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where (z,t) = (@1,...,2N,1) = z is a point of R¥*+1 and 1 < mg < N. (a;;)

is a uniformly positive symmetric matrix with bounded measurable coeflicients,
(bij) is a constant matrix. We apply the Moser’s iteration method to prove the
local boundedness of the solution « under minimal integrability assumption on the
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1. Introduction

We consider second order partial differential operators of Kolmogorov Fokker Planck type of the form

mo
Lu(x,t) Z O (au €T t)d ) Z bija Oy u(x,t) — du(x, t)+

1=l o=t (1.1)

me mo

+Zb (z,8)u(x, t) Z@ (ai(z, t)ulz, 1)) + c(z, t)ulz,t) = 0,
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in some open set 2 C RV Here z = (x,t) = (x1,...,2n,t) denotes a point of RVt and 1 < my < N.

In the sequel we will use the following notation

Az, t) = (aij (z, t))15i,j§N )

where a;; is the coeflicient appearing in (1.1) for 4,7 = 1,...,mg, while a;; = 0 whenever ¢ > mg or j > ma.
Eventually,

a(z.t) = (a1(x,t), ..., amg(2,1),0,...,0), b(z,t) = (by(a,t), ..., bmy(x,1),0,...,0)

N

i,7=1
Then the operator % takes the following compact form
ZLu=div(ADu) + Yu+ (b, Du) — div (au) + cu.
Here and in the sequel
D= (0pyse-erOay), (), div, (1.3)
denote the gradient, the inner product, and the divergence in RY, respectively. In general, solutions to

Zu = 0 will be understood in the following weak sense.

Definition 1.1. Let {2 be an open subset of RY 1 A weak solution to .Zu = 0 is a function u such that
U, Dyou, Yu € L2 (2) and

loc
/ —(ADu, D) + @Y u + (b, Duyp + {a, Doyu+ cup =0, Vo € CP(L2). (1.4)
2

In the sequel, we will also consider weak sub-solutions to .#’u = 0, namely function u such that w, D, u, Yu €

LE (£2) and

loc
/ —{ADu, D)y + oY u + (b, Duyp + {a, Dp)u + cup > 0, Ve e C(N2), ¢ > 0. (1.5)
Ja
A function w is a super-solution of Zu = 0 if —u is a sub-solution.

We note that if u is both a sub-solution and a super-solution of Zu = 0 then it is a solution, i.e. Zu =0
holds. Indeed, for every given ¢ € C°({2), we may consider 1 € C§°(£2) such that ¢» > 0 and ) —¢ > 0 in
2. Therefore Zu = 0 follows by applying (1.5) to du.

We assume the following structural condition on #.

(H1) The matrix (ai;(z,t))

aji(x,t), 1 <i,j <mg, and there exists a positive constant A such that

ij=1. .mg 15 symmetric with real measurable entries. Moreover, aij (x,1) =

my

ATE < Y ()€ < Mg

1,7=1

for every (x,t) € RVT! and € € R™0. The matrix B = (b;;) v I8 constant.

i=1,..

Note that the operator % is uniformnly parabolic when mg = N. In this note, we are mainly interested
in the case mo < N, that is the strongly degenerate one. It is known that the first order part of % may
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provide it with strong regularity properties. To be more specific, let us consider the operator K defined as

follows:
my

N
Ku(x,t) Z (92 x,t) + Z bijriOy,u(x,t) — dpu(r,t). (1.6)
i,j=1
It is known that, if the matrix B satlshes a suitable assumption, then K is hypoelliptic. This means that, if
u is a distributional solution to Ku = f in some open set 2 of RVt and f € C°°(£2), then u € C°°(2) and
it is a classic solution to the equation.
The hypoellipticity of K can be tested via the condition introduced by Hormander in [11]:

0

T

rank Lie(0,

L1yt

Y)(x,t) = N+1, Y(z,t) e RN,

where Lie(d,,,. .. ,3Im” ,Y)(x,t) denotes the Lie algebra generated by the first order differential operators
(vector fields) (..., 0sz,,,,Y), computed at (z,t). We refer to E. Lanconelli and one of the authors [14]

for a characterization of the hypoellipticity of K in terms of the matrix B.
(H2) The principal part K of £ is hypoelliptic.

In Section 2, we recall a known structural condition on the matrix B equivalent to (H2). We remark that
if % is a uniformly parabolic operator (i.e. mo = N and B = 0), then (H2) is clearly satisfied. Indeed,
the principal part of % simply is the heat operator, which is hypoelliptic and homogeneous with respect to
the parabolic dilations dy(z,t) = (Ax, A*t). In the degenerate setting, K plays the same role that the heat
operator plays in the family of the parabolic operators. For this reason, K will be referred to as principal
part of Z.

The aim of this work is to prove LfS. estimates for weak solutions to £u = 0, by using the
Moser’s iteration method, under minimal assumptions on the integrability of the lower order coefficients
A1y Uy b1y oo by, ¢ The Moser’s iterative scheme [16,17] has been applied to degenerate parabolic
operator . with no lower order terms by Cinti, Pascucci and one of the authors in [20] and [6]. These
results have been extended to operators with bounded first order coefficients by Lanconelli, Pascucci and
one of the authors in [14] and [13], and to operators with first order coefficients belonging to some L? space
by Wang and Zhang [23].

