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THE CONSTRUCTIBLE TOPOLOGY ON SPACES OF

VALUATION DOMAINS

CARMELO A. FINOCCHIARO, MARCO FONTANA, AND K. ALAN LOPER

Abstract. We consider properties and applications of a compact, Hausdorff
topology called the “ultrafilter topology” defined on an arbitrary spectral space

and we observe that this topology coincides with the constructible topology.
If K is a field and A a subring of K, we show that the space Zar(K|A) of
all valuation domains, having K as quotient field and containing A, (endowed
with the Zariski topology) is a spectral space by giving in this general setting
the explicit construction of a ring whose Zariski spectrum is homeomorphic to
Zar(K|A). We extend results regarding spectral topologies on the spaces of all
valuation domains and apply the theory developed to study representations
of integrally closed domains as intersections of valuation overrings. As a very
particular case, we prove that two collections of valuation domains of K with
the same ultrafilter closure represent, as an intersection, the same integrally
closed domain.

1. Introduction

The motivations for studying spaces of valuation domains come from various
directions and, historically, mainly from Zariski’s work for building up algebraic geo-
metry by algebraic means (see[30] and [32]), from rigid algebraic geometry started
by J. Tate (see [29], [14], and [20]) and from real algebraic geometry (see [27] and
[20]); for a deeper insight on this topics see the paper by Huber-Knebusch [21].

Let K be a field and let A be a subring of K. The goal of this paper is to extend
results in the literature concerning topologies on the collection of valuation domains
which haveK as quotient field, and which have A as a subring and to provide some
applications of these results to the representations of integrally closed domains as
intersections of valuation overrings. We denote this collection by Zar(K|A). In
case A is the prime subring of K, then Zar(K|A) includes all valuation domains
with K as quotient field and we denote it by simply Zar(K). A first topological
approach to the space Zar(K) is due to Zariski that proved the quasi-compactness
of this space, endowed with what is now called the Zariski topology (see [31] and
[32]). Later, it was proven, and rediscovered by several authors with a variety of
different techniques, that if K is the quotient field of A then Zar(K|A) endowed
with Zariski’s topology is a spectral space in the sense of Hochster [17] (see [3], [4],
[21] and the appendix of [22]).
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In Section 2, we start by recalling the definition and the basic properties of
the constructible topology on an arbitrary topological space, using the notation
introduced in [28, Section 2] (for further information cf. [2, §4], [16, (I.7.2.11) and
(I.7.2.12)], [17]). Then, we provide a description of the closure in the contructible
topology of any subset of a spectral space by using ultrafilters and “ultrafilter limit
points” (definition given later). As an application, we obtain a new proof that the
ultrafilter topology on the prime spectrum of commutative ring R, introduced in
[13], is identical to the classical constructible topology on this space.

Section 3 is devoted to the study of the space Zar(K|A) for any subring A of K,
endowed with the Zariski topology or the constructible topology. The versatility
of the ultrafilter approach to the constructible topology is demonstrated in this
section, and in the following Section 4, where we make use of Kronecker function
rings. The key result in Section 3 is a proof that the space Zar(K|A) is spectral with
respect to the constructible (and to the Zariski) topology by giving, in this general
setting, the explicit construction of a ring whose prime spectrum is canonically
homeomorphic to Zar(K|A). This is broader than the results of Dobbs, Fedder,
and Fontana (cf. [3] and [4]), who proved their results in the case where K is the
quotient field of A (and only considering the case of the Zariski topology).

Especially noteworthy in Section 4 are the applications of the topological prop-
erties of Zar(K|A), endowed with the constructible topology (or, with the inverse
topology, in the sense of Hochster [17]), to the representations of integrally closed
domains as intersections of valuation overrings. For example, Proposition 4.1 indi-
cates that two collections of valuation domains with the same constructible closure
will represent the same domain. Similarly, Corollary 4.15 indicates how the con-
structible topological structure of a collection of valuation domains determines the
associated finite-type e.a.b. semistar operation. We also apply these results to the
class of vacant domains (those domains which have a unique Kronecker function
ring). In particular, Corollaries 4.10 and 4.11 use the constructible topology to
characterize vacant domains. We then relate closure in the inverse topology to clo-
sure in the constructible topology and restate our results concerning e.a.b. semistar
operations in terms of the inverse topology. For some distinguished classes of do-
mains, other important contributions on this circle of ideas were given for instance
in [23],[24], [25], and [26].

2. Preliminaries, Spectral Spaces and Ultrafilter Limit Points

IfX is a set, we denote by B(X) the collection of all subsets ofX , and by Bfin(X)
the collection of all finite subset ofX . Moreover, if G is a nonempty subset of B(X),
then we will simply denote by

⋂
G (resp.

⋃
G ) the set obtained by intersection

(resp. union) of all the subsets of X belonging to G , i.e.,
⋂

G :=
⋂
{G | G ∈ G }

(resp.
⋃

G :=
⋃
{G | G ∈ G }).

Recall that a nonempty collection F of subsets of X is said to be a filter on X if
the following conditions are satisfied: (a) ∅ /∈ F ; (b) if F,G ∈ F , then F ∩G ∈ F ;
(c) if F,G ∈ B(X), F ⊆ G, and F ∈ F , then G ∈ F .

Let F(X) be the set of all filters on X , partially ordered by inclusion. We say
that a filter F on X is an ultrafilter on X if it is a maximal element in F(X). In
the following, we will denote the collection of all ultrafilters on a set X by β(X).
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For each x ∈ X , it is immediately seen that βx
X := βx := {Z ∈ B(X) | x ∈ Z} is

an ultrafilter on X , called the trivial (or fixed or principal) ultrafilter of X centered
on x.

Recall that a spectral space is a topological space homeomorphic to the prime
spectrum of a ring, equipped with the Zariski topology. The spectral spaces were
characterized by Hochster in 1969 as quasi-compact Kolmogoroff topological spaces,
with a quasi-compact open basis stable under finite intersections and such that every
nonempty irreducible closed subspace has a generic point [17, Proposition 4].

Let X be a topological space. With the notation used in [28, Section 2] we set:

K̊ := K̊(X ) := {U | U ⊆ X , U open and quasi-compact in X},

K := K(X ) := {X \ U | U ∈ K̊(X )},
K := K(X ) := the Boolean algebra of the subsets of X generated

by K̊(X ),

i.e., K(X ) is the smallest subset of B(X ) containing K̊(X ) and closed with respect
to finite ∪, ∩, and complementation. As in [28], we call the constructible topology on
X the topology on X having K(X ) as a basis (for the open sets). We denote by X cons

the set X equipped with the constructible topology and we call constructible sets
of X the elements of K(X ) (for Noetherian topological spaces, this notion coincides
with that given in [2, §4]) and proconstructible sets the closed sets of X cons.

