain a portion of the imaginary axis

4 Spatial Discretization

There are two spatial discretization processes in the scheme. One is the interpolation in
approximating f (x j , tn + c��t) = f (x j − c��t, tn) from neighboring grid point values
{ f nj }nxj=1. The other is the reconstruction in obtaining numerical fluxes F̂j+ 1

2
in (2.4) from

{F j }nxj=1. In this paper, we consider the following two classes of spatial discretizations.

• Odd order approximations. For the linear equation (2.1), we use a right-biased stencil
to approximate f (x j − c��t, tn) and use a left-biased stencil for reconstructing the
flux F̂j+ 1

2
. For example, for a first order scheme with �t/�x < 1, f (x j − c��t, tn)
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Table 1 Weights and nodes of
accurate and stable quadrature
formulas

s = 4, a∗ = 4.8125674352016

1 0.199889211759008 0.083205952308564

2 0.300110788240992 0.347904700949451

s = 8, a∗ = 9.4130380474585

1 0.058702317190867 0.023248965963790

2 0.119923212650690 0.114686793929813

3 0.154113350301760 0.253867587586135

4 0.167261119856682 0.415892817555109

s = 12, a∗ = 13.7671988660496

1 0.027182888487959 0.010668025829619

2 0.059633412276882 0.054560771376909

3 0.084799522112170 0.127471263371368

4 0.101625491473440 0.221353922812027

5 0.111259037829236 0.328318059665840

6 0.115499647820313 0.442082833046309

Each formula is exact for polynomials of degree not greater than s − 1.
ThemaximumCFL number a∗ that guarantees stability in the theoretical
Fourier analysis is reported

is approximated from the interpolation stencil { f j } and the numerical flux F̂j+ 1
2
is

approximated from the reconstruction stencil {F j }. With such stencil arrangement, the
SL scheme is reduced to a first order upwind scheme when �t/�x < 1,

f n+1
j = f nj − �t/�x( f nj − f nj−1).

Third, fifth, seventh and ninth order schemes can be constructed by including one, two,
three, four more points symmetrically from left and from right, respectively, in the inter-
polation and reconstruction stencils. We list them as follows.

Third order : { f j−1, f j , f j+1}, {F j−1,F j ,F j+1}.
Fifth order : { f j−2, f j−1, f j , f j+1, f j+2}, {F j−2,F j−1,F j ,F j+1,F j+2}.
Seventh order : { f j−3, f j−2, f j−1, f j , f j+1, f j+2, f j+3},

{F j−3,F j−2,F j−1,F j ,F j+1,F j+2,F j+3}.
Ninth order : { f j−4, f j−3, f j−2, f j−1, f j , f j+1, f j+2, f j+3, f j+4},

{F j−4,F j−3,F j−2,F j−1,F j ,F j+1,F j+2,F j+3,F j+4}.

• Even order approximations. For the linear equation (2.1), we use symmetric stencils to
approximate f (x j − c��t, tn) by interpolation and to approximate F̂j+ 1

2
by reconstruc-

tion. For example, for a second order scheme with �t/�x < 1, f (x j − c��t, tn) is
approximated from the interpolation stencil { f j−1, f j } and the numerical flux F̂j+ 1

2
is

approximated from the reconstruction stencil {F j ,F j+1}. Fourth, sixth and eighth order
schemes can be constructed by including one, two, three more points symmetrically from
left and from right, respectively, in the interpolation and reconstruction stencils. We list
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them as follows.

