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Abstract

The station location problem consists of placing new stations along the railway tracks of an existing
network in order to increase the number of users. In this paper we consider the problem for a
railway network consisting of two intersecting lines forming an angle α. An approach for solving
the problem in polynomial time for sufficiently large angles α is presented.
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1 Introduction

The station location problem consists of placing some new stations along the
tracks of an existing railway network in order to increase the number of users.

The motivation for studying this problem is mainly to increase the attrac-
tiveness of train travel for local traffic in an existing railway network. But
new stations are costly for the company and new stops will result in a longer
travelling time for those people that are already using the network. Therefore
our goal is to minimize the number of new stations. Actually, this research was
motivated by a collaboration with with the Deutsche Bahn about exactly this
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question. However, in this paper we look at a somewhat simplified scenario,
where we ignore for example actual costs of building stations or travel time.

The problem of locating stops in a transportation network has been studied
in several papers, analyzing bus transportation networks as well as railway
networks. The problem of locating stops in a bus network is considered in
[5,3,4], all dealing with the problem of opening new stops out of a set of given
candidates.

The station location problem was first introduced and modelled in [1],
where it is shown to be NP-complete. Schöbel et al. [6] describe a reduc-
tion from the station location problem to a discrete set covering problem. In
particular the covering matrix is analyzed, and an efficient solution method is
presented for the special case when the railway network consists of one straight
line only. Kranakis et al. [2] study the ”MAX gain” problem of finding the
placement of a fixed number of k stations such that the number of covered
settlements is maximized. In [7] the problem of covering population areas is
presented. While in the previous papers settlements are represented as points,
in [7] demand regions are considered, and an efficient algorithm for finding an
optimal solution in the case when the railway network consists of one straight
line is given.

While the station location problem for one line segment is solvable in
polynomial time, in general the problem becomes NP-hard for two or more
line segments [1]. However, a heuristic approach to solve the station location
problem in practice consists of a decomposition of the railway network into
independent line segments. Then, for a good solution of the problem the
common area between line segments needs to be considered in more details.
The problem considered in this paper may be viewed as a first step towards
this approach.

The paper is organized as follows. In Section 2 the station location prob-
lem is modelled as a minimization problem and the variant of the problem
studied in this paper is defined. In Section 3, we define the problem of cov-
ering a common region of two lines by discs and characterize the solutions
to this problem depending on the angle between the two lines. In Section 4
we approach the station location problem on two intersecting lines and apply
results of the covering by discs problem to obtain optimal solutions for the
station location problem for sufficiently large values of the angle α formed by
the two lines.

M.F. Mammana et al. / Electronic Notes in Theoretical Computer Science 92 (2004) 52–64 53



2 Problem definition

A railway network and a set P of settlements are given. A settlement Pi ∈ P
is covered by the railway network if there is a station at distance less than or
equal to a fixed radius R from Pi. We assume that none of the settlements
in P is currently covered by an existing station, that each settlement in P
can be covered by a new station, and that stations can be placed anywhere
along the tracks. The goal is to select as few new stations as possible to
cover all the settlements. Precisely, given a set S of points in the plane, define
cover(S) = {x ∈ R

2 : d(x,S) ≤ R} as the points at distance less than or equal
to R from S, the distance d being the Euclidian distance. Then the station
location problem can be modelled as the following minimization problem:

Station Location: Given a geometric graph G = (V, E), i.e. a set V of
vertices in the plane and a set E of edges represented as straight line segments,
a set P of points in the plane and a fixed radius R. Find a minimum number
of vertices S on the edges such that P ⊆ cover(S).

The NP-hardness of the station location problem has been shown [1] by a
transformation from the geometric covering problem. The geometric covering
by discs is defined as follows: Given a set P of points in the plane, find the
minimum number of discs D that cover P, where a point Pi in the plane is
covered by a disc D = (c, R) with center in c and radius R, if d(Pi, c) ≤ R.

