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Abstract: Traditional methods for early detection of melanoma rely on the visual analysis of the skin lesions performed by a
dermatologist. The analysis is based on the so-called ABCDE (Asymmetry, Border irregularity, Colour variegation, Diameter,
Evolution) criteria, although confirmation is obtained through biopsy performed by a pathologist. The proposed method exploits
an automatic pipeline based on morphological analysis and evaluation of skin lesion dermoscopy images. Preliminary
segmentation and pre-processing of dermoscopy image by SC-cellular neural networks is performed, in order to obtain ad-hoc
grey-level skin lesion image that is further exploited to extract analytic innovative hand-crafted image features for oncological
risks assessment. In the end, a pre-trained Levenberg–Marquardt neural network is used to perform ad-hoc clustering of such
features in order to achieve an efficient nevus discrimination (benign against melanoma), as well as a numerical array to be
used for follow-up rate definition and assessment. Moreover, the authors further evaluated a combination of stacked
autoencoders in lieu of the Levenberg–Marquardt neural network for the clustering step.

1 Introduction
The early detection of skin cancer, specifically, the so-called
melanoma, is one of the main issues addressed by medical
oncologists and dermatologists, as the probability of full
oncological remission is strongly correlated to early detection. A
robust and efficient approach for nevus discrimination is currently
under investigation by physicians and bio-medical engineers with
the aim to develop a non-invasive ‘Point of Care (PoC)’ for real-
time skin cancer detection. Both oncologists and dermatologists
make use of a heuristic approach to evaluate skin lesions by the
visual inspection of dermoscopy images, also known as ABCDE
(Asymmetry, Border irregularity, Colour variegation, Diameter,
Evolution). The ABCDE assessment of the nevus is based on
physician experience and background. Clearly, this strategy suffers
from clinician subjectivity such as low sensibility and specificity;
often it is required a nevus invasive biopsy to confirm the
diagnosis. In order to address this issue, this paper proposes an
automatic skin lesion pipeline based on the analysis of dermoscopy
images in order to discriminate between benign lesions and
malignant ones, with the objective to have a good trade-off
between sensibility and specificity. The method has been
successfully validated on a dermoscopy image dataset of PH2 open
database [1]. Several approaches have been proposed in the past for
automatic and robust detection of the skin cancer, including
statistical hand-crafted features or soft-computing approaches
based on machine learning algorithms. In [2] the authors review
several recent methods for melanoma detection based on the
exploitation of image features, neuro-fuzzy approaches, clustering
methods (K-means, support vector machine – SVM etc.) and some
methods based on the study of melanocytes distribution on the skin
histopathologic images, as well as based on probabilistic analysis
(e.g. Bayesian classifier). The overall analysis reports some very
promising methods based on the usage of neural networks or
adaptive thresholding analysis for the classification of skin lesions.
Among other, methods based on pattern recognition approaches
combined with classical statistical dermoscopy, image features

pointed out acceptable results [2]. In [1, 2] the authors show a
method for classifying skin cancer that relies on global and local
features combined with different classification systems such as
SVM, artificial neural network (ANN), K-nearest neighbour,
Naive-Bayes algorithm comparing pros and cons of the analysed
approaches. Conoci et al. in [3] propose a set of hand-crafted
image features combined with a feed-forward neural network
system (NNS). An interesting approach is proposed in [4], where
some hand-crafted image features are combined with a deep-
learning algorithm able to extract learned features. An SVM engine
is then used for performing final classification by means of a
scores-based approach. The results reported in [4] show a limited
sensibility/specificity for the analysed image dataset. Other
approaches [5, 6] make use of ‘standard’ image features coupled
with a classification engine (i.e. SVM or K-nearest neighbour etc.)
with limited results. The proposed method is based on a combined
approach of ad-hoc customised hand-crafted image features and a
neural network system (i.e. we evaluated both a Levenberg-
Marquardt Neural Network and a stacked autoencoder) which
properly trained. The presented pipeline is able to perform a robust
and efficient classification. The remaining part of the paper is
organised as follows. Section 2 provides a description of the
proposed pipeline, by detailing the pre-processing steps and the
exploited features, as well as the Levenberg–Marquardt (LV) based
approach. Section 3 describes the approach based on the stacked
autoencoders, which provides a further improvement of the
performances. The achieved results are commented in Section 4,
which also provides insights for future works.
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C
dxi j(t)

dt = − xi j(t)