Onur study has been inspired by the article of Nazarov and Uralt’seva [18], who prove L estimates and

loc
Harnack inequalities for uniformly elliptic and parabolic operators in divergence form that are those with

mg = N according to our notation. The authors consider uniformly parabolic equations in RV
L =div(ADu) + (b, Du) — dyu =0,

with by,....by € LY(RNFY). They prove that the Moser’s iteration can be accomplished provided that
N +2 < ¢ £ N + 2 relying on the condition divb > 0 to relax the integrability assumption on by, ..., by,.

Hele and in the sequel, the quantity divb will be understood in the distributional sense

/ w(x, t)divb(z, t)de dt = —/ (b(x, 1), Vo(x,t))dz dt,
2

9
for every p € C§°(£2). Of course, also the quantity diva will be understood in the distributional sense.

When considering degenerate operators, a suitable dilation group (6,),, in RN replaces the usual
parabolic dilation 6, (x,t) = (rz,r?t), and the parabolic dimension N + 2 of RV is replaced by a bigger
integer () + 2, which is called homogencous dimension of RN+ with respect to (5, ), o Our main result will
be declared in terms of this quantity, that will be introduced in Section 2.

As far as it concerns degenerate operators, Wang and Zhang obtain in [23] the local boundedness and the
Hoélder continuity for weak solutions to #u = 0 by assuming the condition by,...,b,,, € L9 (RN+1), with
q = @+ 2. Our assumption on the integrability of the lower order coefficients a;, b;, with i = 1,... mgy and
¢ is stated as follows:
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(H3) a;,b;,ce L (2), withi=1,...,mg, for some g > E(Q + 2). Moreover,

loc

diva,divb >0 in (2.

A comparison of our result with that of Nazarov and Uralt’seva is in order. It would be natural to expect
that the optimal lower bound for the exponent g is % Indeed, the difficulty in considering degenerate
equations lies in the fact that a Caccioppoli inequality gives an a priori L? estimate for the derivatives
Oy . .. =a:cmg u of the solution u, that are the derivatives with respect to the non-degeneracy directions of
Z. Moreover, the standard Sobolev inequality cannot be used to obtain an improvement of the integrability
of the solution as in the non-degenerate case. For this reason we rely on a representation formula for the
solution u first used in [20]. Specifically, we represent a solution u to .£u = 0 in terms of the fundamental

solution of K. Indeed, if u is a solution to Zu = 0 in {2, then we have

ulx,t) = /QF(:L‘,t,f,T)}Cu(f,T)d{ dr, (1.7)
where I" is the fundamental solution to K (see (2.19) and (2.20) in the sequel), and
Ku= (K —.%£)u=div ((Ay — A)Du) — (b, Du) + div (au) — cu, (1.8)
where we denote | o
el 9) »

where L, is the identity matrix in R™0, and @ are zero matrices. This representation formula provides us
with a Sobolev type inequality only for weak solutions to the equation Zu = 0. Specifically, we find that,
for every () CC (& CC {23 CC {2, there exists a positive constant ¢y (H blLa(2), 1, (Zg) such that

|u | p200) < e1 (Il @ lLagays | 0 Loy, | ¢ llnagey, 21, 922) || Dmgu [|12¢0,)

and, by considering v as a test function, we obtain the following Caccioppoli inequality

I Dyu HL2(92)§ C2 (|| a HL‘I(Q): | b HL‘?(Q)a | e HL'J(Q)a (s, 93) | u ||L26(93),

where 042
= 4 g
T Q-+ 2Q ) b= "7 (1.10)

As far as it concerns the Moser’s iteration, the above inequalities are applied to a sequence of functions

uy, == uPk, with pp — 400, in order to obtain an L bound for the solution w.

We note that, the Sobolev inequality is useful to the iteration whenever o > 1, and this is true if, and
only if ¢ > % Moreover, the condition ¢ > % is required by Nazarov and Uralt’seva in the proof of
the Caccioppoli inequality for non-degenerate operators. Since in our work both Sobolev and Caccioppoli
inequalities depend on the L? norm of a1, ..., dm,, b1, ...,bm,, ¢, Wwe require a more restrictive condition on
q to improve the integrability of w. Specifically, it we combine the Sobolev and the Caccioppoli inequalities,
we need to have o > 3, and this is true if, and only if ¢ > E(Q + 2), as we require in Assumption (H3).

We next state our main result. As we shall see in Section 2, the natural geometry underlying the operator
£ is determined by a suitable homogeneous Lie group structure on RV Our main result reflects this non-
Euclidean background. Let “o” denote the Lie product on RNt defined in (2.17) and {8, }r=0 the family of

dilations defined in (2.22). Let us consider the cylinder:
Q= {(z,t) e RV xR : || <1, [t|<1}.
For every z5 € RY*+1 and » > 0, we set

Q,(20) =290 (0,(Q1)) = {z e RN : 2 =2506,((),C € Q1 }.
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Sil

Theorem 1.2. Let u be a non-negative weak solution to Lu = 0 in (2. Let zg € 2 and 7, p, % <p<r<l,
be such that Q,.(z9) C 2. Then there exist positive constants C' = C'(p, \) and v = v(p, q) such that for every
p#0, it holds

(1.11)

.
= C (1+ e 1Zace, oy + 1 1Zaga oy + 1€ ””(QT(Z“”) u?
sup uf < (r — p)o(@+2) us,
QP(ZD) [ Qr(z0)

2
where v = 20?_ f, with « and 3 defined as in (1.10).