Now consider Y a subset of X . In the following, we denote by Cl(Y) (respectively,
Clcons(Y)) the closure of Y, with respect to the given topology (respectively, the
constructible topology) on X .

Assume that X is a spectral space. In this case, the set K̊ (:= K̊(X )) is a basis
of the topology on X and it is closed under finite intersections. The constructible
topology on X is the coarsest topology for which K̊ is a collection of clopen sets
and X cons is a compact, Hausdorff topological space.

We can consider on X the usual partial order, defined by

x 4 y :⇐⇒ y ∈ Cl({x}) .

If Y is a subset of X , set

Ysp := {x ∈ X | y 4 x, for some y ∈ Y} , Ygen := {x ∈ X | x 4 y, for some y ∈ Y} .

Then Ysp (respectively, Ygen) is the closure under specializations (respectively, the
closure under generizations or the generic closure) of Y.

Following [17], we can also endow the spectral space X with the so called inverse
topology (or dual topology), that is the topology whose basis of closed sets is the

set K̊(X ) of all open and quasi-compact subspaces of X (with respect to the given
spectral topology). We denote by X inv the set X , endowed with the inverse topology.
By [17, Proposition 8], X inv is a spectral space and its constructible topology is
clearly equal to the the constructible topology associated to the given spectral
topology on X . The following fact provides a motivation for the name given to this
topology.

2.1. Proposition. ([17, Proposition 8]) Let X be a spectral space. Denote by 4

(respectively, 4′) the order induced by the given spectral topology (respectively, the
inverse topology) on X . Then, for any x, y ∈ X , we have

x 4 y (i.e., y ∈ Cl({x})) ⇔ y 4′ x (i.e., x ∈ Clinv({y}).
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2.2. Remark. Let X be a spectral space and Y be a subset of X . Then, by [8,
Lemma 1.1], [17, Corollary to Theorem 1] and Proposition 2.1 we have

Cl(Y) = (Clcons(Y))sp and Clinv(Y) = (Clcons(Y))gen .

2.3. Proposition. Let X be a spectral space, Y be a subset of X and U be an
ultrafilter on Y. Set

KY,U := {X \ U | U ∈ K̊ and Y \ U ∈ U }
= {C ∈ K | C ∩ Y ∈ U }

KY,U := KY,U

⋃
{U ∈ K̊ | U ∩ Y ∈ U }.

Then, the following statements hold.

(1) The set
⋂
KY,U is a singleton, the set KY,U :=

⋂
KY,U is an irreducible

closed subset of X . The generic point of KY,U is the unique point xU :=
xY,U ∈

⋂
KY,U . We will call the point xU ∈ X the ultrafilter limit point

of Y, with respect to U .
(2) Clcons(Y) = {xY,U | U ∈ β(Y)}.

Proof. (1) By construction KY,U is a collection of closed subsets of X cons

with the finite intersection property. Thus,
⋂
KY,U is nonempty. Since X is, in

particular, a topological space satisfying axiom T0, the conclusion will follow if we
show that, if x ∈

⋂
KY,U , then KY,U = Cl({x}). Since KY,U ⊆ KY,U and KY,U

is closed in X , it follows that Cl({x}) ⊆ KY,U .

Conversely, let z ∈ KY,U and let U be an open neighborhood of z, with respect

to the spectral topology. Without loss of generality, we can assume that U ∈ K̊.
We have Y ∩ U ∈ U (otherwise, since U is an ultrafilter on Y, Y \ U ∈ U , so
X \U ∈ KY,U , and thus in particular z ∈ X \U : a contradiction), hence U ∈ KY,U

and x ∈ U , in particular. Then, z ∈ Cl({x}).
(2) Let U be an ultrafilter on Y and let Ω be an open neighborhood of xU ,

with respect to the constructible topology. Since the collection of all clopen sets of
X is a basis for the open sets of X cons, we can assume, without loss of generality,
that Ω = U ∩ (X \ V ), for some U, V ∈ K̊. It follows immediately that U ∩ Y and
Y \ V belong to U (otherwise, either X \ U or V would belong to KY,U , then we
would have a contradiction since

⋂
KY,U = {xU } and xU ∈ U ∩ (X \ V )). Thus,

Ω ∩ Y ∈ U and it is, in particular, nonempty. This proves that xU ∈ Clcons(Y).
Conversely, let x ∈ Clcons(Y). Note that the following collection of sets (subsets

of Y):

G := {Y ∩ U ∩ (X \ V ) | U, V ∈ K̊, x ∈ U ∩ (X \ V )}

has the finite intersection property, since K̊ is a collection of clopen sets of the
compact space X cons. Pick an ultrafilter U on Y such that G ⊆ U (Lemma 2.1).
We claim that x = xU . To see this, since X is a T0 space, it suffices to show that
x and xU have the same set of open neighborhoods in X (with respect to the given
(spectral) topology). Let U be an open and quasi-compact neighborhood of x. It
follows Y ∩ U ∈ G ⊆ U . Thus U ∈ KY,U and, in particular, xU ∈ U . Conversely,
assume, by contradiction, that there is an open and compact neighborhood U of
xU such that x /∈ U . Then, Y ∩ (X \ U) ∈ G ⊆ U . It follows X \ U ∈ KY,U and
xU ∈ X \ U , a contradiction. �

We apply the previous result to the prime spectrum of a ring.
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2.4. Corollary. Let R be a ring, X := Spec(R) (equipped with the Zariski
topology), Y a subset of X and U an ultrafilter on Y . Then,

PU := PY,U := {a ∈ R | V (a) ∩ Y ∈ U }

is a prime ideal which coincides with the ultrafilter limit point xY,U of X defined
in Proposition 2.3.

Proof. By an argument similar to that used in [1, Lemma 2.4] (see also [13])
it can be easily shown that PU is a prime ideal of R. Let H ∈ KY,U . Then

H∩Y ∈ U and either H =
⋃n

i=1D(fi) (∈ K̊(Spec(R))), for some f1, f2, . . ., fn ∈ R,

or H = V (I) (∈ K(Spec(R))), for some finitely generated ideal I of R. In the first
case, we have

⋃n
i=1 Y ∩ D(fi) ∈ U , thus D(fj) ∩ Y ∈ U , for some j, 1 ≤ j ≤ n,

and so PY,U ∈ D(fj) ⊆ H . In the other case, we have V (I) ∩ Y ∈ U and, since I
is finitely generated. PY,U ∈ V (I) = H . Recalling that

⋂
KY,U is a singleton, the

conclusion follows immediately. �

2.5. Remark. Let X be a spectral space and Y be a subset of X . We say that Y
is ultrafilter closed in X if xY,U ∈ Y, for any ultrafilter U on Y. By Proposition
2.3, it follows that the collection of all the subsets of X that are ultrafilter closed
is the family of closed sets for a topology X , that we call the ultrafilter topology
of the spectral space X . If we denote by X ultra the space X endowed with the
ultrafilter topology, then by Proposition 2.3 we have X ultra = X cons. Therefore, from
Proposition 2.3 and Corollary 2.4, when X is the prime spectrum of a commutative
ring, we reobtain as a particular case [13, Theorem 8].