+ ∑
C(k, l) ∈ Nr(i, j)

A(i, j; k, l)ykl(t)

+ ∑
C(k, l) ∈ Nr(i, j)

B(i, j; k, l)ukl(t)

+ ∑
C(k, l) ∈ Nr(i, j)

C(i, j; k, l)xkl(t)

+INr(i, j) = C(k, l), ( max ( k − i , l − j < r}
k ∈ [1, m], l ∈ [1, n]

yi j(t) = 0.5 xi j(t) + 1 − xi j(t) − 1

(1)

2 Proposed pipeline: system description
The overall scheme of the processing pipeline is synthetically
sketched in Fig. 1. The output of the system consists of an array
containing both the representation of morphologic features applied
and the skin classification lesion expressed in terms of probability
of oncological malignant progression. The following subsections
describe the details of each involved step. 

2.1 Dermatoscope and SC-CNNs pre-processing block

Fig. 2 shows a typical dermoscopy image of a nevus acquired by
means of a medical optical dermoscope. The RGB image provided
by the dermatoscope is first converted into YCbCr format [7], then
the method is applied only to the luminance component of the
source RGB dermoscopy image D(x,y). The luminance component,
denoted as YD(x,y), is fed as ‘input’ and ‘state’ to a state-controlled
cellular neural network (SC-CNN) with a two-dimensional (2D)
matrix structure and size equal to the source image YD(x,y) of size m
x n. 

The classical cellular neural network (CNN), introduced by
Chua and Yang [8], can be defined as a high speed local
interconnected computing array of analogue processors. The CNN
processing is defined through the instructions provided by the so-
called cloning templates [8]. Each cell of the CNN array may be
considered as a dynamical system that is arranged into a
topological structure, usually a 2D or 3D grid. The CNN cells
interact with each other within their neighbourhood defined by a
heuristic radius [8]. Each CNN cell has an input, a state and an
output which is a functional mapping of the state, usually by means
of PWL (PieceWise Linear) function. The CNN can be
implemented with analogue discrete components or VLSI (Very
Large Scale Integration) technology so that it is able to perform

high speed ‘near real-time’ computations. Some stability results
and considerations about the dynamics of the CNNs can be found
in [8, 9]. Arena et al. [9] introduced an updated version of the CNN
model called ‘State Controlled Cellular Neural Network (SC-
CNN)’, as it directly explicates the dependency of the dynamic
evolution of the cell to the ‘state’ of the single cell. We refer to SC-
CNNs in the following mathematical formulations. By assigning
each normalised grey-level of the input source image (i.e. YD(x,y) of
size m x n) to each cell of the SC-CNNs (input and state of each
cell), several image processing tasks may be performed according
to the defined cloning templates instructions [8]. Equation (1)
defines the state equation of a (m x n) SC-CNNs.

Nr(i,j) represents the neighbourhood of each cell C(i,j) with
radius r. The terms in (1) represent the state xij, the output yij, and
the input uij of the cell C(i,j), the cloning templates A(i,j; k,l),
B(i,j;k,l), C(i,j;k,l), and the constant bias I. The proposed SC-CNNs
block can be used for several pre-processing operations such as
lesion segmentation, edge detection, noise reduction, pixels
averaging and so on [9]. In this paper, we propose the usage of SC-
CNNs for skin lesion pre-processing with a novel ad-hoc cloning
templates setup. Robust segmentation of the nevus is another
challenging task since there are several issues related to noise
removal (hairs, angiomas etc.) without significant distortion of the
original region of interest (ROI) of the lesion image. The approach
proposed in this paper is evaluated by using dermoscopy images
provided by PH2 database in which segmented mask for each
medical image is provided [7].

The SC-CNNs pre-processing pipeline is detailed in Fig. 3. It
performs a transient pre-processing of grey-level converted lesion
image YD(x,y), by using the cloning templates defined in (2) [7, 10,
11]

A =
0 0 0
0 0 0
0 0 0

, B =
3 0.25 0.25

0.25 3 0.25
3 0.25 0.25

, C =

0 0 0
0 0 0
0 0 0

, I = 0.7

(2)

The cloning templates in (2) are useful to configure SC-CNNs
in order to perform ad-hoc adaptive time-transient increasing of
grey-level YD(x,y) image contrast, reducing the image distortion
produced by the typical gel used by a dermatologist during medical
dermoscopy.