Remark 1.3. Estimate (1.11) is meaningful whenever the integral appearing on its right-hand side is finite.
Note that (1.11) is an estimate of the infirnumn of v when p < 0. More precisely, we have that

1 3 1
O (14 @ Baa, oy + 12 Baga, ey + I € Irac@rteon ) N7
sup u < 50T / u? , Vp > 0,
QP(Z(]) (’]" — p) P Qr(zg)
(1.12)
1 ) ) 1
- cr (H o Fiago, zon T 110 W Zaco,z0n + 1l ”L‘I(QT(ZO))) I
inf u > TCED) = ,  Vp <0,
Qp(z0) (r—p)~ 7 Qr(z) U
(1.13)
Corollary 1.4. Let u be a weak solution to Lu =0 in 2. Then for every p > 1 we have
v
) (1+ a2 acor oo + 118 130, o + I € lac@ncenn)
sup |ul — D) / [ul”. (1.14)
Q(z0) (r—p) Qr (20)

Proposition 1.5. Sub and super-solutions also verify estimate (1.11) for suitable values of p. More precisely,

(1.11) holds for

1.p> % orp < 0, if u is a non-negative weak sub-solution of (1.1);
2. p €]o, %[, if u is a non-negative weak super-solution of (1.1).

We conclude this introduction with some motivations for the study of operator .% in the form (1.1).
Degenerate equations of the form Zu = 0 naturally arise in the theory of stochastic processes, kinetic
theory of gases and mathematical finance. For instance, if (W), denotes a real Brownian motion, then
the simplest non-trivial Kolmogorov operator -

1
73'011 + 'an + ata t 2 (]7 (Uv I) S RQ

is the infinitesimal generator of the classical Langevin's stochastic equation that describes the position X
and the velocity V of a particle in the phase space (cf. [15])

dvy, = dWy,
dX, = Vidt.

Notice that in this case we have 1 = mg < N = 2.

Linear Fokker Planck equations (cf. [7] and [22]), non-linear Boltzmann Landau equations (cf. [15]
and [5]) and non-linear equations for Lagrangian stochastic models commonly used in the simulation of
turbulent flows (cf. [4]) can be written in the form

Z Ou; (1“&) i3 +ZUJ8 f+of=0, t>0,veR", xecR" (1.15)

i,j=1
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with the coefficients a;; = a;;(t, v, z, f) that may depend on the solution f through some integral expressions.
Tt is clear that Eq. (1.15) is a particular case of Zu = 0 with n = mg < d = 2n and

(2 5)
L, O,
where I,, and ©,, denote the (n x n)-identity matrix and the (n x n)-zero matrix, respectively.

In mathematical finance, equations of the form %u = 0 appear in various models for pricing of path-
dependent derivatives such as Asian options (cf., for instance, [3,19]), stochastic velocity models (ef. [10,21])
and in theory of stochastic utility (cf. [1,2]).

This note is organized as follows. In Section 2 we recall some known facts about operators £ and K,
and we give some preliminary results. In Section 3 we prove Theorem 3.1 and Proposition 3.2, which is an
intermediate result (Caccioppoli type inequality for weak solutions to .Zu = 0) needed for the bootstrap
argument. Finally, in Section 4 we deal with the Moser’s iterative method.

2. Preliminaries

In this Section we recall notation and results we need in order to deal with the non-Euclidean geometry
underlying the operators & and K. We refer to the articles [6] and [14] for a comprehensive treatment of
this subject. The operator K is invariant with respect to a Lie product on RN+, More precisely, we let

E(s) = exp(—sB), seR, (2.16)
and we denote by £, ( € RN the left translation £¢(z) = (o z in the group law
(@,8) 0 (6,7) = (€ + E(Ma,t +7),  (a,6).(¢,7) € RV, (2.17)

Thus we have

Kot, =t oK.
This means that, if v(z,t) = u((&,7) o (2,1)) and g(z,t) = f((£,7) o (x,1)), we have
Ku=f <+—= Kv=g.

We recall that, by [14] (Propositions 2.1 and 2.2), assumption (H2) is equivalent to assume that, for some

basis on RY, the matrix B has the canonical form

By % ... % %
O 0O ... B, =

where every By is a my X my—1 matrix of rank my;, j = 1,2, ..., k with

K
mo>=my > - >m, > 1 and E mj; =N
J=0

and the blocks denoted by “*7 are arbitrary. In the sequel we shall assume that B has the canonical form

(2.18).
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We denote by I'(-, ¢) the fundamental solution of K in (1.6) with pole in ¢ € R¥*1. An explicit expression
of I'(+, ¢) has first been constructed by Kolmogorov [12] for operators in the form (1.15), then by Hormander
in [11] under more general conditions

I(z,0)=I(C " 0z0), Vz¢eRNT 22 (2.19)
where N
(4m) 2 D T WA U if
((@.4),(0,0)) = Ui exp (—1(07 N (B)x,2) — 11x(B)) . ift >0, (2.20)
0, ift <0,
and

C(t) = /[; E(s) Ag E*(s) ds,

where E(-) is the matrix defined in (2.16). Note that assumption (H2) implies that C(t) is strictly positive
for every ¢t > 0 (see [14], Proposition A.1).