2.6. Proposition. Let X be a spectral space and Y be a quasi-compact subspace
of X . Then, the generic closure Ygen of Y in X is closed in X cons.

Proof. Preserve the notation of Proposition 2.3, and let U be an ultrafilter on
Ygen. It is sufficient to show that xU := xYgen,U ∈ Ygen. If not, for each y ∈ Y,
there is an open and compact open neighborhood Ωy of y such that xU /∈ Ωy. By
compactness, the open cover {Ωy | y ∈ Y} of Y in X cons has a finite subcover,
say {Ωyi

| i = 1, 2, . . ., n}. It is easily checked that Ygen ⊆
⋃n

i=1 Ωyi
, i.e., Ygen =⋃n

i=1(Ωyi
∩Ygen) ∈ U . Moreover, since U is an ultrafilter on Ygen, Ωyi

∩Ygen ∈ U ,
for some i ∈ {1, 2, . . ., n}. Thus, by Proposition 2.3(1), we have xU ∈ Ωyi

, a
contradiction. �

3. The Kronecker function ring (after Halter-Koch) and the
Zariski-Riemann surface

Let K be a field and let A be any subring of K. Denote by Zar(K|A) the set of
all the valuation domains having K as quotient field and containing A as a subring.

As is well known, Zariski [31] (or, [32, Volume II, Chapter VI, §1, page 110])
introduced and studied the set Z := Zar(K|A) together with a topological structure
defined by taking, as a basis for the open sets, the subsets BZ

F := {V ∈ Z | V ⊇ F},
for F varying in Bfin(K), i.e., if F := {x1, x2, . . . , xn}, with xi ∈ K, then

BZ
F = Zar(K|A[x1, x2, . . . , xn]).
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This topology is called the Zariski topology on Z = Zar(K|A) and Z, equipped with
this topology, denoted also later by Zzar, is usually called the (abstract) Zariski-
Riemann surface of K over A.

On the set Z = Zar(K|A) we can also consider the constructible topology, as
defined in the previous section, and we denote, as usual, Zcons the space Z endowed
with the constructible topology.

In this section, we show that both Zar(K|A)zar and Zar(K|A)cons are spectral
spaces, by giving in this general setting the explicit construction of a ring whose
prime spectrum, equipped with the Zariski topology (respectively, constructible
topology), is homeomorphic to Zar(K|A)zar (respectively, Zar(K|A)const).

Let K be a field and T an indeterminate over K. For every W ∈ Zar(K(T )), it
is well known that V := W ∩K ∈ Zar(K) [15, Theorem 19.16(a)] and conversely,
for each V ∈ Zar(K), there are infinitely many valuation domains W of K(T ) such
that W ∩K = V , called extensions of V to K(T ) [15, Proposition 20.11]. Among
the extensions of a valuation V of K to K(T ), there is a distinguished one, called
the trivial extension of V to K(T ), which is V (T ) := V [T ]M [T ], where M is the
maximal ideal of V [15, Proposition 18.7].

3.1. Proposition. Let K be a field and T an indeterminate over K.

(1) The canonical map ϕ : Zar(K(T ))zar → Zar(K)zar, W 7→ W ∩ K, is a
continuous surjection.

(2) Let Zar0(K(T )) := {V (T ) ∈ Zar(K(T )) | V ∈ Zar(K)}. Then,

ϕ|Zar0(K(T )) : Zar0(K(T ))zar → Zar(K)zar

is a homeomorphism.

Proof. (1) The map ϕ is clearly surjective by the previous remarks. It is also a
continuous map since, for each finite subset F of K and for each basic open set

B
Zar(K)
F of Zar(K)zar, it is straightforward to see that ϕ−1(B

Zar(K)
F ) = B

Zar(K(T ))
F .

(2) It is obvious that ϕ|Zar0(K(T )) : Zar0(K(T ))zar → Zar(K)zar is a bijection
and, by (1), is a continuous map. The conclusion will follows if we show that the
map ϕ|Zar0(K(T )) is also open. Let h ∈ K(T )\{0}, say

h :=
a0 + a1T + . . .+ arT

r

b0 + b1T + . . .+ bsT s
,

with ai and bj in K, for i = 0, 1, . . ., r and j = 0, 1, . . ., s. Let V (T ) be a valutation
domain in Zar0(K(T )), let v be the valuation on K defining V and let v∗ be
the valuation associated to V (T ), i.e., v∗(T ) = v(1) = 0 and, for each nonzero
polynomial f := a0 + a1T + . . .+ arT

r ∈ K[T ], v∗(f) := inf{v(ai) | i = 0, 1, . . ., r}.

It is easy to see that V (T ) ∈ B
Zar(K(T ))
h if and only if v∗(h) ≥ 0, that is, if and

only if

inf{v(ai) | i = 0, 1, . . ., r} ≥ inf{v(bj) | j = 0, 1, . . ., s}.

Now, for all i ∈ {0, 1, . . ., r} and j ∈ {0, 1, . . ., s} such that both ai and bj are
nonzero, set:

Fij :=

{
ai
bj
,
aλ
ai
,
bµ
bj

| λ = 0, 1, . . ., r, µ = 0, 1, . . ., s

}
.
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Then, it is not hard to verify that ϕ(B
Zar0(K(T ))
h ) =

⋃
i,j B

Zar(K)
Fij

(see also the

proof of [4, Lemma 1]), hence the continuous bijective map ϕ|Zar0(K(T )) is open,
and so a homeomorphism. �

Now recall the following key notion introduced by Halter-Koch [18, Definition
2.1], providing an axiomatic approach to the theory of Kronecker function rings.

Let K be field, T an indeterminate over K, and R a subring of K(T ). We call
R a K–function ring (after Halter-Koch) if T and T−1 belong to R and, for each
nonzero polynomial f ∈ K[T ], f(0) ∈ f(T )R.

We collect in the next proposition several properties of K–function rings that
will be useful in the following.

3.2. Proposition. Let K be a field, T an indeterminate over K and let R be a
subring of K(T ). Assume that R is a K–function ring.