Fourth order : { f j−2, f j−1, f j , f j+1}, {F j−1,F j ,F j+1,F j+2}.
Sixth order : { f j−3, f j−2, f j−1, f j , f j+1, f j+2},

{F j−2,F j−1,F j ,F j+1,F j+2,F j+3}.
Eighth order : { f j−4, f j−3, f j−2, f j−1, f j , f j+1, f j+2, f j+3},

{F j−3,F j−2,F j−1,F j ,F j+1,F j+2,F j+3,F j+4}.
Remark 4.1 We follow the same principle in the interpolation and reconstruction procedures
in more general settings, for example the situation when the time stepping size is greater than
the CFL restriction, i.e �t/�x ≥ 1 for Eq. (2.1). For example, if �t/�x is between 1 and
2 then all the stencils for the computation of f (x j − �t) are shifted to the left by one, and
so on. For general high dimensional problems, e.g. the Vlasov equation, similar procedures
can be applied in a truly multi-dimensional fashion.

To access the stability property of the conservative method, we perform Fourier analysis
via the linear equation (2.1) with x ∈ [0, 2π ] and periodic boundary condition. In particular,
we make the ansatz f nj = f̂ nei jξ with i = √−1 and ξ ∈ [0, 2π]. Plugging the ansatz into
the SL conservative scheme as described in Sect. 2, but with both linear interpolation and
linear reconstruction (i.e. theWENO coefficients are frozen to constant values that guarantee
maximum accuracy), we obtain f̂ n+1(ξ) = Qλ(ξ) f̂ n(ξ)with Qλ(ξ) being the amplification
factor for the Fourier mode associated with ξ and λ = �t

�x . To ensure linear stability, it is
sufficient to have

|Qλ(ξ)| ≤ 1, ∀ξ ∈ [0, 2π ], ∀λ ∈ [0, λ�], for some λ�. (4.1)

We seek for λ� by numerically checking the inequality (4.1) for 100 discretized grid points on
ξ ∈ [0, 2π], and by gradually increasing λwith a step size of 0.01 starting from λ = 0. Taking
themachine precision into account in our implementation, we check the inequality |Qλ(ξ)| ≤
1+10−11 instead.We tabulate suchλ� inTable 2 for different quadrature formulas as discussed
in Sect. 3 and with different choices of spatial interpolation and reconstruction stencils with
odd and even order respectively. One can observe that the second order trapezoidal rule
and the fourth order GL2 perform much better than the mid-point rule in terms of stability,
especially for high order spatial approximations. The time stepping sizes allowed for stability
of fully discretized schemes with s = 4, 8, 12 are observed to be much less than the one
provided by ODE stability analysis in the previous section. The reason for this behavior is
not clear, and a deeper analysis is needed to study the stability of fully discrete schemes,
on order to obtain more effective quadrature formulas. Such analysis is however beyond the
scope of the present paper and will be subjetc of future investigation.

In the following, we take the linear advection equation ut + ux = 0 with a smooth
initial function sin(2πx) on the domain [0, 1], to test the CFL bounds in Table 2. Here for
better illustration, only linear interpolation and linear reconstruction are used (i.e. theWENO
weights are frozen to obtain maximum order of accuracy). We consider schemes of coupling
GL2 for temporal integration with third or fourth order spatial approximations. Errors and
orders of convergence at a final integration time T = 100.1 for the 3rd order and T = 1001.1
for the 4th order are recorded in Table 3. Clear third order and fourth order spatial accuracies
are observed at the corresponding upper bounds for CFL (1.22 for 3rd order and 1.84 for
4th order as in Table 2.) The code will blow up with the CFL increased by 0.01 at the
corresponding time, which confirms the validity of the CFL bounds in the table. We have
similar observations for schemes of higher order, but omitting them to save space. Although
even order schemes comparatively have larger CFL bounds than odd order ones, for solutions
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Table 2 Upper bounds of CFL
for FD SL scheme with odd and
even order interpolation and
reconstruction