The dermoscopy grey-level image processed by SC-CNNs is
denoted as YSC-CNN(x,y). Figs. 4a–c show the output images related

Fig. 1  Proposed feed-forward skin lesion analysis pipeline
 

Fig. 2  Typical dermoscopy image of a skin nevus
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to the SC-CNN pre-processing for a dermoscopy example image,
as well as the image-mask provided in the PH2 database [1]. 

2.2 Hand-crafted image features and SC-CNNs hand-crafted
blocks

At this level, the pre-processed grey-level dermoscopy image
referred as Y′SC-CNN(x,y), is further processed by using an ad-hoc
morphological-heuristic set of hand-crafted features useful to
reproduce the well-known ABCDE rule [12]. The image features
are re-scaled via a logarithmic function, with the aim to reduce the
range of their values. Some of them are classical statistical
indicators, whereas others are heuristically defined encoding the
ABCDE rule, with high precision and robustness. Furthermore,
some of the proposed hand-crafted image features try to analyse
the melanocytes distribution on the skin epidermis [12]. We denote
with nr and mr the dimension of the bounding box enclosing the
signal (Fig. 4d). The grey-level intensity of the single image pixel
is denoted by p(i,j), whereas Θ(p′( i, j)) is a measure of the
frequency rate of the pixel p′(i,j) in the image. In the following, the
overall list of employed features Fi is reported

F1 = log 1
m ⋅ n ∑

i = 1

mr

∑
j = 1

nr
p(i, j) (3)

F2 = log 1
mr ⋅ nr ∑

i = 1

m

∑
j = 1

n
( | p(i, j) − F1 | ) (4)

F3 = log 1
mr ⋅ nr ∑

i = 1

m

∑
j = 1

n
p(i, j) − F1

2 (5)

F4 = |F3| (6)

F5 = log π
2 ⋅ 1

m ⋅ n ∑
i = 1

m

∑
j = 1

n
( | p(i, j) − F1 | ) (7)

F6 = − ∑
i = 1

m

∑
j = 1

n
Θ(p′(i, j)) ⋅ log(Θ(p′(i, j))) (8)

F7 = log |F3 − (F6)2| (9)

F8 = log 1
mr ⋅ nr ∑

i = 1

m

∑
j = 1

n |p(i, j) − F1|
F4

3

(10)

F9 = log 1
mr ⋅ nr ∑

i = 1

m

∑
j = 1

n
i − m

2 ⋅ j − n
2

p(i, j) − F1

F4

4

(11)

F10 = log 1
mr ⋅ nr ∑

i = 1

m

∑
j = 1

n
i − m

2 ⋅ j − n
2

|p(i, j) − F1|
F4

5

(12)

F11 = log 1
mr ⋅ nr ∑

i = 1

m

∑
j = 1

n
i − m

2 ⋅ j − n
2

p(i, j) − F1

F4

6

(13)

F12 = log 1
mr ⋅ nr ∑

i = 1

m

∑
j = 1

n
i − m

2 ⋅ j − n
2 ⋅ p(i, j) (14)

F13 = log 1
mr ⋅ nr ∑

i = 1

m

∑
j = 1

n
i − m

2 ⋅ j − n
2 ⋅ (p(i, j))2) (15)

F14 = log 1
mr ⋅ nr ∑

i = 1

m

∑
j = 1

n
i − m

2 ⋅ j − n
2 ⋅ (p(i − j) ⋅ (i − j)2)

(16)

F15 = log 1
mr ⋅ nr ∑

i = 1

m − k

∑
j = 1

n − k
i − m

2 ⋅ j − n
2 ⋅ ( | p(i, j) − p(i + k, j

+ k) | )

(17)

F16 = log 1
mr ⋅ nr ∑

i = 1

m − k

∑
j = 1

n − k
i − m

2 ⋅ j − n
2

( | p(i, j) − F1 | ) ⋅ ( | p(i + k, j + k) + − F1 | )
(18)

F17 = log m ⋅ n ⋅ 1
6 ⋅ 1

mr ⋅ nr ⋅ F8
2 + 1

4 ⋅ F9 − 3 2 (19)

The first set of features (from F1 to F5) is useful to provide a
classical statistic representation of the ROI of the previously
segmented input image. Specifically, it corresponds to the
statistical study in logarithmic scale of the lesion pixel distribution
p(i,j) with respect to statistical indices such as mean, weighted
mean, variance or standard deviation.