(1) If R′ is a subring of K(T ) containing R, then R′ is also a K–function ring.
(2) If R is a nonempty collection of K–function rings (in K(T )), then

⋂
R is

a K–function ring.
(3) R is a Bézout domain with quotient field K(T ).
(4) If f := f0 + f1T + . . .+ frT

r ∈ K[T ], then (f0, f1, . . ., fr)R = fR.
(5) For every valuation domain V of K, V (T ) is a K–function ring.

Proof. (1), (2), (3) and (4) were proved in [18, Remarks at page 47 and Theorem
(2.2)]. To prove (5), observe that, if v is the valuation associated to V and v∗

is the trivial extension of v to K(T ) [15, page 218], then v∗(T ) = v(1) = 0 or,
equivalently, T is invertible in V (T ). Moreover, if f := f0+f1T+. . .+frT

r ∈ K[T ],
then v∗(f) ≤ v(f0) = v∗(f0), and so f(0) = f0 ∈ fV (T ). �

The following fact provides a slight generalization of [19, Theorem 2.3] and its
proof is similar to that given by O. Kwegna Heubo, which is based on the work by
Halter-Koch [18].

3.3. Proposition. Let K be a field, T an indeterminate over K and R a K–
function ring. Then, Zar(K(T )|R) = Zar0(K(T )|R) (i.e., for every valuation do-
main W ∈ Zar(K(T )|R), W = (W ∩K)(T )).

Proof. Let W be a valutation overring of R. First, observe that V := W ∩ K
is a valuation ring of K [15, Theorem 19.16(a)]. Now, let v be a valuation of K
defining V and let f := f0+f1T + . . .+frT

r ∈ K[T ], f 6= 0. By Proposition 3.2(1),
since R ⊆ W , W is a K–function ring. Let w be a valuation of K(T ) defining W .
Since T and T−1 belong to W , we have w(T ) = 0. Moreover, w|K = v and so
w(f) ≥ inf{w(fi) | i = 0, 1, . . ., r} = inf{v(fi) | i = 0, 1, . . ., r}.

On the other hand, by Proposition 3.2(4), fR = f0R+ f1 + . . .+ frR, and thus
fi ∈ fR, for every i = 0, 1, . . ., r. Since R ⊆W , we have fi ∈ fW and thus w(fi) =
v(fi) ≥ w(f), for every i = 0, 1, . . ., r. Therefore, w(f) = inf{v(fi) | i = 0, 1, . . ., r}.
This proves that w = v∗, and hence W is the trivial extension of V in K(T ). �

3.4. Proposition. Let K be a field, T an indeterminate over K, and R a subring
of K(T ). Then, the following conditions are equivalent.

(i) R is a K−function ring.
(ii) R is integrally closed in K(T ) and Zar(K(T )|R) = Zar0(K(T )|R).
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Proof. (i)⇒(ii) is already known (Propositions 3.2(3) and 3.3).
(ii)⇒(i). Since R is integrally closed in K(T ) and Zar(K(T )|R) = Zar0(K(T )|R),
then R =

⋂
Zar0(K(T )|R). Now, the conclusion is clear, by Proposition 3.2(2, 5).

�

As a consequence of Propositions 3.1(2), 3.9 and 3.3, we deduce immediately the
following.

3.5. Corollary. Let K be a field, T an indeterminate over K and R (⊆ K(T )) a
K–function ring. Set AR := R∩K. Then, the canonical map ϕ : Zar(K(T )|R) −→
Zar(K|AR), W 7→ W ∩ K, is a topological embedding, with respect to the Zariski
topology.

As an application of the previous corollary we reobtain in particular [19, Corol-
lary 2.2, Proposition 2.7 and Corollary 2.9]. More precisely,

3.6. Corollary. Let K be a field, A any subring of K and T an indeterminate
over K. Then,

(1) Kr(K|A) :=
⋂
{V (T ) | V ∈ Zar(K|A)} is a K–function ring.

(2) The canonical map ϕ : Zar(K(T )|Kr(K|A))zar → Zar(K|A)zar, W 7→ W ∩
K, is a homeomorphism.

(3) The canonical map ψ : Spec(Kr(K|A)))zar → Zar(K|A)zar, Q 7→ Kr(K|A)Q∩
K, is a homeomorphism. In particular, Zar(K|A)zar is a spectral space.

Proof. (1) By Proposition 3.2(2 and 5), Kr(K|A) is a K–function ring (in K(T )).
(2) Let R := Kr(K|A), then clearly R ∩ K coincides with the integral closure

Ā of A in K, and therefore ϕ(Zar(K(T )|R)) = Zar(K|A). Now (2) follows from
Corollary 3.5.

(3) Recall that, if A is a Prüfer domain and K is the quotient field of A, by
[4, Proposition 2.2], Zar(K|A)zar is canonically homeomorphic to Spec(A)zar (under
the map V 7→ MV ∩ A, where MV is the maximal ideal of the valuation domain V
of K containing A). Now, the conclusion follows immediately, since Kr(K|A) is a
Prüfer domain with quotient field K(T ) (Proposition 3.2(3)). �

3.7. Remark. Note that the noteworthy progress provided by Corollary 3.6 con-
cerns the case where A is a proper subfield of K. As a matter of fact, if A is
an integrally closed domain and K is its quotient field, statements (2) and (3) of
Corollary 3.6 were already proved in [4, Theorem 2].

By Corollary 3.6(3), Zar(K|A)zar is a spectral space. As we will see next, by
applying Proposition 2.3 and Remark 2.5, we reobtain the main statement of [7,
Theorem 3.4].

3.8. Corollary. Let K be a field and A a subring of K. If Y is a nonempty
subset of Zar(K|A) (equipped with the Zariski topology) and U is an ultrafilter on
Y , then

AU := AY,U := {x ∈ K | Bx ∩ Y ∈ U }

is valuation domain of K containing A and it coincides with the ultrafilter limit
point xY,U of Zar(K|A) defined as in Proposition 2.3. Moreover, Zar(K|A)cons =
Zar(K|A)ultra.
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Proof. Preserve the notation of Proposition 2.3. By [1, Lemma 2.9] (or [7, Propo-
sition 3.1]), we have AY,U ∈ Zar(K|A). The conclusion will follow by Proposition
2.3 and Remark 2.5 if we show that AY,U ∈

⋂
KY,U . Suppose H ∈ KY,U . By def-

inition, H ∩ Y ∈ U and either H = U or H = X \ U , for some open and compact
subspace U of Zar(K|A)zar. Since B := {BF | F ∈ Bfin(K)} is a basis of the Zariski
topology, U is the union of a finite subfamily B′ of B. Thus, if H = U (and so
Y ∩ U ∈ U ), there exists a set BF ∈ B′ such that BF ∩ Y ∈ U . Furthermore, for
any element x ∈ F , we have BF ∩Y ⊆ Bx∩Y , and so Bx∩Y ∈ U . By definition, it
follows F ⊆ AY,U , that is, AY,U ∈ BF ⊆