Temp/spatial 1st 3rd 5th 7th 9th Exact

Mid-point 1.00 1.00 0.14 0.04 0.02 0.00

Trapezoid 1.99 1.68 1.52 1.44 1.38 1.00

Simpson 1.33 1.50 1.35 0.71 0.37 0.00

GL2 1.00 1.22 1.19 1.16 1.15 1.72

s=4 1.00 1.37 1.27 1.22 1.19 4.81

s=8 1.00 1.35 1.26 1.21 1.18 9.41

s=12 1.00 1.37 1.25 1.21 1.18 13.76

Temp/spatial 2nd 4th 6th 8th 10th Exact

Mid-point 2.00 0.04 0.01 0.00 0.00 0.00

Trapezoid 1.29 1.26 1.24 1.22 1.20 1.00

Simpson 3.00 2.91 0.83 0.34 0.20 0.00

GL2 1.85 1.84 1.84 1.83 1.83 1.72

s=4 1.96 1.97 1.98 1.98 1.98 4.81

s=8 1.99 1.99 1.99 1.99 1.99 9.41

s=12 1.99 1.99 1.99 1.99 2.00 13.76

The amplification factor is bounded by 1 + 10−11. N = 100

Table 3 Accuracy test of the
linear advection equation
ut + ux = 0 with the initial
function sin(2πx) for the 3rd
order scheme with CFL = 1.22 at
T = 100.1 and 4th order with
CFL = 1.84 at T = 1001.1

Scheme N L1 error Order L∞ error Order

3rd order 240 4.12E−04 – 6.47E−04 –

480 5.15E−05 3.00 8.09E−05 3.00

960 6.44E−06 3.00 1.01E−05 3.00

1920 8.04E−07 3.00 1.26E−06 3.00

4th order 120 1.76E−03 – 2.77E−03 –

240 1.10E−04 4.00 1.73E−04 4.00

480 6.89E−06 4.00 1.08E−05 4.00

960 4.76E−07 3.85 7.48E−07 3.85

with discontinuities, we can observe that odd order schemes with upwind mechanism can
resolve the discontinuities better, see Fig. 5 for the numerical solutions of our schemes with
linear weights for advecting a step function. Due to the above considerations, we will only
consider the scheme with 5th order spatial approximation and GL2 for temporal integration
in the following numerical sections. We would mention that the numerical oscillations for
discontinuous solutions due to a linear scheme can be well controlled by only using WENO
in the reconstruction step, not in the interpolation, see Fig. 5 for 5th order linear interpolation
with 5th order WENO reconstruction, and also the tests in the numerical section.

5 Numerical Tests on 2D Linear Passive-Transport Problems

In this section, the conservative truly multi-dimensional SL scheme will be tested for passive
transport equations, such as linear advection, rotation and swirling deformation. Since the
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Fig. 5 Numerical solution for the linear advection equation ut + ux = 0 with an initial step function at
T = 100.1. Left: 3rd order with CFL = 1.22 and 5th order with CFL = 1.19; Right: 4th order and 6th
order with CFL = 1.84. N = 800. Here “weno5” means 5th order linear interpolation with 5th order WENO
reconstruction, while others all using linear interpolation with linear reconstruction in corresponding orders

Table 4 Errors and orders for the linear equation in space

Nx × Ny 20 × 20 40 × 40 60 × 60 80 × 80 100 × 100

L1 error 2.76E−4 8.38E−6 1.11E−6 2.64E−7 8.68E−8

Order – 5.04 4.99 4.98 4.99

T = 1.2. CFL = 1.15

velocity of the field is given a priori, characteristics can be traced by a high order RK ODE
integrator.

In this and next sections, we use 5th order spatial approximations with linear interpolation
and WENO reconstruction for evaluating flux functions in (2.4). We use GL2 for temporal
integration,while characteristics are traced back in timebyRK to locate feet of characteristics.
For a general two dimensional problem ut + f (u)x + g(u)y = 0, the time step is taken as

�t = CFL/(a/�x + b/�y),

where a = max | f ′(u)| and b = max |g′(u)|. From Table 2, the maximum CFL number
allowed by stability is 1.22 for a 3rd order spatial discretization and 1.19 for the 5th order.
In the following, we take CFL = 1.15 without specification.