In this paper we focus on the station location problem when the railway
network consists of two straight lines with a common end point O forming an
angle α, and the set P of settlements is placed in the common area of the
two lines. More precisely, for a given radius R and two lines l1, l2 we call the
area in the plane that can be covered on one hand by discs of radius R having
centers on l1, and on the other hand by discs of radius R having centers on l1
the common area of l1 and l2. See Figure 1. Then define:

Station Location on Two intersecting Lines (SLTL): Given a geo-
metric graph G = (V, E) that consists of two adjacent edges represented as
straight line segments, a set P of points in the common area of the two lines,
and a fixed radius R. Find a minimum number of vertices S on the edges with
O ∈ S such that P ⊆ cover(S).
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Fig. 1. The grey area is the common area of the lines l1 and l2.

3 Covering by Discs

In this section a variant of the geometric covering by discs problem is stud-
ied. Given two line segments, l1 and l2, with a common end point O, we are
interested in covering the entire common area of the lines l1 and l2 by discs
centered on either line. Precisely:

Covering by Discs on Two Lines (CDTL): Given two straight line
segments with a common end point O forming an angle α < 180◦. Find the
minimum number of discs centered on either line that cover the common area
of the two lines.

Obviously, an optimum solution of the CDTL problem is at least a feasible
solution of the SLTL problem.

3.1 Covering by Discs on Two Lines

In this paragraph we consider CDTL for the cases α ≥ 60◦ and 41.4◦ ≤ α <

60◦. Let us introduce some notation that we use in the paper. Figure 2
illustrates the notation. We assume R = 1.

• l1 and l2 are the two lines of the CDTL problem;

• O is the common end point of the lines l1 and l2;

• α is the angle formed by the lines l1 and l2;

• −−→
xOy is the orthogonal coordinate system in the plane having origin in O,
positive x-axis in the bisector of the angle α;

• t1 and t2 are the two lines at distance 1 from l1 and l2 respectively, which
intersect each other in the positive x-axis;
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• C is the disc centered in O with radius 1;

• O1 is the intersection point of the lines t1 and t2;

• C1 and C ′
1 are the two unique discs centered respectively on l1 and l2 passing

trough O1;

• O− = (−1, 0) and O+ = (1, 0);

• A is the intersection point of the line t2 and the disc C;

• B is the intersection point of the line t1 and the disc C.

l1

l2

t1

t2

O1

C

O+

C1

C ′
1

A

B

O− −→x

−→y

O

Fig. 2. The notation.

Lemma 3.1 Any optimal solution for the CDTL contains at least three discs.

Proof. The disc C centered in O is the only disc that covers the point O−.
The discs C1 and C ′

1 are the only two discs that cover the point O1 and those
points infinitely close to it on the lines t1 and t2. �

Therefore, without loss of generality, we can assume that the discs C, C1

and C ′
1 are contained in any optimal solution to the CDTL problem. The

next step is to investigate the number of discs that are needed to cover the
remaining part of the common area. (See Figure 2.) More precisely, we
consider the following problem: Given two straight line segments l1 and l2
with a common end point O, the discs C, C1 and C ′

1. Find the minimum set
of discs including C, C1 and C ′

1 that cover the common area.

Lemma 3.2 The minimum number of discs that cover the common area is

three when 60◦ ≤ α.

Proof. We prove that the discs C, C1 and C ′
1 cover the common area if the

angle α formed by the lines l1 and l2 is greater than or equal to 60◦. According
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to the orthogonal coordinate system
−−→
xOy, if m = tan(α

2
), m > 0 then:

l1: y = −mx l2: y = mx

t1: y = −mx +
√

1 + m2 t2: y = mx −√
1 + m2

O: (0, 0) O1:
(√

1+m2

m
, 0

)

C: x2 + y2 = 1 C1:
(
x − 1

m
√

1+m2

)2

+
(
y + 1√

1+m2

)2

= 1.

The three discs cover the entire common area if the disc C1 passes through

or contains the point A =
(

m√
1+m2

, −1√
1+m2

)
. C1 passes through the point A,

if (
m√

1 + m2
− 1

m
√

1 + m2

)2

= 1

which leads to m = ± 1√
3
. Since m > 0, the only acceptable solution is m = 1√

3
,

which corresponds to α = 60◦. �

Note that when the angle α equals 60◦ the discs C1 and C ′
1 pass through

the point O+ and the points of the segment O+O1 are all contained in the two
discs. See Figure 3.

Fig. 3. The case α = 60◦.