⋃
B′ = U . Now, suppose that H = X \U

(thus Y \U ∈ U ). We want to show that AY,U ∈ X \U . Assume, by contradiction,
that AY,U ∈ BF , for some BF ∈ B′. It follows immediately that BF ∩ Y ∈ U and,
finally, ∅ = (BF ∩ Y ) ∩ (Y \ U) ∈ U , contradiction. �

3.9. Proposition. We preserve the notation of Proposition 3.1 and, now, let
Zar(K(T )) and Zar(K) be endowed with the constructible topology. Then, the
canonical (surjective) map ϕ : Zar(K(T ))cons → Zar(K)cons is continuous and
(hence) closed. In particular, ϕ|Zar0(K(T )) is a homeomorphism of Zar0(K(T ))cons

onto Zar(K)cons.

Proof. Let C be a closed subset of Zar(K)cons, and let U be an ultrafilter on
ϕ−1(C). Set ϕ′ := ϕ|ϕ−1(C) : ϕ−1(C) −→ C. Then, by [7, Lemma 2.1(4)], the
set V := Uϕ′ is an ultrafilter on C. Let V := AV ∈ Zar(K) and W := AU ∈
Zar(K(T )) then, by a routine argument, it is easy to check that ϕ(W ) = V ∈ C.
By Proposition 2.3(2), it follows that ϕ is continuous. Moreover (by [5, Chapter
XI, Theorem 2.1]), ϕ is closed, since Zar(K(T ))cons and Zar(K)cons are compact and
Hausdorff [7, Theorem 3.4(5 and 6)]. Finally, the last statement is a consequence
of the fact that the restriction of ϕ to Zar0(K(T )) is bijective. �

3.10. Remark. Let K be a field, T an indeterminate over K, and set R0 :=⋂
{V (T ) | V ∈ Zar(K)}. Then, by Propositions 3.2(2) and 3.3, it follows that

Zar0(K(T )) = Zar(K(T )|R0).

In particular, Zar0(K(T )) is a closed subspace of Zar(K(T ))cons, in view of [7,
Theorem 3.4(2 and 6)].

A “constructible” version of Corollary 3.6(2 and 3) can also be easily deduced
from the previous considerations.

3.11. Corollary. Let K be a field, A any subring of K, T an indeterminate
over K, and let Kr(K|A) be as in Corollary 3.6.

(1) The canonical map ϕ : Zar(K(T )|Kr(K|A))cons → Zar(K|A)cons, defined by
W 7→W ∩K, is a homeomorphism.

(2) The canonical map ψ : Spec(Kr(K|A)))cons → Zar(K|A)cons, defined by
Q 7→ Kr(K|A)Q ∩ K, is a homeomorphism. In particular, Zar(K|A)cons

is a spectral space canonically homeomorphic to the prime spectrum of the
absolutely flat ring canonically associated to the K-function ring Kr(K|A).

Proof. (1) As observed in the proof of Corollary 3.6(1), Kr(K|A) is a K–function
ring, hence this statement follows from Proposition 3.9.
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(2) is a consequence of (1), [7, Theorem 3.8 and Remark 3.9] and [13, Propositions
5 and 6, and Theorem 8]. �

4. Some Applications

Let K be a field, and let A be a subring of K. In this section, we use constantly
that on the space Zar(K|A) the contructible topology coincides with the ultrafilter
topology (Remark 2.5) and we give some applications of the results of the pre-
vious sections to the representations of integrally closed domains as intersections of
valuation overrings.

4.1. Proposition. Let K be a field, A be a subring of K and U be a subset of
Z := Zar(K|A). Let Y ′ and Y ′′ be two subsets of a given subset U of Z and assume
that their closures in U , with the subspace topology induced by the constructible
topology of Z, coincide, i.e., Clcons(Y ′) ∩ U = Clcons(Y ′′) ∩ U . Then,

⋂
{V ′ | V ′ ∈

Y ′} =
⋂
{V ′′ | V ′′ ∈ Y ′′}. In particular, for each subset Y of Z,

⋂
{V | V ∈ Y } =

⋂
{W |W ∈ Clcons(Y )}.

Proof. Assume, by contradiction, that there is an element x0 ∈
⋂
{V ′ | V ′ ∈

Y ′} \
⋂
{V ′′ | V ′′ ∈ Y ′′}, and pick a valuation domain V0 ∈ Y ′′ such that x0 /∈ V0.

By [7, Theorem 3.4(2)], the set Ω := U \ Bx0
is an open subset of U , with respect

to the subspace topology induced by Zcons, and it contains V0. Since V0 ∈ Y ′′ ⊆
Clcons(Y ′′)∩U = Clcons(Y ′)∩U and V0 6∈ Y ′, then Ω∩Y ′ is nonempty. This implies
that there exists a valuation domain V ′ ∈ Y ′ such that x0 /∈ V ′, a contradiction.

�

4.2. Remark. Note that the previous proposition is stated very generally using
a “relative-type” formulation. However, it is clear that, if we take any two subsets
Y ′ and Y ′′ of Z, the rôle of U can be played by any subset of Z (including Z)
containing Y ′ ∪ Y ′′.

Let Σ be a collection of subrings of a field K, having K as quotient field. We
say that Σ is locally finite if each nonzero element of K is noninvertible in at most
finitely many of the rings belonging to Σ.

The following easy result will provide a class of integral domains for which the
equality

⋂
{V ′ | V ′ ∈ Y ′} =

⋂
{V ′′ | V ′′ ∈ Y ′′} does not imply, in general, that

Clcons(Y ′) = Clcons(Y ′′).

4.3. Lemma. Let K be a field and A be a subring of K. If Σ is an infinite and
locally finite subset of Z := Zar(K|A), then Clcons(Σ) = Σ ∪ {K}.

Proof. By Proposition 2.3(2) and [7, Remark 3.2], it is enough to show that
K = AU (= {x ∈ K | Bx ∩ Σ ∈ U }), for every nontrivial ultrafilter U on Σ. By
contradiction, assume that there exists an element x0 ∈ K\AU . Then Σ\Bx0

∈ U ,
and so it is infinite, since U is nontrivial (an ultrafilter containing a finite set is
trivial). This implies that x0 is noninvertibile in infinitely many valuation domains
belonging to Σ, a contradiction. �
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As a consequence of the previous lemma, we have that, if an integral domain
admits two distinct infinite and locally finite representations as intersection of valu-
tation domains, then the converse of Proposition 4.1 does not hold. An explicit
example is given next.