Among the operator K where the matrix B is of the form (2.18), the ones for which the *blocks are
equal to zero play a central role. Indeed, let us consider the principal part operator K = A,,, + Yo, where
Yy = (Bgx, D) — 8; and

o o0 ... 0 O
B, O ... O O
@ O ... B, O

The operator Ky is invariant with respect to the dilations defined as

0, = diag(rlL,y,, ’!'3]Im1, N i ) r > 0. (2.22)

In order to explain the importance of this invariance property we introduce for every positive r the scaled
operator

K, =r> (57‘0}C05%),

In order to explicitly write K, we note that, if

Byoy Boi ... DBok—1 Box
B1 Bix ... Beoia Bea

B=| 0O By ... Biaa Bep|, (2.23)
© O .. B. B..

where B; ; are the m,; x m; blocks denoted by “ 7 in (2.18), then we can rewrite K, as follows

K, =div(AgD) + Y, (2.24)
where
Y, = (B, x, D) — 0, (2.25)
and B, :=r?D, BD1, i.ec.
r*Boo r*Boi ... 1*Bys1 2By,
B]_ ’I"2B1‘1 [P ’."2H72BH_1=1 T'QHBR‘]_
B, = Q Bs e ’."2R_4BH,1,2 'I'ZH_QBH,Q

0 o .. B, 2B, .

)
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Note that
B, =B for every r > 0

if, and only if B;; = Q with j < k. In this case, if v(z, 1) = u(6,.(2,1)) and g(z,t) = f(J,(x,1)). then
Ku=f «<— Kv=r%g.

Since Kjp is the blow-up limit of K., the dilation group (4,),~0 plays a central role also for non-dilation
invariant operators.

We next introduce a norm which is homogeneous of degree 1 with respect to the dilations (d,),~0 and a
corresponding quasi-distance which is invariant with respect to the translation group for the case of *-blocks
equal to zero.

Definition 2.1. Let «q,...,anx be the positive integers such that

diag (7‘“1, e TN 7‘2) = 0.

If || z ||= 0 we set z = 0 while, if z € R¥*1\ {0} we define || z ||= r where r is the unique positive solution
to the equation
x? x5 %, 12
200 20 +-+ 2oy + f_4 =1
We define the quasi-distance d by
d(z,w) =z Yow |, zweRNTL

Remark 2.2. The Lebesgue measure is invariant with respect to the translation group associated to K, since
detE(t) = ettraceB — 1 swhere E(t) is the exponential matrix of Eq. (2.16). Moreover, since dets, = r@+2,
we also have

meas (Q,.(z)) = r® " meas (Q;(z)) , Yr>0,2 € RVFL

where
Q=mp+3mq+---+ (26 + 1)m,. (2.26)

The natural number @Q + 2 is usnally called the homogeneous dimension of RN+ with respect to (6,)r>0.

Remark 2.3, The norm | - || is homogeneous of degree 1 with respect to (d,),q, that is
| 6p(x,t) = p || (z,t) || Vp >0 and (z,t) € RN

Actually in RV all the norms, that are 1-homogeneous with respect to (6,.),-0, are equivalent. In particular,
the norm introduced in Definition 2.1 is equivalent to the following one

1 1 1
I @t) = loa] 5 4+ o] =+t

where the homogeneity with respect to (8,),-¢ can easily be showed. We prefer the norm of Definition 2.1
to || - |l1 because its level sets (spheres) are smooth surfaces.

When Ky is dilation invariant with respect to (4, ),~0, also its fundamental solution [ is a homogeneous
function of degree —(@), namely

T (6,:(2),0) =r=9 I (2,0), VzeRYT\ {0}, r > 0.

This property implies an LP estimate for Newtonian potential (c. £. for instance [8]).
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Proposition 2.4. Let o €]0,Q + 2[ and let G € C(RN 11\ {0}) be a §\-homogeneous function of degree
a—Q—2. If f € LP(RN*Y) for some p €]1, +o0|, then the function
Gyl2)= [ G oFOL
. RN+1

is defined almost everywhere and there exists a constant ¢ = ¢(Q, p) such that

| Gy ||LLI(RN+1)§ ¢ I?\[Zi |G| | f HLP(RNH)v

where q is defined by

1_1 %
g p Q+2

It is known that homogeneous operators provide a good approximation of the non-homogeneous ones. In
order to be more specific, let us consider a homogeneous operator of the form

Ko = div(AgD) + (Box, D) — &y,

where By is the matrix in (2.21), and denote by [y the fundamental solution of Ko. If I" denotes the
fundamental solution of K defined in (2.20), then, for every M > 0, there exists a positive constant ¢ such
that 1

;Fa < I'(z) < ely(z) (2.27)

for every z € RN+ guch that Iy(z) > M (see [14], Theorem 3.1).
We define the I'textit potential of the function f € L'(RN*1) as follows

rNE = [ TEOfQL se RN (2.28)

We also remark that the potential I'(Dy,, f) : RV+L 5 R™ is well-defined for any f € LP(RN*1), at
least in the distributional sense, that is

P(Dof)(2) = f D I'(,€) F(€) d. (2.20)

RN+1

where D-,(—E()]F(.’I:, t,&,7) is the gradient with respect to &1, ..., &m,. Based on (2.27), in [6] are proved potential
estimates for non-dilation invariant operators.

Theorem 2.5. Let f € LP(Q,). There exists a positive constant ¢ = ¢(T, B) such that

| I'(f) lep=(a,) S|l fllerion): (2.30)
| I'(Ding ) o0y < e fllercon): (2.31)
P e L1 1 1 1 2
where Frial-t owe and = p O3

We can use the fundamental solution I" as a test function in the definition of sub and super-solution. The
following result extends Lemma 2.5 in [20] and Lemma 3 in [6].

Lemma 2.6. Let v be a non-negative weak sub-solution to Zu = 0 in 2. For every ¢ € C5°(2), ¢ = 0,
and for almost every z € RNt we have

/Q —(ADv, D(I'(z,-)p)) + L'(z, - )pYv+
— {a,D(I(z,)p))v — (b, D(I'(z,)e))v + cul (z,-)p > 0.