Regarding the feature F6, it is a modified logarithmic scaled
computation of the entropy applied to the lesion image: this is
aimed to obtain an entropic characterisation (degree of order) of
the temporal evolution of the lesion (component ‘E’ of ABCDE
rule).

Features F7–F13 represent the weighted computation
logarithmic scaled of moments with many orders, useful to

Fig. 3  Pre-processing block based on SC-CNNs
 

Fig. 4  Image preprocessing details
(a) Original RGB dermoscopy image, (b) Image-mask provided by PH2 database, (c)
SC-CNNs pre-processed segmented grey-level image, (d) Some geometric parameters
for the segmented SC-CNNs grey-level image
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characterise the intensity distribution of the pixels of the analysed
lesion image, along with several directions, with the aim to make
more evident the gradient of such intensity (i.e. the ‘C’ component
of the ABCDE rule).

Features F14–F16 allow to analytically define the so called
melanocytic distribution over all the ROI of the lesion. They are
also useful to contribute to the definition of the contours and the
borders of the lesion.

Note that the feature F17 is a modified version of the ‘Jarque–
Bera index’, which is able to point-out kurtosis and skewness of
time-series and often applied in the field of financial markets. In
the proposed work, we adapted the Jarque–Bera index to the
purpose related to the 2D analysis of the kurtosis and skewness
features for the analysed nevus. We used k = 5 in (17) and k = 3 in
(18) (see (20)) . The feature F18 is a modified version of the so-
called ‘Cosine similarity’, used to analyse the intrinsic similarity of
the nevus. The features from F19 to F21 have been computed as
results of further SC-CNNs post-processing performed in the ‘SC-
CNNs Hand Crafted Block’. The SC-CNNs programmed via ‘edge
detection’ cloning templates [8, 9] is used to detect edges of the
grey-level segmented image Y′SC-CNN(x,y), producing the image
YSC-CNN(x,y)

pp. The latest set of hand-crafted features, related to the
above described image YSC-CNN(x,y)

pp, are defined as follows:

F19 = log 1
m ⋅ n ∑

i = 1

mr

∑
j = 1

nr
p(i, j) (21)

F20 = log π ⋅ nr − 1
2

2

(22)

F21 = min(mr, nr)
max(mr, nr) (23)

where the parameters nm, nr, n and m are defined as shown in
Fig. 4d.

2.3 Low-voltage (LV) network clustering system

After we have collected the numerical values corresponding to
morphological-heuristic and hand-crafted features, we are ready to
perform a skin lesion classification needed for oncological risk
assessment of the analysed nevus, by providing a classification of
the lesion as ‘benign nevus’ or ‘melanoma’ (skin cancer). Based on
the above classification output, the algorithm provides a follow-up
rate, according to an ad-hoc heuristic risk assessment. In particular,
a time-rate of periodic medical check-up of the analysed lesion is
provided, in order to perform a monitoring of the temporal
evolution of the lesion by means of the numerical sequence of
features F1, …, F21.

The normalised set of the proposed innovative image features
F1, …, F21 is used as input of a feed-forward Levenberg–
Marquardt (LV) optimised neural network, previously pre-trained
with a training set containing skin lesions examples with different
morphological features (colour, border, geometry, irregularities
etc.), related to either benign and malignant (melanoma) examples.
We designed and trained that LV feed-forward neural network with
one hidden layer with dimension is 21 × 25 × 2. In the proposed
system, we used a Levenberg–Marquardt network with two output
neurons, thus the output of the classifier is a 2D vector which
values lies in the compact set [0,1] × [0,1]. Output values higher
than 0.5 will be approximated with 1, whereas values lower than
0.5 will be approximated with 0. Therefore, the final output vectors
will be equal to [1,0] or [0,1], while the pair values [0,0] and [1,1]