4.4. Example. Let k be a field and let T1, T2, T3 be three indeterminates. Let
B be the two-dimensional, local domain k(T3)[T1, T2](T1,T2) with maximal ideal
MB := (T1, T2)k(T3)[T1, T2](T1,T2), i.e., B = k(T3) +MB. Now, let V be (the rank
1 discrete) valuation domain defined by V := k[T3](T3) and let A be the pullback
domain given by

A := V +MB = k[T3](T3) + (T1, T2)k(T3)[T1, T2](T1,T2).

Our goal is to represent A as a locally finite intersection of valuation domains
in two different ways. In fact, we can use one description to generate an infinite
number of different such representations.

First, note that B can be represented as an intersection of DVR’s which are ob-
tained by localizing at its height-one primes, i.e., B =

⋂
{BP | P ∈ Spec(B), ht(P )

= 1}. It is well known that this collection is locally finite. Now, note that A is a
local domain with maximal ideal NA := T3k[T3](T3) + (T1, T2)k(T3)[T1, T2](T1,T2).
Choose any valuation overring W of A such that MW (the maximal ideal of W ) is
generated by T3 and lies over the maximal ideal of A. It is easy to see that many
such valuation domains of the field k(T1, T2, T3) exist (e.g., let W ′ be a valuation
overring of B with maximal ideal M ′ lying overMB and such that the residue field
W ′/M ′ is canonically isomorphic to k(T3), which is the residue field B/MB, then
the domain V +M ′, with V as in the previous paragraph, can serve as the desired
domain W ). Now, the intersection R :=

⋂
{BP | P ∈ Spec(B), ht(P ) = 1}

⋂
W

is clearly a locally finite intersection. We claim that any choice, as above, of the
domain W will yield R = A.

To prove our claim, we note first that it is obvious that R is an overring of A.
So, we need to prove that R ⊆ A. Observe that the ideal MB is an ideal of A as
well as of B. It follows easily that MB is a prime ideal of R, since R ⊂ B. Then,
given an element r ∈ R, we can write r = ψ + f , where ψ ∈ k(T3) and f ∈ MB.
However, f ∈ MB ⊆ W and so ψ ∈ W . It is clear though that W ∩ k(T3) = V . It
follows that ψ ∈ V and so r ∈ A. Hence, we have proven that R ⊆ A.

The following Proposition is the key step in proving the main results of the
section.

4.5. Proposition. Let A be a Prüfer domain and K be the quotient field of
A. Let Y be a subset of Z := Zar(K|A) such that A =

⋂
{V | V ∈ Y }, and let

γ : Zar(K|A) −→ Spec(A), be the canonical map (defined by sending a valuation
domain V ∈ Zar(K|A) into its center in A). Then, γ−1(Max(A)) ⊆ Clcons(Y ).

Proof. Let M be a maximal ideal of A. Since A is a Prüfer domain, the t-
operation on A coincides with the identity [15, Theorem 22.1(3)], thus obviously
M is a t−maximal t−ideal of A. Now, we are able to apply [1, Proposition 2.8(ii)]
and, so, there exists an ultrafilter U ∈ β(Y ) such that

M = {x ∈ A | γ−1(V (x)) ∩ Y ∈ U }.
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On the other hand, the collection of sets

V := {X ′ ⊆ γ(Y ) | γ−1(X ′) ∩ Y ∈ U }

is an ultrafilter on γ(Y ) (precisely, with the notation of [7, Lemma 2.1(4)], V = Uγ ,
where for simplicity we have still denoted by γ the map γ|Y : Y → γ(Y )) and,
moreover,

PV := {x ∈ A | V (x) ∩ γ(Y ) ∈ V }
= {x ∈ A | γ−1(V (x) ∩ γ(Y )) ∩ Y ∈ U }
= {x ∈ A | γ−1(V (x)) ∩ Y ∈ U } =M .

Moreover, if AU is the ultrafilter limit valuation domain of K associated to U ∈
β(Y ) (i.e., AU = {x ∈ K | Bx ∩ Y ∈ U }, Corollary 3.8), then by [1, Proposition
2.10(i)], we have γ(AU ) = PV =M . Therefore, Max(A) ⊆ Clcons(γ(Y )). Since γ is
continuous and closed with respect to the constructible topology [7, Theorem 3.8],
it follows that Clcons(γ(Y )) = γ(Clcons(Y )).

Moreover, since A is a Prüfer domain, by [4, Proposition 2.2] γ is also injective
and, hence, γ−1(Max(A)) ⊆ Clcons(Y ). �

Let A be a domain, K be the quotient field of A, and T be an indeterminate
over K. For each subset Y of Z := Zar(K|A), we set

Y0 := {V (T ) | V ∈ Y }, Y ↑ := {V ∈ Z : V ⊇W, for some W ∈ Y },

where Y ↑ coincides with Y gen the Zariski–generic closure of Y , i.e., the generic
closure of Y in Z, with respect to the Zariski topology (since V 4W (in Zzar) :⇔
V ⊇ W ). Recall that, in Corollary 3.6(1), we introduced a general form of the
Kronecker function ring, by setting Kr(K|A) =

⋂
{V (T ) | V ∈ Z} =

⋂
Z0 =:

Kr(Z). Now, we can extend this notion for Y ⊆ Z, by setting

Kr(Y ) :=
⋂
Y0 =

⋂
{V (T ) | V ∈ Y }

which is called the K–function ring associated to Y . We recall that an integrally
closed domain A is a vacant domain if, for each Y ⊆ Z such that A =

⋂
Y , then

Kr(Y ) = Kr(Z) [6, Definition 2.1.11].

4.6. Theorem. Let K be a field and C a closed subset of Zar(K)cons. Let (C↑)0 =
{W (T ) |W ∈ C↑}. Then, Zar(K(T )|Kr(C)) = (C↑)0.

Proof. The inclusion ⊇ is obvious. For the converse, let W̃ ∈ Zar(K(T )|Kr(C)).