An analogous result holds for weak super-solutions to £u = 0.
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Proof. We define the cut-off function x,, € C*(R™")

0 it s=r , 2
Xpr(s) = = x| < —— 2.32
Xp.r(s) {1 if 0<5s<p, ‘X"’l r—p ( )
with % < p < r < 1. Moreover, for every € < 0 we define
Ye(a,t) = 1 — xee (| (2, |])- (2.33)

Because v is a weak sub-solution, then by (1.5) for every ¢ > 0 and z € RV ! we have
0< L o K ADTM D(F(Z, )QO(C)Q/}E(Z? )) ) + F(Z, ')QO(C)’C:IJE(Zv ) YU} dC
+ [ 10,20 P )0l + 0 D))o+ e T Y€ )] G
— —Il’s(z) + IQ‘E(Z) — Ig‘g(z) -+ 1475(2) -+ 15,5(21)
where
he) = [ (ADv.DI() JolObla.0) de
Re(e) = [ T(90(0) (=(ADv,Dp(C) )+ 9OV ) dC
Be(2) = [ (AD0.D (2,1 () de
Ii.(2) = / (b, Dv) I'(z, ) p(()he(z, ) dC + / (a, D(I'(z,)p)yvdC
Ja Q
o) = [l )p0u(z0) d

Keeping in mind Theorem 2.5, it is clear that the integral which defines I; .(z), i = 1,2,3 is a potential and
it is convergent for almost every z € RV *1. Thus, by a similar argument to the one used in [20] to prove
Lemma 2.5 (pg. 403 — 404), we get that for almost every z € RV

e—0T

lim Ir.(2) = /ﬂ (ADw, D(I'(z,-)))e(C) dC
li Loo(2) = [ 1) (- (AD0.Do(O) +9(OY0) ¢

e—0t

lim I3.(z) =0.

e—0t

Let us consider the term Iy .. We integrate by parts and we consider assumption (H3):
L.= fﬂ divh (2, ) p(C)xe (2 Jo dC — [ﬂ (b, D (12 )6 (C)xe(z) Y v dC
[Q diva I(z,)p(O)xe(z, Yo dC — /Q (a, D (I (2, ) (O)xe(2,)) ) 0 dC
<= [ (DG IPONL) vde = [ (0. DI NRAON:( ) v

We are left with the estimate of a potential and in order to do so we would like to use Theorem 2.5. Because
ai, by € LI (2), with i =1,...,mp and v € L} (), we have that

lal |7'(z, )l @l 1Dmqgul, B[ (z, )| o] [Dmgvl € Lige(£2)
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where « is defined as in (1.10). This yields, for every € > 0

[{a, D (L'(z,)9(C)xe(z,) ) o] < [(a, D(I(2.)9(Q)) ) vl € Lioe(£2),
{6, D (I'(2,)@(Oxe(2:)) ) vl < (0, D (L'(2,)0(C)) ) vl € Lige(£2).

Thus, by the Lebesgue convergence theorem, we get for a.e. z € RV+!

lim {/;? —{b, D (I'(z,)p(C)xe(z,¢)) Yy vdC — / (a,D (I (z,)p(C)xelz,))yv| dC =

=0t J 02

—— [ (D00 v [ (0. DR v
2

i¢]

Now, we are left with an estimate of the term I5 ., which is a I'-potential such that

el [7(z, )] |l [v] € Lige(£2).

loc

Thus, we have that
‘(:’U,F(27 ')‘P(C)/(/-I)E(Z: )‘ < |CU'F(Z) )@(C)l € Llloc(‘Q)

Then we can apply the Lebesgue convergence theorem and we get for a. e. z € RV*!

lim fﬂm:F(z,-)(p(C)XE(z,C)dC :./ col'(z,)p(()d¢. O

=0+ 0

3. Sobolev and Caccioppoli inequalities

In this Section we give proof of a Sobolev inequality and a Caccioppoli inequality for weak solutions to

ZLu = 0. We start considering the Sobolev inequality and we remark that it holds true for every g > %

Theorem 3.1 (Sobolev Type Inequality for Sub-Solutions). Let (H1)-(HZ2) hold. Letay,. .., amq, b1y - bmgs
c € L (12), for some q > (Q + 2)/2, and diva,divb > 0 in 2. Let v be a non-negative weak sub-solution
of Lu =0 in Q. Then there exists a constant C' = C(Q,\) > 0 such thalt v € LE*(Q1), and the following

statement holds

1
[ vl L2e (0, (20 SC - (I a|lLa(orzo)) + 11 0 llLacor(zgy) +1+ ,p) | Dv [[r2(g, (=) +

p+1

+ 0 (1€ luncoron 52

) 1o iy

for every p,r with % < p<r<1and for every zg € 2, where a = «a(q) is defined in (1.10).