are discarded as they represent the invalid state. This design choice
is motivated by the fact that we aim to extend the proposed system
by allowing the model to output a fine-grained score of benignity
or malignancy (or suspected malignancy) useful for biomedical
characterisation of the so-called dysplastic nevus, which are the
most difficult to be classified by dermatologists and oncologists.
Moreover, the system has been also evaluated by considering only
one output neuron, by approximating with 0 (benign) or 1 (malign)
the classifier output, without significant performance differences.
The exploited neural network is trained with efficient optimised
Levenberg–Marquardt back-propagation learning algorithm [9, 13]
with stop criteria correlated to learning mean square error. Several
works in the literature have proposed the usage of ANN or CNNs
in order to address the task of early detection of skin cancer by the
analysis of dermoscopy images [14–16]. In our experiments, in
order to improve the generalisation capability of the neural network
as well as for avoiding the issue of local convergence of training
algorithm, we have defined the dataset by introducing selected
dermoscopy images with different patterns (colours, borders,
irregularities, benign lesions, melanoma etc.). Then we split the
dataset into train and test/validation sets. In our experiments, we
have used MATLAB with Image and Neural Network toolboxes.
The used dermoscopy images for the dataset have been taken
partially from PH2 database [1] and partially from other medical
database provided us by oncologists. All the source images have
been resized to 768 × 576 pixels by using the same algorithm
proposed in [17] as extended in [10].

2.4 Autonomous diagnosis system

The numerical output of the LV neural network, together with
hand-crafted features, is also used to define the follow-up rate of
the analysed nevus, by using heuristic threshold-based rules. We
define a set of thresholds for the proposed mainly discriminative
hand-crafted image features (i.e. the features F12, F17, F21) by
means of averaging computation of the values heuristically
computed during the training phase of the LV neural network
according to the oncologist advice

ThF12 = 12.99, ThF17 = 104.00, ThF21 = 6.49

The above thresholds are used to define an ad-hoc follow-up rate
according to nevus diagnosis performed by LV neural clustering
system. Specifically, the autonomous diagnosis system for
‘melanoma diagnosis’ suggests ‘Contact Physician as soon as
possible’ in the case that features F12, F17, F21 are higher than
related thresholds, otherwise it extends the follow-up to ‘1 month’
(at least one of the above features is less of the corresponding
thresholds) since the exanimated nevus does not show high
malignant medical indices according to oncologist's consultation,
although the diagnosis is ‘melanoma’ with high probability. As per
‘melanoma diagnosis’, in case of ‘benign nevus’ diagnosis
performed by LV neural clustering system, the autonomous
diagnosis system suggests ‘Follow-up rate > = 1 year’ in the case
of the main features (F12, F17, F21) are lower than the
corresponding thresholds, while it reduces the time-range ‘Follow-
up rate > = 6 months’ in the case of at least one of the main features
has a value greater than the corresponding thresholds.

3 Deep learning extended approach
We have extended the proposed algorithm by replacing the LV
neural networks with recent deep learning architecture in order to
evaluate further improvements to the overall performance of the
proposed approach. We propose a power Stacked Autoencoder

F18 = log 1
mr ⋅ nr ⋅ ∑

i = 1

round(m/2)
∑
j = 1

n
i − m

2 ⋅ j − n
2 ⋅ p(i, j) − p(i + 1, j)

(p(i, j))2 + (p(i + 1, j))2

+ ∑
i = 1

m

∑
j = 1

round(n/2)
i − m

2 ⋅ j − n
2 ⋅ p(i, j) − p(i, j + 1)

(p(i, j))2 + (p(i, j + 1))2

(20)
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based framework composed by two autoencoders sequentially
grouped with a SoftMax layer needed for clustering the features
computed by each autoencoder into two different classes: [0.5, 1]
for malignant nevus and [0, 0.5] foe benign ones. Fig. 5 shows the
dynamic of the mean squared error during the training phase. To
avoid overfitting, we can define a regularised empirical risk, where
the regularisation imposes a degree of sparseness on the derived
encodings. We used a common sparsity constraint based on the
classic Kullback–Leibler divergence approach [11, 18, 19]. Each
autoencoder has 20 neurons in the hidden layer. The first
autoencoder takes the proposed hand-crafted features as input data,
whereas the second autoencoder takes the features defined by the
first autoencoder.

Finally, the SoftMax layer performs a clustering of the second
encoded features into two basic classes as above described (benign/
malignant).