Example 5.1 We first test our problem for the linear equation ut + ux + uy = 0 with initial
condition u(x, y, 0) = sin(x) sin(y). The exact solution is u(x, y, t) = sin(x − t) sin(y− t).
For this example, the roots of characteristics are located exactly. Tables 4 and 5 present spatial
and temporal orders of convergence of the proposed scheme. Both 5th order spatial accuracy
and 4th order temporal accuracy from GL2 can be observed.

Example 5.2 Now we consider two problems defined on the domain [−π, π]2. One is the
rigid body rotating problem

ut − yux + xuy = 0,

the other is the swirling deformation flow problem

ut −
(
cos2

( x
2

)
sin(y)g(t)u

)
x

+
(
sin(x) cos2

( y

2

)
g(t)u

)
y

= 0,
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Table 5 Errors and orders for the linear equation in time

CFL 1.1 1.0 0.9 0.8 0.7

L1 error 3.34E−9 2.27E−9 1.49E−9 9.29E−10 5.46E−10

Order – 4.07 3.97 4.02 3.98

Nx = Ny = 200. T = 1

with g(t) = cos(π t/T )π . Both have the initial condition, which includes a slotted disk, a
cone as well as a smooth hump, see Figs. 6 (top left) and 7 (top left). To trace characteristics
backward in time in the SL framework, we use a fourth order Runge-Kutta method in solving
final value problems.

For the rigid body rotating problem, its period is 2π . In left panels of Fig. 6, we have
shown the results at a half period and one period. As we can see, the shape of the bodies are
well preserved. For the swirling deformation flow problem, after a half period the bodies are
deformed; and they regain its initial shape after one period, see left panels in Fig. 7. On right
panels, 1D cuts of numerical solutions are shown, benchmarked with the exact reference
solutions.

6 Numerical Tests of Nonlinear Systems

In this section, we test the conservative SL scheme, which is denoted as “Cons-SL”, on the
nonlinear VP system, the guiding center Vlasov system and the incompressible Euler system
in vorticity-stream function formulation. Despite different application backgrounds, the latter
two systems have indeed almost the samemathematical formulation, onlywith different signs
in the Poisson’s equation.

We will compare our conservative scheme to the nonconservative one [17], which is
denoted as “NonCons-SL”. For the nonconservative scheme “NonCons-SL”, we take 6th
order spatial reconstruction, which is 5th order accurate in space globally, and CFL = 1.15
the same as the conservative scheme.

6.1 Vlasov–Poisson System

Arising from collisionless plasma applications, the rescaled VP system [4,8,25] writes

∂ f

∂t
+ v · ∇x f + E(x, t) · ∇v f = 0, (6.1)

where
E(x, t) = −∇xφ(x, t). − �xφ(x, t) = ρ(x, t) − 1. (6.2)

The system describes the temporal evolution of the particle distribution function in six dimen-
sional phase space. f (x, v, t) is the probability distribution functionwhichdescribes the phase
space density of charged particles with velocity v at position x at time t , E is the electric
field, and φ is the self-consistent electrostatic potential. The probability distribution function
couples to the long range fields via the charge density, ρ(t, x) = ∫

Rdv f (x, v, t)dv, where dv

is the dimension in the velocity field, and we take the limit of uniformly distributed infinitely
massive ions in the background, whose charge density is assumed to be 1 (with mines sign)
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Fig. 6 Rigid body rotating problem. Mesh size: 128 × 128. Left: from top to bottom, time at T = 0, π, 2π
respectively. Right: from top to bottom, cuts at T = 2π along x = 0, y = π/4 and y = −5π/8
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Fig. 7 Swirling deformation flow problem. Mesh size: 128 × 128. Left: from top to bottom, time at T =
0, 0.75, 1.5 respectively. Right: from top to bottom, cuts at T = 1.5 along x = 0, y = π/4 and y = −5π/8

appearing in the Poisson equation (6.2). In this paper, we consider the VP system with 1-D
in x and 1-D in v and simply denote as (x, v) the coordinates in the phase space. Periodic
boundary condition is imposed in the x-direction, while zero boundary condition is imposed
in v-direction. The equations for tracking characteristics are

dx

dt
= v,

dv

dt
= E, (6.3)
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where the electric field E is now a scalar function and nonlinearly depends on f via the
Poisson system (6.2). To locate the foot of characteristics accurately, we apply the high order
procedure proposed in [18].