Proof. Let v be a non-negative weak sub-solution to Zu = (0. We represent v in terms of the fundamental
solution I'. To this end, we consider the cut-off function y, , defined in (2.32) for % < p <r <1 Then we

consider the following test function

U(@,t) = Xpr ([l (2,8) ) (3.34)
and the following estimates hold true
Y| < —2  |9pd| < — forj=1,...,m0 (3.35)
o —p) Sy
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where ¢, ¢ are dimensional constants. For every z € @, we have
v(2) = vi(z) (3.36)
= [ D), DI (=) = I )Y ()] Q)
= Ig(;) + Ii(z) + L(z) + I3(2)

where

In(z) = — / [{a, D(I(z,)))v] (Q)d¢ — [Q [{(b, D(¢(z,-)))v] (¢)d¢ + / [cvI'(z, )] (C)dC

Qr

2 :/Q (Ao Dy, DI'(z,-))v] (()d¢ — ] [1'(z, )oY 9] (QdC = I} + I,

T

z)/Q [({(Ag — A)Dv, DI'(z,))¥] (¢)d¢ — f [L'(z,-)(ADw, D] (¢)d¢
2 fg [{ADv, D(I'(z, )¢ )] ()dC f/ [(L(2,-)¢) Yol (()dC +

QT
+ / [{a, D(I'(z,-)))v] (C)d¢ + / [(b, D(I'(z,-)1))v] (C)dC — / [evI(z,-)] (C)dC
T - Qr - Qr
Since v is a non-negative weak sub-solution to Zu = 0, it follows from Lemma 2.6 that I3 < 0, then
0<wv(z) <Iy(z)+ I(2) + I2(z) forae ze Q,.

To prove our claim is sufficient to estimate v by a sum of I'-potentials.
We start by estimating fy. In order to do so, we recall that

2
{(a, Dv), (b, Dv), cv € L’ forbe LY g> @ and Dv € L.

Thus by Theorem 2.5 we get
I % {a, Do), ' (b, Dv), I' % (cv) € L*®,

where @ = a(q) is defined in (1.10). When ¢ < (Q + 2) we have that o < 2**. Moreover, thanks to estimate
(2.30), we have

[ 1o(C) llz2a(0,) < meas(Q,)* || Io(¢) 2% (g,

— meas(Qp)ﬂQ || I % (((L, DT,LO’U)I/)) + "% ((b, D"LO'(J)’L/;T) + I« (co) HLQH(QP)

<C-(lallragy + 10 llzace,)) I| Dmgv l2(g,) +C- I ¢ llLace)ll v llL2(q,) -
We prove an estimate for the term I;. I] can be estimated by (2.31) of Theorem 2.5 as follows

C
153 l[2a0,) < C I T om0,y S €l vDmg ¥ [l L2@n+1y< = v llL2e,)

where the last inequality follows from (3.35). To estimate I7 we use (2.30)

| Iy ||L2°(Qp) <c|r HLZ*(Q < meaS(Q/))Q/Q | Iy ||L2**(Qp)

C
SO oYY [|p2@nen< o —p) || v |2, -

We can use the same technique to prove that

1
I I 20, < € (1 4 ) | Do 120,

for some constant C' = C(Q, \).
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A similar argument proves the thesis when v is a super-solution to Zu = 0. In this case we introduce the

following auxiliary operator
K =div(AgD)+Y, Y = —(x, BD) — 8. (3.37)
Then we proceed analogously as in [20], Section 3, proof of Theorem 3.3. [

Finally, we give proof of a Caccioppoli inequality for weak solutions to Zu = 0.

Proposition 3.2. Let (H1)-(H3) hold. Let u be a non-negative weak solution of Zu =0 in Q. Let p € R,
p#0, p#1/2 and let r, p be such that % < p <r < 1. Then there exists a constant C' such that

1

" | Dv Hig(gp)é
Jfor 1, c
|22 (r—p)2  r—p

P
(L4 lallzaen + 1B lzaen) + 5 e llzaen | v 7260,y
where 3 = [(q) is defined in (1.10).

Proof. We consider the case p < 1, p # 0, p # 1/2. First of all, we consider a uniformly positive weak
solution u to .Zu = 0, that is u > wg for some constant uy > 0. For every ¢ € C5°(Q,) we consider the
function ¢ = w??~14?. Note that ¢, D, p € L*(Q,), then we can use ¢ as a test function in (1.4):

0= / (—(ADU, D ') + u®P Y u 4 (o, D(w® %)) u + (b, Duyu "p* + cu2p'{[)2)
Let v = wP. Since u is a weak solution to .Zu = 0 and u > ug, then v, Dy, v, Yv € L3(Q,):

0= —/ (l — i) (ADv, Dv)y* — / (ADv, D))ot + i.[ Y (v?)y?
™ QT

2p Jo,

- [ divav?y? — %/ {a, D(v*))* + i/ (b, D(v?*))p? + g/ cv?yp?.
P T Qr QT

r

Because of assumption (H1) and by definition (3.34) of the cut-off function >, we get the following inequality

1 /2p—1
S +e [ |D’l)"2 < (3.38)
A 2p 2,
! 1
= ng/\(',-_cp)2_/?ﬂ(”|2 - /T(h"”"UQ‘/JZ - 4‘/T((J.,D('02))1/:2 T
A
L | 1
1 (b, D(w))* | + E cvip? | | = Y (v?))?
o 2 Jo, 4 Jo,
B c b

where £ is a positive constant coming from the application of the Young’s inequality. In the following we are
going to consider exponents o = a(q) and 3 = 3(g) defined in (1.10). Now we need to estimate the boxed

terms.
Let us consider the term A, by Assumption (H3) and a classic Holder estimate we have that
B 9o 1 S22 3 9o 1 N ] a2
diva vy (a, D(v=))) < divav®y® + |(a, DY) 1] v
Jo, 1 /o, | 1/, 2 /o,
¢ 2
= | a HLq(Qr)” v HLzﬁ(gr) .

r—p
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Let us consider the term B. Thus, by Assumption (H3) and a classic Holder estimate we have that

IA

1 2 2
ZLT (b, D(v*))

1 1

— — vipidivh + = |(b, D) ||k |v?
1/e, 2 /o,
C

r—p

IA

10 lzacon v 12200, -

Let us consider the linear term C. We estimate it via a classical Holder estimate:

P 2 92 D 2
§/Tm; v <5 lellzaen 10 128, -

c

As far as it concerns the term D, we begin considering the following equality:
Y (0?) = Y (p%0?) — 20%pY .