Lemma 3.3 The minimum number of discs that cover the common area is

five when 41.4◦ ≤ α < 60◦.

Proof. Let O2 =
(

1−m2

m
√

1+m2
, 0

)
be the intersection point of C1, C ′

1 and the

x-axis, other than O1. When the angle α is smaller than 60◦, the points A

and B are not covered by the discs C1 and C ′
1, as well as those infinitely close

to them on the lines AO1, and BO1 and the ones on the segment O2O
+. See

Figure 4.
C2 and C ′

2 are the discs through O2 with centers on l1 and l2. The five discs
C, C1, C ′

1, C2 and C ′
2, cover the common area if the disc C2 passes through or
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B

O+

O2 O1

O

Fig. 4. The uncovered area for α < 60◦ and three discs.

contains the point A =
(

m√
1+m2

, −1√
1+m2

)
. C2 passes through the point A, if

(
m

√
1 + m2

−
1 − 3m

2

m(1 + m2)
√

1 + m2

)2

+

(
−1

√
1 + m2

+
1 − 3m

2

(1 + m2)
√

1 + m2

)2

= 1

which leads to m = ± 1√
3
, ± 1√

7
. The only acceptable solution is m = 1√

7
,

which corresponds to α = 41.4◦. Moreover, the four discs C, C1, C ′
1 and C2

do not cover the common area because the disc C2 does not contain the points
of the common area on the segment BT , where T is the intersection point of
the line t1 and the disc C2. See Figure 5 �

Fig. 5. The case α = 41.4◦.

3.2 The CDTL Algorithm

The approach used in the previous section leads to the covering by discs al-
gorithm shown in this section. For the cases 60◦ ≤ α and 41.4◦ ≤ α < 60◦ we
use Lemma 3.2 and 3.3 respectively. For α < 41.4◦, the algorithm successively
places discs on the two lines according to the proof of Lemma 3.3. However,
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this yields a solution that is not necessarily optimal. Altogether, the algo-
rithm gives an optimal solution for the CDTL problem when the angle α is
greater than or equal to 41.4◦ and only a feasible solution otherwise. It could
be improved to an optimal solution for α < 41.4◦. But this would require an
elaborate case distinction.

Algorithm 1 CDTL

Input

• two lines l1 and l2 having a common point O forming an angle α less than
180◦;

• c, disc centered in O;

• bis, the bisector of l1 and l2.

Output collection D of discs that cover the common area.
The algorithm uses the following notation.

• c1
X is out of the two discs through the point X with center on line l1, the

one that is not already in D;

• c2
X is out of the two discs through the point X with center on line l2 the

one that is not already in D;

• l⊥1,X1
is the perpendicular line to l1 passing trough the point X1;

• Z = d ∩ t2 is, out of the two intersection points of the disc d with the line
t2, the one that is closer to A;

• Z = d∩bis is, out of the two intersection points of the disc d with the line
bis, the one that is closer to O.

1: X := t1 ∩ t2
2: compute c1

X and c2
X

3: D := {c, c1
X , c2

X}
4: while A is not covered do

5: X1 := c1
X ∩ t2

6: X := c1
X∩ bis

7: X2 := l⊥1,X1
∩ bis

8: if d(O, X2) ≤ d(O, X) then

9: compute c1
X and c2

X

10: D := D ∪ {c1
X , c2

X}
11: else

12: compute c1
X1

and c2
X1

13: D := D ∪ {c1
X1

, c2
X1
}

14: c1
X := c1

X1

15: c2
X := c2

X1
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The loop in lines 4–15 builds the collection of discs and the algorithm stops
when the point A is contained in a disc. The points X and X2, constructed
in lines 6 and 7, are those we refer to in order to find the next discs. The
algorithm runs in time linear in the number of discs.

Lemma 3.4 If α is smaller than or equal to 60◦ then any disc centered on

line l1 covering the point A also covers the point O+.

Proof. Let CA and CO+ be the circles with radius 1, centered in A and O+

respectively, refer to Figure 6.