Next we recall several norms in the VP system below, which should remain constant in
time [10].

1. Mass:

Mass =
∫

v

∫
x
f (x, v, t)dxdv.

2. L p norm 1 ≤ p < ∞:

‖ f ‖p =
(∫

v

∫
x
| f (x, v, t)|pdxdv

) 1
p

. (6.4)

3. Energy:

Energy = 1

2

∫
v

∫
x
f (x, v, t)v2dxdv +

∫
x
E2(x, t)dx, (6.5)

where E(x, t) is the electric field.
4. Entropy:

Entropy =
∫

v

∫
x
f (x, v, t) log( f (x, v, t))dxdv. (6.6)

Tracking relative deviations of these quantities numerically will be a good measure of the
quality of numerical schemes. The relative deviation is defined to be the deviation away from
the corresponding initial value divided by the magnitude of the initial value. We also check
the mass conservation over time

∫
v

∫
x f (x, v, t)dxdv, which is the same as the L1 norm if

f is positive. However, since our scheme is not positivity preserving, the time evolution of
the mass could be different from that of the L1 norm due to the negative values appearing in
numerical solutions.

In our numerical tests, we let the time step size

�t = CFL min(�x/vmax ,�v/max(E)),

where CFL is specified as 1.15, and let vmax = 2π to minimize the error from truncating the
domain in v-direction. The spatial domain will be [0, L], where L = 2π

k with k being the
wave number appeared in the initial condition specified in the examples. In all examples, we
compare performance of conservative and non-conservative schemes, using the same set of
computational mesh, by comparing the evolution of relative deviations of norms mentioned
above.

Example 6.1 (Weak Landau damping) For the VP system, we first consider the weak Landau
damping with the initial condition:

f (t = 0, x, v) = 1√
2π

(1 + α cos(kx)) exp

(
−v2

2

)
, (6.7)

where α = 0.01 and k = 0.5. The length of the domain in the x-direction is L = 2π
k = 4π .

We take mesh size 128 × 128. In Fig. 8 (top left), we plot the time evolution of the
electric field E in L2 norm and L∞ norm. The results are comparable to those in [17]. The
relative derivation of mass, the discrete L1 norm and L2 norm, kinetic energy and entropy
are plotted in Fig. 9, and are compared to the results from the nonconservative scheme
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Fig. 8 Time evolution of the electric field in L2 norm and L∞ norm. Mesh: 128×128. Top left: weak Landau
damping; top right: strong Landau damping; bottom left: two stream instability; bottom right: symmetric two
stream instability

[17]. The mass and L1 norm will be the same when the distribution function f (t, x, v) is
alway positive, otherwise they are different. We can observe that the conservative scheme
“Cons-SL” preserves the mass exactly and also the L1 norm, which is much better than the
nonconservative scheme “NonCons-SL”. For the L2 norm, energy and entropy, “Cons-SL”
also preserves them better than “NonCons-SL”.

Example 6.2 (Strong Landau damping) The initial condition of strong Landau damping is
(6.7), with α = 0.5 and k = 0.5. Similarly we take mesh 128× 128 and in Fig. 8 (top right),
we plot the time evolution of the electric field in L2 norm and L∞ norm for “Cons-SL”. In
Fig. 10, we compare the relative derivation ofmass, the discrete L1 norm and L2 norm, kinetic
energy and entropy of “Cons-SL” and “NonCons-SL” schemes. Except entropy, “Cons-SL”
preserves those quantities better than “NonCons-SL”.