The proposed approach shows very promising results as it is
able to improve the overall performance. Indeed, the sensibility is
98%, and specificity is 98% with the same image dataset (PH2).
Future works will be devoted to the investigation of further deep
learning approaches with the aim to improve the performances.

4 Experimental results and future works
The proposed method has been validated by using the skin lesions
database named ‘PH2’, kindly provided within the ADDI project
[1, 20]. The PH2 database consists of 176 dermoscopy images
carefully classified in the related project webpage [1, 20]. The
performance of the proposed pipeline has been compared with
algorithms proposed in the ADDI project [1, 20] and validated with

PH2 database. In order to perform a fair comparison of the
proposed method with respect to other approaches, we evaluated
our approach by computing the same benchmark indicators
computed in [1, 20]. Namely, the Sensibility (SE), the Specificity
(SP) and the cost function ‘C’

C = c10(1 − SE) + c01(1 − SP)
c10 + c01

c10 = 1.5c01, c01 = 1
(24)

Equation (24) defines c10 as the weight coefficient of incorrect
classification of a melanoma as benign nevus (a false negative FN),
while c01 indicates the weight coefficient for incorrect
classification of benign nevus as melanoma (a false positive FP).
From values reported in (24), results clear that the system considers
a missed classification of melanoma more dangerous with respect
to a wrong classification of benign nevus as melanoma. Table 1
reports the performance benchmark comparison [1, 20]. 

Table 1 shows the comparison between the evaluated methods.
For each metric, the best results are highlighted in bold whereas the
second best results are underlined. The comparison between
benchmarks shows the very promising performance of the
proposed methods with respect to others proposed in the literature.
An innovative combination between ad-hoc hand-crafted image
features with supervised neural networks drastically improves the
ability of the overall discrimination system in identifying the key
nevus features for a robust classification of benign lesions against
high suspected ones or melanoma cancer (see Fig. 6 for results).
Several works in the literature, in order to improve the ability of
the pipelines, increases the sensibility reducing the over-all checks
of the skin lesion image statistics. The drawback of poor specificity
of the pipeline means more nevus biopsy for the patients. 

We reached only 93% of sensitivity with 92% of specificity
with only first 13 features of the overall set of hand-crafted features
herein proposed. These results confirm that we have strongly
improved the discrimination capability of the proposed approach
extending the hand-crafted features as herein reported by means of
more accurate melanocytes mathematical characterisation.

Experiments have been conducted with the aim to reduce the
number of the employed features. However, the reduction in the
number of features resulted in lower performances. These
experiments confirm the need of all the proposed features.

We further improved the performances obtained with the LV
network by exploiting a stacked autoencoder architecture. In
particular, the improvements have been obtained by replacing the
LV with the stacked autoencoders in the same pipeline described
above.

The time performance of the proposed method is acceptable as
the proposed pipeline is able to analyse a single nevus in about 2.5

Fig. 5  Dynamic of the mean squared error during the training phase
 

Table 1 Benchmarks comparison for the proposed pipeline
Method Performance indicators

Sensibility, % Specificity, % C
LV approach 97 95 0.038
first 13 features 93 92 0.074
stacked autoencoders 98 98 0.020
global method (colour) 90 89 0.104
global method (textures) 93 78 0.130
local method (colour) 93 84 0.106
local method (textures) 88 76 0.168
global features C6 – kNN
classifier

100 71 0.116

global features C1 – kNN
classifier

88 81 0.149

global features C6 – SVM 84 78 0.183
global features C6 – AdaBoost 96 77 0.117
local features BoF 98 79 0.100
Best results are highlighted in bold.
 

Fig. 6  Some instances of classified nevus
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s (we tested the pipeline in a PC Intel Core i5 3.10 GHz @ 64 bit
with 4 Gbyte of RAM). The proposed pipeline can be ported easily
from the MATLAB environment to an embedded platform based
on STM32 [21]. We proposed a very efficient method for skin
nevus analysis and oncological classification both for screening
and follow-up of the exanimated skin lesion. We are extending skin
lesions image dataset in order to cover all the specific skin lesion
features with the aim to perform a more accurate clustering, further
including the class of ‘suspected’ nevus, that represents one of the
main issues for dermatologists and oncologists. Preliminary results
and comparisons with analytic thresholds-based strategy have been
done in [12] without any strong improvement. Future works will be
devoted to evaluating other recent deep architectures.
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