CA

O+

PA

CO+

PO+

A

O

Fig. 6. The discs CA and CO+

The discs centered in points on l1 contained in the intersection of the two
discs are the only ones covering both A and O+. Let PA = {CA ∩ l1} \ O,
PO+ = {CO+ ∩ l1} \ O, ψ := ∠O+OPO+ and ϕ := ∠AOPA. It is sufficient to
show that OPA ⊂ OPO+. Since the triangles OO+PO+ and OAPA are isosceles,
then OPA ⊂ OPO+ if and only if ψ ≤ ϕ. It is ψ = α

2
and ϕ = 90◦ − α, then

ψ ≤ ϕ if and only if α ≤ 60◦. �

Lemma 3.5 If d(O, X2) ≤ d(O, X) then the disc C1
X contains the point I1,

and if d(O, I2) > d(O, I) then the disc C1
X1

contains the point X.

Proof. This can be easily proved applying the pythagorean theorem. �

Theorem 3.6 The collection D of discs produced by Algorithm 1 covers the

entire common area of the two given lines.

Proof. Let P be a point in the common area. If P is at distance less than
or equal to 1 from O, then it is covered by the disc c. So let P be a point in
the triangle O1O

+A and Dl1 = {Di} be the collection of discs with center on
l1 produced by the algorithm. We will show that P is covered by at least one
disc in Dl1 . Consider the intervals Ibis

i = Di ∩ bis and I t2
i = Di ∩ t2 and let

�bis
i and �t2

i be the points in Ibis
i and I t2

i respectively farthest from O1. Note
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that O+O1 ⊂
⋃

i I
bis
i , AO1 ⊂

⋃
i I

t2
i and that the left points �bis

i and �t2
i of the

intervals appear along O1O+ and O1A respectively in increasing order of their
indices.

For i > 1 let Poli be the polygon with vertices �bis
i , �bis

i−1, �
t2
i−1, �

t2
i and Pol1

the triangle �bis
1 O1�

t2
1 . See Figure 7. Note that, by Lemma 3.4 and Lemma 3.5,

the union of the polygons Poli (1 ≤ i ≤ |Dl1|) contains the triangle OO+A, so
the point P is contained in at least one polygon Poli. Therefore P is contained
in the disc Di because it is convex and covers all vertices of Poli. �

Di

�t2
i

�bis
i

�bis
i−1

�t2
i−1

Fig. 7. The polygon Poli

4 The Station Location Problem

As explained before, given an existing railway network and a set P of n set-
tlements the problem is to cover the settlements placing as few new stations
as possible. We represent:

(i) The railway network as a graph in the plane where the nodes are the
stations and the edges are straight line segments representing the tracks
between stations;

(ii) the set P as n points in the plane.

We consider the SLTL problem, where the network consists of two line
segments, l1 and l2 forming an angle α and a set P of points all lying in the
common area of the two lines is given.

Theorem 4.1 Three stations cover all the settlements in P if α ≥ 60◦.

Proof. According to Lemma 3.2, two discs, plus one centered on the com-
mon point, are enough to cover the common area between two lines having a
common point, when the angle α formed by the two lines is greater than or
equal to 60◦. �
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Theorem 4.2 Five stations cover all the settlements in P if 41.4◦ ≤ α < 60◦.

Proof. According to Lemma 3.3, four discs, plus one centered on the com-
mon point, are enough to cover the common area between two lines having a
common point, when the angle α formed by the two lines is greater than or
equal to 41.4◦ and smaller than 60◦. �

We now want to generate a minimum set of points on the lines l1 and l2
that cover a given set of settlements P. Let Pi ∈ P. We call Ci the circle
with center in Pi and radius R. Since each settlement in P can be covered
by a new station along the tracks, J i := Ci ∩ {l1 ∪ l2} is not empty. Let J i

1

be the interval induced by point Pi on the line l1 and J i
2 the interval induced

by point Pi on l2. Then the settlement Pi is covered if and only if there is a
station placed in Ji = J i

1 ∪ J i
2.

Let I1 = {I l
1} and I2 = {I l

2} be the sets of subintervals induced by all
points in P on the lines l1 and l2 respectively. More precisely, if J i

1 = [ai, bi]
and J

j
1 = [aj , bj] are intervals induced on l1 by Pi and Pj , such that J i

1∩J
j
1 
= ∅

with ai ≤ aj , then they detect the subintervals:

[ai, aj], [aj , bi], [bi, bj] if bi ≤ bj or

[ai, aj ], [aj , bj ], [bj , bi] if bi ≥ bj .