We also use this example to show the spatial and temporal accuracies of the conservative
schemeproposed in this paper. InTables 6 and7,we canobserve 5th order spatial accuracy and
almost 4th order temporal accuracy respectively. Here the errors are computed by comparing
to a reference solution on the mesh size 256 × 256 with CFL = 0.01. In order to measure
the temporal accuracy, 9th order linear interpolation and 9th order linear reconstructions are
used. As we can see that the temporal accuracy is almost one order higher than expected,
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Fig. 9 Preservation of conserved quantities for weak Landau damping. Mesh: 128 × 128

that is we use a third order scheme in tracking characteristics proposed in [18] and observe
higher than third order convergence in the table. Such phenomenon does not appear in the
nonconservative case [18], which might be due to some special cancellation in the flux
difference form.

Example 6.3 (Two stream instability) Now we consider the two stream instability problem,
with an unstable initial distribution function given by:

f (t = 0, x, v) = 2

7
√
2π

(1 + 5v2)(1 + α((cos(2kx) + cos(3kx))/1.2

+ cos(kx)) exp

(
−v2

2

)
(6.8)

where α = 0.01 and k = 0.5. We show the time evolution of electric field in L2 norm and
L∞ norm in Fig. 8 (bottom left) with a mesh of 128× 128. We plot the numerical solution at
T = 53 in Fig. 12 (left) with a mesh of 256×256. The results are comparable to those in [17].
The relative derivation ofmass, the discrete L1 norm and L2 norm, kinetic energy and entropy,
as compared to the nonconservative scheme, are shown in Fig. 11. “Cons-SL” preserves those
quantities better than “NonCons-SL”. Better performances in preserving norms are observed
for “Cons-SL”.
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Fig. 10 Preservation of conserved quantities for strong Landau damping. Mesh: 128 × 128

Table 6 Errors and orders for
strong Landau damping in
Example 6.2

Nx × Ny 16 × 16 32 × 32 64 × 64 128 × 128

L1 error 1.90E−4 8.45E−6 2.91E−7 9.04E−9

Order – 4.49 4.86 5.01

T = 0.1

Table 7 Errors and orders for
strong Landau damping in
Example 6.2

CFL 1.15 1.05 0.95 0.85

L1 error 1.34E−11 9.74E−12 6.53E−12 4.26E−12

Order – 3.49 3.99 3.84

Nx = Ny = 256. T = 0.1

Example 6.4 (Symmetric two stream instability)We consider the symmetric two stream insta-
bility with the initial condition:

f (t = 0, x, v) = 1

2vth
√
2π

[
exp

(
− (v − u)2

2v2th

)
+ exp

(
− (v + u)2

2v2th

)]
(1 + α cos(kx))

(6.9)
with α = 0.05, u = 0.99, vth = 0.3, k = 2

13 and L = 13π . The time evolution of the
electric field in L2 norm and L∞ norm are shown in Fig. 8 (bottom right). We plot the
numerical solution with mesh size 256 × 256 at T = 70 in Fig. 12 (right). These results
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Fig. 11 Preservation of conserved quantities for two stream instability with the initial data (6.8). Mesh:
128 × 128

Fig. 12 Left: two stream instability at T = 53, mesh: 256 × 256. Right: symmetric two stream instability at
T = 70, mesh: 256 × 256

are similar to those in [17]. The relative derivation of mass, the discrete L1 norm and L2

norm, kinetic energy and entropy, comparing ‘Cons-SL” and “NonCons-SL”, are reported in
Fig. 13. As observed in previous examples, “Cons-SL” preserves these quantities better than
“NonCons-SL”.
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Fig. 13 Preservation of conserved quantities for symmetric two stream instability. Mesh: 128 × 128

6.2 The Guiding Center Vlasov Model

The guiding center model is an approximation of the 2D Vlasov model [9,30] under a strong
constant external magnetic field, which can be written as

∂ρ

∂t
+ E2

∂ρ

∂x
− E1

∂ρ

∂ y
= 0, (6.10)

or equivalently in a conservative form as

∂

∂t
ρ + ∂

∂x
(ρE2) + ∂

∂ y
(−ρE1) = 0, (6.11)

where E = (E1, E2) = −∇� with � determined from the Poisson’s equation

�� = −ρ.