By Proposition 3.3, we can suppose that W̃ = W (T ), for some W ∈ Zar(K). We
want to show that W ⊇ V , for some V ∈ C. Let ϕ : Zar(K(T )) → Zar(K) be the
canonical map (Corollary 3.1). Since ϕ|Zar0(K(T )) : Zar0(K(T ))cons → Zar(K)cons is
a homeomorphism (Proposition 3.9), then the set

(ϕ|Zar0(K(T )))
−1(C) = {V (T ) | V ∈ C} = C0

is closed both in Zar0(K(T ))cons and Zar(K(T ))cons (Remark 3.10). Consider the
natural map γ : Zar(K(T )|Kr(C))cons → Spec(Kr(C))cons, defined by sending a val-
uation overring of Kr(C) into its center on Kr(C). Since the Kronecker function
ring Kr(C) is, in particular, a Prüfer domain with quotient field K(T ) (Proposition
3.2(3)) then, from Proposition 4.5, it follows immediately that γ−1(Max(Kr(C))) ⊆
C0. Set A(C) :=

⋂
{V | V ∈ C}. Now, by Zorn’s Lemma, we can find a minimal

valuation overring of Kr(C) which, by Proposition 3.3, is of the form V ′(T ), for some
V ′ ∈ Zar(K|A(C)), such that W (T ) ⊇ V ′(T ). Then, by applying [15, Corollary
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19.7] (and, again, Proposition 3.3), we have Zarmin(Kr(C)) ⊆ γ−1(Max(Kr(C))).
Since, by what we observed above, γ−1(Max(Kr(C))) ⊆ C0, then V

′(T ) ∈ C0. �

4.7. Remark. Note that, with the notation and assumptions of Theorem 4.6,

(C↑)0 = (C0)
↑ := {W̃ ∈ Zar(K(T )) | W̃ ⊇ V (T ), for some V ∈ C} .

As a matter of fact, {W̃ ∈ Zar(K(T )) | W̃ ⊇ V (T ), for some V ∈ C} = {W̃ ∈

Zar(K(T )|Kr(C)) | W̃ ⊇ V (T ), for some V ∈ C}. By Proposition 3.3, we have
Zar(K(T )|Kr(C)) = Zar0(K(T )|Kr(C)), thus (C0)

↑ = {W (T ) ∈ Zar(K(T )) | W ∈
Zar(K), W (T ) ⊇ V (T ), for some V ∈ C} = (C↑)0.

We recall some properties of semistar operations. Let A be an integral domain
and let K be the quotient field of A. We denote by F (A) the set of all the nonzero
A-submodules of K, and by f(A) the set of all the nonzero finitely generated A-
submodules ofK. A map ⋆ : F (A) → F (A), E 7→ E⋆, is called a semistar operation
on A if, for each 0 6= x ∈ K and for all E,F ∈ F (A), the following properties hold:
(⋆1) (xE)⋆ = xE⋆; (⋆2) E ⊆ F ⇒ E⋆ ⊆ F ⋆; (⋆3) E ⊆ E⋆ and (E⋆)⋆ = E⋆.

A semistar operation of finite type ⋆ on A is a semistar operation such that, for
every E ∈ F (A),

E⋆ = E⋆f :=
⋃

{F ⋆ | F ∈ f (A), F ⊆ E} .

An e.a.b. semistar operation ⋆ on A is a semistar operation such that, for all
F,G,H ∈ f(A), (FG)⋆ ⊆ (FH)⋆ implies G⋆ ⊆ H⋆.

A valuation domain V ∈ Zar(K|A) is called a ⋆–valuation overring of A if F ⋆ ⊆
FV , for each F ∈ f(A). We denote by Zar⋆(K|A) the collection of all the ⋆–
valutation overring of A.

Important classes of examples of semistar operations are obtained as follows.
Let S be a nonempty family of overrings of A. Then the map ∧S : F (A) → F (A),
E 7→

⋂
{ES | S ∈ S}, defines a semistar operation on A [9, Theorem 1.2(C)]. In

particular, given a nonempty subset Y of Zar(K|A), the semistar operation ∧Y is
e.a.b., by [12, Proposition 7]. We say that a semistar operation ⋆ on A is complete
if ⋆ = b(⋆) := ∧Zar⋆(K|A). For any semistar operation ⋆ on A, it is easily seen that

F b(⋆)V = F ⋆V , for each F ∈ f(A) and V ∈ Zar⋆(K|A). Thus, b(b(⋆)) = b(⋆) and
b(⋆) is a complete semistar operation. The b–operation on A is the e.a.b. semistar
operation defined by b := ∧Zar(K|A) and, obviously, b ≤ b(⋆) (i.e., Eb ⊆ Eb(⋆) for

each E ∈ F (A)) for all semistar operations ⋆ on A.

4.8. Remark. Let K be a field and A be a subring of K. If Y is a nonempty
subset of Zar(K|A), then it is immediately seen that ∧Y = ∧Y ↑ . Moreover, if Y is
a quasi-compact subset of Zar(K|A)zar, the subset Ymin, consisting of the minimal
elements of Y , is nonempty and it is easy to see that ∧Y ↑ = ∧Y = ∧Ymin

.

Let T be an indeterminate over A and f ∈ A[T ]. We shall denote by c(f) the
content of the polynomial f . If ⋆ is an e.a.b. semistar operation on A,

Kr(A, ⋆) := {f/g ∈ K(T ) | f, g ∈ A[T ], g 6= 0, and c(f)⋆ ⊆ c(g)⋆}

is called the ⋆–Kronecker function ring of A. It is well known that Kr(A, ⋆) is a
Bézout domain with quotient field K(T ) [10, Theorems 5.1 and 3.11(3)]. Note that,
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if Y is a subset of Zar(K|A), by [10, Corollary 3.8], the ∧Y –Kronecker function ring
of A, Kr(A,∧Y ), coincides with the K–function ring Kr(Y ) (introduced just before
Theorem 4.6).

Now, we give an application of the ultrafilter topology for characterizing when
two e.a.b. semistar operations of finite type are equal.

4.9. Theorem. Let A be an integral domain with quotient field K and Y ′, Y ′′ ⊆
Zar(K|A). Then, the following conditions are equivalent.

(i) (∧Y ′)f = (∧Y ′′)f .
(ii) The sets Clcons(Y ′), Clcons(Y ′′) have the same Zariski–generic closure in

Zar(K|A), i.e., Clcons(Y ′)↑ = Clcons(Y ′′)↑.

Proof. Let T be an indeterminate over K. By [10, Remark 3.5(b)], it is enough
to show that condition (ii) is equivalent to the following

(i′) Kr(A,∧Y ′) = Kr(A,∧Y ′′).