This can be extended to any number of intervals. Note that the resulting
number of sub-intervals on each line is at most 2n − 1.

Theorem 4.3 An O(n) time algorithm optimally solves the SLTL problem if

α ≥ 60◦.

Proof. Let P = {Pi: 1 ≤ i ≤ n}. For all Pi ∈ P compute the intervals J i
1

and J i
2. Let I i

1 := I i−1
1 ∩ J i

1 and I i
2 := I i−1

2 ∩ J i
2. Note that I i

1 and I i
2 are the

intervals on l1 and l2 that cover all the points up to Pi. If In
2 = In

1 = ∅ we need
two stations else we need only one in addition to O. Computing the intervals
I i
j and J i

j takes constant time for every i. �

Theorem 4.4 An O(n3) time algorithm optimally solves the SLTL problem

if 41.4◦ ≤ α < 60◦.

Proof. For a given set P, Algorithm 2 successively checks if P can be covered
by a set of two, three or four stations on the two lines. In case not all points
in P can be covered by four stations, the result is a covering of the entire
common area of the two lines with five stations. Obviously, the running time
is in O(n3).

�
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Algorithm 2 SLTL

Input two lines l1 and l2 having a common point O, set of points P in the
common area of l1 and l2;
Output collection of one, two or three intervals on l1 and l2, such that O

together with one arbitray point from each interval of this collection cover P;
if no such collection exists five points covering the entire common area.

1: I0
1 := l1, I0

2 := l2
2: for Pi ∈ P do

3: I i
1 := I i−1

1 ∩ J i
1

4: I i
2 := I i−1

2 ∩ J i
2

5: if In
1 
= ∅ or In

2 
= ∅ then

6: output O and In
1 resp. In

2

7: else

8: for every subinterval I ∈ I1∪ ∈ I2 do

9: I0
1 := l1, I0

2 := l2
10: for Pi ∈ P do

11: if Pi covered by I then

12: I i
1 := I i−1

1

13: I i
2 := I i−1

2

14: else

15: I i
1 := I i−1

1 ∩ J i
1

16: I i
2 := I i−1

2 ∩ J i
2

17: if In
1 
= ∅ or In

2 
= ∅ then

18: output O, I and In
1 resp. In

2

19: if In
1 = ∅ = In

2 for all I ∈ I1∪ ∈ I2 then

20: for every pair of subintervals I, I ′ ∈ I1∪ ∈ I2 do

21: I0
1 := l1, I0

2 := l2
22: for Pi ∈ P do

23: if Pi is covered by I or by I ′ then

24: I i
1 := I i−1

1

25: I i
2 := I i−1

2

26: else

27: I i
1 := I i−1

1 ∩ J i
1

28: I i
2 := I i−1

2 ∩ J i
2

29: if In
1 
= ∅ or In

2 
= ∅ then

30: output O, I, I ′ and In
1 resp. In

2

31: if In
1 = ∅ = In

2 for all pairs of subintervals I, I ′ then

32: output five points on l1 and l2 covering of the entire common area

Remark If we do not assume that there is necessarily a station in the common
point O of the two lines, then an O(n2) algorithm solves the problem when the
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angle α ≥ 60◦ and an O(n4) algorithm solves the problem for 41.4◦ ≤ α < 60◦

using the same approach used in Theorem 4.3 and Theorem 4.4.

5 Conclusion

We considered the problem of covering the common area between two inter-
secting straight line segments. In general this problem is NP-hard. A char-
acterization of solutions to this problem depending on the angle between the
line segments is given. This leads to an algorithm with running time linear in
the number of discs to find a small, though in general not minimum, number
of discs covering the common area. The result is then applied to the station
location problem for a railway network that consists of two intersecting tracks
forming a sufficiently large angle.

From our collaboration with the Deutsche Bahn, we know that railway
networks are to some extent decomposable in large regions where only one
track is relevant for placing new stations. For future work it would be inter-
esting to apply a decomposition technique to the railway network, where our
result can be used as a subroutine for regions where tracks meet.
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