It is well-known that the mass, energy and entropy are preserved over time in the PDE level.

1. Mass:

Mass =
∫
y

∫
x
ρ(x, y, t)dxdy. (6.12)

2. Energy:

‖E‖22 =
∫
y

∫
x
‖E‖2dxdy. (6.13)
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Fig. 14 Kelvin–Helmholtz instability problem. Mesh: 256 × 256. T = 20 (left), T = 40 (right)

3. Entropy:

‖ρ‖22 =
∫
y

∫
x
|ρ(x, y, t)|2dxdy. (6.14)

Tracking relative deviations of these quantities numerically will be a good measure of the
quality of numerical schemes. In a SL framework, we adopt a third order high order charac-
teristic tracing scheme as proposed in our recent work [28]. For this problem, the time step
size is taken as

�t = CFL min(�x/max(E2),�y/max(E1)),

with CFL specified as 1.15.

Example 6.5 (Kelvin–Helmholtz instability problem) This example is the 2-D guiding center
model problem with the initial condition

ρ0(x, y) = sin(y) + 0.015 cos(kx) (6.15)

and periodic boundary conditions on the domain [0, 4π] × [0, 2π]. We let k = 0.5, which
creates a Kelvin–Helmholtz instability [22].

For this example, we take mesh size 256 × 256 and show the surface of the solution at
T = 20 and 40 in Fig. 14; the solution profiles are comparable to those previously presented
in other papers [9,28]. Then we take mesh size 128 × 128 and show the relative derivation
of mass, energy ‖E‖22 and entropy ‖ρ‖22 in Fig. 15. We compare them to the nonconservative
scheme [28] with 6th order space reconstruction and CFL = 1.15. For this example, “Cons-
SL” has exact mass conservation, while “NonCons-SL” does not. For the energy and entropy,
“NonCons-SL” seems to perform a little better.

6.3 Incompressible Euler Equation

The incompressible Euler equations in the vorticity-stream function formulation in two space
dimensions reads

ωt + ∇ · (uω) = 0, �ψ = ω, u =
(

−∂ψ

∂ y
,
∂ψ

∂x

)
, (6.16)
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Fig. 15 Preservation of conserved quantities for Kelvin–Helmholtz instability problem. Mesh: 128 × 128

where u = (u1, u2) is the velocity vector, ω = ∂u2
∂x − ∂u1

∂ y is the vorticity and ψ is a
stream function. The form is almost equivalent as the guiding center Vlasov model, up to
a sign difference for the field equation [28]. The conservation of mass, energy and entropy
shown in Eqs. (6.12)–(6.14) is the same as the guiding center model. We use the third order
characteristics tracing scheme, similar to that in the guiding center model, as presented in
our previous work [28]. Similar to the guiding center problem, the time step size is taken as

�t = CFL min(�x/max(u1),�y/max(u2)),

with CFL to be 1.15.

Example 6.6 We first consider the incompressible Euler system on the domain [0, 2π] ×
[0, 2π] with an initial condition ω0(x, y) = −2 sin(x) sin(y). The exact solution will stay
stationary with ω(x, y, t) = −2 sin(x) sin(y). Similarly as in Tables 6 and 7, the 5th order
spatial accuracy and 4th order temporal accuracy are clearly observed in Tables 8 and 9
respectively. Here in Table 9, in order to measure the temporal convergence, we use a 9th
order linear interpolation and 9th order linear reconstruction in space to minimize errors from
spatial approximations.
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Table 8 Errors and orders for the
incompressible Euler equation in
Example 6.6