Since by the divergence theorem Dy = 0 (v%4)? is null on the boundary of Q,.), we get

T, e = piema= [ vt [

4 . T
D

M2
UTL#YI[J <

2
= plr—p) Iz -

Thus we have

1 2[)— 1 2 C 1 C 9
3 D < [— 1
A ( 2p + E) | Do HLQ(QP) = (45/\ (r—p)2 + [)(‘r‘—p)) | v HLQ(QT) +

P
(Il llzaen + 1t llzaen) 1 172,y +5 Il llzaenllv 2o, -

rT—p

By choosing ¢ = 2%} and considering that 3 > 2 we have that

1

1 1 DvliZag,) < (3.39)
Cp 1 C 4 2

< {2/\ CE + — (1+ llallzacey + 10 llzacen) + 3 lellzan | v l28q,) -

The previous argument can be adapted to the case of a non-negative weak solution to Zu = 0. Indeed,
we may consider the estimate (3.39) for the solution u + %, n €N,

1 1"
— / D (u + —)
A 2, n

1
Cp 1 C p 1\ *
< | — 1 t e y — .
< L,)‘ - (1+ 1l a llzacen) + 11 b llLacen) + 5 ¢ LQ(QT)} (/QT <“+ ”)

We let n go to infinity. The passage to the limit in the first integral is allowed because

P
‘ (U 1 )
n

_a_
For the second integral we rely on the assumptions u? € L?(Q,.) and u? € L7 1 (Q,).

2
<

1\"! .
=p (u + —) |Du| 2 |DuP|, Vp<1, n— oo.
n

Next, we consider the case p > 1. For any n € N, we define the function g, , on |0, +o00[ as follows

(s) sP, if 0<s<mn,
Yn,p\S) = , _ ”
r nP +pnP (s —n), if s>n,
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then we let

Note that
Yn,p < Cl (R+), _(].:L’_p € Lm(R+)

Thus since u is a weak solution to .Zu = 0, we have
2 2 2
Un,p € le:= DU”:P € Llom Y’U"ap € Lluc'

We also note that the function

" () plp—1)sP72 if 0<s<n
o (8) =
n.p 0, if s > n,

is the weak derivative of g;, ,, then Dg;, (u) = g;; ,(u)D(u) (for the detailed proof of this assertion, we refer
to [9], Theorem 7.8). Hence, by considering

¢ = gn,p(u) Q;L,p(u) "/)27 v e C®(Qr)

as a test function in Eq. (1.4), we find
0= /Q —(ADu, D) + oY u — divaug — (@, Du)p + (b, Du)p + cup
S
= /Q — (g ()2 Y ADw, Du) — g1 (1) g p(w) 6> (ADu, Du) — 26(ADu, Dign () gl () +
J
+ /Q Gnp() g, (WY Yu — divaugn ,(u) g, , () — (@, Du)p*g, () g, ,,(w)+
1
b DU 0) 1 00 + ) 1
1

Since v = gy, »(u) we have that the following equality holds:

0= / —'1])2(AD'UHJ,, Duy ) — gﬁp(u) .q,,b,p('ti)wz(AD'rL, Du) N 200 ({ADvy, p, Dpyvy, p+

1 1
+ [ 5&/)2 Y('Uip) +|divea (21)341#)2 — UG p(u) g;"p(u)’qﬁ) —divb ’Uijp’l/)Q

1 21\, 2 21\, 2 2
+ / 5((1,, D(*)yvy. , — (b, D(V*))vi, , + cugn p(u) gy, , (u)r?.
Since g,, ,,(u) > 0 we have that the boxed term A is non-negative. Moreover, by Assumption (H3) the boxed
term B is non-positive. Thus, by considering Assumption (H1) and by choosing € = ﬁ we have that

1 2 _Cp 1 2 1 21\, 2 2y, 2 / 2
- Dy, | < —“— — _ Unp —{a, D) vz — (b, D(*) vz + cugy, ,(u) gl (u)
3 /'QT Unpl” < TN CIE '/‘QT [vnp|” + 2(& (v ))(},L,p (b, D(¢ ))Un‘er(u_q plu) grw(u)dj

Since 0 < vy, < wP and
|Dv,, | T | DuP|, asn — 0o,

we get from the above inequality

1 2 Cp 1 n12 1 2 2 2 2. 2 2
- R it u? “la. D> )\u2P D2NuZP 2P
3 ‘/T | Du?| I\ (= p)? /T [uP|™ + 2((1‘D(1/) Nu (b, D(¢*))ut + ew™y

and we conclude the proof as in the previous case. [
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4. The Moser’s iteration

In this Section we use the classical Moser’s iteration scheme to prove Theorem 1.2. We begin with some
preliminary remarks. First of all, we recall the following Lemma, whose proof can be found in [6], Lemma 6.

Lemma 4.1, There exists a positive constant ¢ € J0, 1] such that
zZO0 QET'(T‘—p) g er (440)
forevery0 <p<r<1landzecQ,.

We are now in position to prove Theorem 1.2.