Nx × Ny 32 × 32 64 × 64 128 × 128 256 × 256

L1 error 6.14E−4 2.10E−5 6.61E−7 2.04E−8

Order – 4.87 4.99 5.02

T = 1.2

Table 9 Errors and orders for the
incompressible Euler equation in
Example 6.6

CFL 1.15 1.05 0.95 0.85

L1 error 1.06E−12 7.39E−13 4.97E−13 3.21E−13

Order – 3.96 3.95 3.94

Nx = Ny = 256. T = 1

Fig. 16 Vortex patch problem. Mesh: 256 × 256. T = 5 (left) and T = 10 (right)

Example 6.7 (The vortex patch problem) In this example, we consider the incompressible
Euler equations with the initial condition given by

ω0(x, y) =

⎧⎪⎨
⎪⎩

−1, π
2 ≤ x ≤ 3π

2 , π
4 ≤ y ≤ 3π

4 ;
1, π

2 ≤ x ≤ 3π
2 , 5π

4 ≤ y ≤ 7π
4 ;

0, otherwise.

(6.17)

We show the surface of ω at T = 5 and 10 in Fig. 16. The mesh size is 256 × 256. The
results are similar to those in [19]. Then we take mesh size 128× 128 and show the relative
derivation of mass, energy ‖E‖22 and entropy ‖ρ‖22 in Fig. 15 (left). We compare them to the
nonconservative scheme [28] with 6th space reconstruction and CFL = 1.15. “Cons-SL”
has exact mass conservation, while “NonCons-SL” does not. For the energy and entropy,
“Cons-SL” performs better than “NonCons-SL”.

Example 6.8 (Shear flow problem) This example is the same as above but with following
initial conditions (Fig. 17)

ω0(x, y) =

⎧⎪⎨
⎪⎩

δ cos(x) − 1

ρ
sech2((y − π/2)/ρ)2, y ≤ π;

δ cos(x) + 1

ρ
sech2((3π/2 − y)/ρ)2, y > π.

(6.18)

where δ = 0.05 and ρ = π
15 . We show the surface of ω at T = 6 and 8 in Fig. 18. The

mesh size is 256× 256. The results are also similar to those in [19], which can also show our
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Fig. 17 Preservation of conserved quantities for the incompressible flow system. Mesh: 128 × 128. Left:
vortex patch; right: shear flow

multi-dimensional non-splitting conservative scheme can perform well. Then we take mesh
size 128 × 128 and show the relative deviation of mass, energy ‖E‖22 and entropy ‖ρ‖22 in
Fig. 15 (right). We compare them to the nonconservative scheme. Similar to the vortex patch
problem, “Cons-SL” has exact mass conservation, while “NonCons-SL” does not. For the
energy and entropy conservation, “Cons-SL” performs better than “NonCons-SL”.
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Fig. 18 Shear flow problem. Mesh: 256 × 256. T = 6 (left) and T = 8 (right)

7 Conclusion

In this paper, we propose a mass conservative semi-Lagrangian finite difference WENO
scheme based on a flux difference formulation. We investigate its numerical stability from
the linear ODE and PDE point of view via Fourier analysis. The upper bound of time step con-
straints have been found in the linear setting and have been numerically verified. These upper
bounds are only slightly greater than those from the Eulerian approach, unfortunately. The
schemes are applied to passive transport problems as well as nonlinear Vlasov systems and
the incompressible Euler system to showcase its effectiveness. The properties of the schemes
are verified numerically. In several circumstances the conservative scheme provides more
accurate solutions than the corresponding non conservative counterpart with the same dis-
cretization parameters. The development of conservative, large time step, multi-dimensional
semi-Lagrangian scheme is currently under investigation. If one is interested in using semi-
Lagrangian schemes with mass conservation, and with stability for large CFL numbers, the
discontinuous Galerkin method would be a good framework to use [1,2].
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