Proof of Theorem 1.2. It suffices to give proof in the case zy = 0, r €]0,1] and 0 < p < r. Combining
Theorems 3.1 and 3.2, we obtain the following estimate: if s,4 > 0 verify the condition

s —1/2)> 4,
then, for every p,r such that % < p < r <1, there exists a positive constant C such that

Iu* llL2e(o,) < C (.4 [l @ llzacens | b llpacans Il € llLacen) I 1260, (4-41)

where

1
C (s, M allzacen, 10 Loy Il ¢ llzacen) = Cls,X) (14 I allzaco,) + I b llzaen) e lago,) +

3
CN) (1+ |l a[lpaco,) + 10 lLage,))® C :
+ ( ( ); @) + 5 (L[l allzace, + (10 llLaen)? +
(r—p)2 (r—p)2
C(s) 1 1 C(s)
+ —, (1+ lallraen + 10 llzacen +AZ ¢ l|fag,) | + ek

We remark that the previous constant C' can be estimated as follows

Cls, Ml allpaceny: 10 llLagen Il € lrace,)) < (4.42)
K()\, ) (1+ a2, + 18 12ago, + Il € |\Lq(gr))

2
(f)'n - Pn+1)

Fixed a suitable § > 0, we shall specify later on, and p > 0 we iterate inequality (4.41) by choosing

1 I
Pn=p+ o0 (r—p), Pn =" 2[—23?, ne NU{0}.

P
Then we set v =u2F. If p > 0 is such that
lpa™ — 3| > 234, Vn € NU {0}, (4.43)
by (4.41) and estimate (4.42) we obtain the following inequality for every n € NU {0}

KO (140 Bao,) + 10 a0, + Il ¢ lzace,))

2
(pn — anrl)

” v ||L2°‘(Qpn+1) < “ G ”Lzﬁ(gpn) - (444)

Since
v n

n
I " | 2a= (]| v HLZQnH)a and I " I 26= (|| v || p2an )’
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we can rewrite Eq. (4.44) in the following form for every n € NU {0}

1
ot

EOp) (14 110 Baon + 110 I3u0,) + Il ¢ lzncen))

2
(Pn — anrl)

10 gt ) 0l 0

Tterating this inequality, we obtain

1
s o2(i+1) \ o
v n < . .
| (t=5)
1

(BOup) (14 @ Bago, + 16 Ragen + Il ¢ lraien )™ 110 2o,

and letting n go to infinity, we get

sup v v -
wo < o 10 s,

2ex

7 and

where p =

T 1

K = H (K(/\ap) (1+ | a ”%,Q(Qr) + b HQL‘I(QT) + e ”L'J(Q,-))) o

=0

is a finite constant dependent on &. Thus, we have proved that

£\
supu? < | ———— / uP, (4.45)
R (r—p) Jo,

for every p which verifies condition (4.43). Because
(Q+2) < 261 < 9(Q+2)

we get estimate (1.11). We now make a suitable choice of § > 0, only dependent on the homogeneous
dimension ), in order to show that (4.43) holds for every positive p. We remark that, if p is a number

of the form
a™(a+1)

P = 27 , me Z,
then (4.43) is satisfied with
lg — (Q+2)|
§= w, Vm € Z.

Therefore (4.45) holds for such a choice of p, with K only dependent on Q, A and || a ||za(g,), || b [|za(0,)
| ¢ lLe(g,)- On the other hand, if p is an arbitrary positive number, we consider m € Z such that

Pm S P < Pm+1- (446)

Hence, by (4.45) we have

28 1 28

E \™ o) 7 E \™ 2\ 7
supu < [ ———— ( / u”m) < | —— ( / uP )
o, (r—p) Jao, (r—p)» Jo,

so that, by (4.46), we obtain
- 2a3
P K / P
supu” < | ——— U
Qp (r—p)* Jo,
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This concludes the proof of (1.11) for p > 0. We next consider p < 0. In this case, assuming that u > ug
for some positive constant ug, estimate (1.11) can be proved as in the case p > 0 or even more easily since
condition (4.43) is satisfied for every p < 0. On the other hand, if u is a non-negative solution, it suffices to
apply (1.11) to u + %, n € N, and let n go to infinity, by the monotone convergence theorem. [

As far as we are concerned with the proof of Corollary 1.4, it can be straightforwardly accomplished
proceeding as in [20, Corollary 1.4]. Moreover, Proposition 1.5 can be obtained by the same argument used
in the proot of Theorem 1.2. For this reason, we do not give here the proof of these two results.

We close this Section recalling that Theorem 1.2 also holds true in the sets

Q, ((wo,to)) == Qr((wo, o)) N{t < to}, (4.47)

in the case of non-negative exponents p. This result is analogous to [16], Theorem 3 (see also inequality (67)
of Lemma 1 in [17]) and states that, in some sense, every point of Q () can be considered as an interior
point of Q; (zg), when p < r, even though it belongs to its topological boundary.

Proposition 4.2. Let u be a non-negative weak sub-solution to Lu =0 in 2. Let zy € 2 and r, p, % <p<
r < 1, such that Q, (zy) € 2 and p < 0. Then, for every p > 1 there exist positive constants C = C(p, \)
and v = v(p,q) such that it holds

5
. C (14 1@ ooy + I Zagan ey + Il ¢ liaterczan ) p 1
sup u” < )@ o (4.48)

Q, (z0) f < (=)

2{12[)'

where v = with o and 3 defined in (1.10), provided that the integral is convergent.

a—1"7

The proof of the above Proposition can be straightforwardly accomplished proceeding as in Proposition 5.1
in [20], and therefore is omitted.
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