(ii)⇒(i′). Assume that the equality Clcons(Y ′)↑ = Clcons(Y ′′)↑ holds. Keeping in
mind the notation introduced before Theorem 4.6 and applying Corollary 3.11(1),
it follows easily that, inside Zar(K(T )), Clcons(Y ′

0 )
↑ = Clcons(Y ′′

0 )↑. By using Propo-
sition 4.1 and Remark 4.8, we have

⋂
Y ′
0 =

⋂
Clcons(Y ′

0) =
⋂
Clcons(Y ′

0 )
↑ =

⋂
Clcons(Y ′′

0 )↑

=
⋂
Clcons(Y ′′

0 ) =
⋂
Y ′′
0 ,

and thus Kr(A,∧Y ′) = Kr(A,∧Y ′′), in view of [10, Corollary 3.8].
(i′)⇒(ii). Set B := Kr(A,∧Y ′) = Kr(A,∧Y ′′). By using [10, Corollary 3.8],

Proposition 4.1, Theorem 4.6 and Remark 4.7, it follows that

Clcons(Y ′
0)

↑ = Zar(K(T )|B) = Clcons(Y ′′
0 )↑,

and thus the conclusion is clear, again by Corollary 3.11(1). �

4.10. Corollary. Let A be an integrally closed domain. Then, the following
conditions are equivalent.

(i) A is a vacant domain.
(ii) For each representation Y ⊆ Zar(K|A) of A (i.e.,

⋂
Y = A), we have

Clcons(Y )↑ = Zar(K|A).

Proof. Set Z := Zar(K|A).
(i)⇒(ii). Assume A vacant and take a subset Y ⊆ Z such that

⋂
Y = A. By

[10, Proposition 3.3], we have Kr(A,∧Y ) = Kr(Y ) = Kr(Z) = Kr(A, b), and thus

(∧Y )f = b = ∧Z = (∧Z)f .

The conclusion follows immediately from Theorem 4.9.
(ii)⇒(i). Take a subset Y of Zar(K|A) such that

⋂
Y = A. By assumption

and Theorem 4.9, it follows that (∧Y )f = (∧Z)f = ∧Z = b, and thus Kr(Y ) =
Kr(A,∧Y ) = Kr(A,∧Z) = Kr(Z). This proves that A is vacant. �

From the previous theorem, we deduce immediately the following

4.11. Corollary. Let A be an integrally closed domain. If each representation
of A is dense in Zar(K|A)cons, then A is a vacant domain.
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4.12. Example. Let K be a field and T1, T2 two indeterminates over K. Consider
the pseudo-valuation domain A := K + T2K(T1)[T2](T2) with associated valuation
domain V := K(T1)[T2](T2) of K(T1, T2). Let p : V → K(T1) be the canonical

projection of V onto its residue field K(T1) and so A = p−1(K). Then, by [15,
Exercise 12, page 409], the domain A is a vacant domain. It is easily seen that the set
C := {p−1(W ′) |W ′ ∈ Zar(K(T1)|K)} ⊂ Zar(K(T1, T2)|A) is a representation of A,
and that it is closed, with respect to the constructible topology of Zar(K(T1, T2|A),
since C = {W ∈ Zar(K(T1, T2)|A) | W ⊆ V } =

⋂
z∈K(T1,T2)\V

(Zar(K(T1, T2)|A) \

Bz) = Clzar({V }). Thus, the converse of the previous Corollary 4.11 does not hold
in general.

Note that this example shows also that, in the statement of Theorem 4.6, we need
to consider C↑ and not just C, since in this case Zar(K(T ;T1, T2)|Kr(A,∧C)) =
Zar(K(T ;T1, T2)|Kr(C)) = (C↑)0 ) C0.

Now, we prove that the property of being “complete” for a semistar operation
can be caracterized by a “compactness” property for a suitable subspace of the
Zariski-Riemann surface.

4.13. Theorem. Let A be an integral domain with quotient field K and ⋆ be a
semistar operation on A. Then, the following conditions are equivalent.

(i) ⋆ is e.a.b. of finite type.
(ii) ⋆ is complete.
(iii) There exists a closed subset Y of Zar(K|A)cons such that Y = Y ↑ and

⋆ = ∧Y .
(iv) There exists a compact subspace Y ′ in Zar(K|A)cons such that ⋆ = ∧Y ′ .
(v) There exists a quasi-compact subspace of Y ′′ of Zar(K|A)zar such that

⋆ = ∧Y ′′ .

Proof. (i)⇔(ii) depends on the fact that if ⋆ is e.a.b., then ⋆f = b(⋆) [12,
Proposition 9].

Let T be an indeterminate on K and let ϕ : Zar(K(T )) −→ Zar(K) be the
canonical surjective map, defined in Proposition 3.1.

(ii)⇒(iv). By [11, Theorem 3.5], Zar⋆(K|A) = ϕ(Zar(K(T )|Kr(A, ⋆))), and thus
(by Proposition 3.9) it is closed in Zar(K|A)cons or, equivalently, compact, in the
compact Hausdorff space Zar(K|A)cons. Then, the conclusion follows by taking
Y ′ := Zar⋆(K|A) (since, by definition, b(⋆) = ∧Zar⋆(K|A)).

(iv)⇒(ii). As observed above the compact subspaces of Zar(K|A)cons are exactly
the closed subsets. Take a closed set Y ′ of Zar(K|A)cons such that ⋆ = ∧Y ′ . Set

Y ′↑ := {W ∈ Zar(K|A) | W ⊇ V, for some V ∈ Y ′}. By [10, Corollary 3.8],
we have Kr(A,∧Y ′) =

⋂
{V (T ) | V ∈ Y ′} =: Kr(Y ′). On the other hand, since

Y ′ is closed, by Theorem 4.6, it follows that Zar(K(T )|Kr(A,∧Y ′)) = (Y ′↑)0 =

{W (T ) | W ∈ Y ′↑}. Therefore, as above (by [11, Theorem 3.5]), Zar∧Y (K|A) =
ϕ(Zar(K(T )|Kr(A,∧Y ))) = Y ↑ and so Y ↑ is also a closed subspace of Zar(K|A)cons.
Since by definition b(∧Y ) = ∧Zar∧Y (K|A) = ∧Y ↑ , then the conclusion is immediate,
by Remark 4.8.

(iii)⇒(iv) is trivial since, as observed above, closed coincides with compact in
Zar(K|A)cons.

(iv)⇒(v) is obvious, by [7, Theorem 3.4(1)]).
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(v)⇒ (iii). Take a set Y ′′ as stated in (v). Then, (iii) follows immediately from
Proposition 2.6 and Remark 4.8, by taking Y := Y ′′↑. �

4.14. Corollary. Let A be an integral domain and K its quotient field. Let Y

be a subset of Zar(K|A) and set Ŷ := Clcons(Y )↑. Then, (∧Y )f = ∧
Ŷ
= ∧Clcons(Y ).

Proof. In view of Proposition 2.6, Ŷ is closed, with respect to the constructible
topology. Thus ∧

Ŷ
is of finite type, by Theorem 4.13, and hence the equali-

ty (∧Y )f = ∧
Ŷ

follows immediately by Theorem 4.9, since Clcons(Y )↑ = Ŷ ↑(=

Clcons(Ŷ ↑)). Moreover, the semistar operation ∧Clcons(Y ) is of finite type, by Theo-
rem 4.13, and thus the last equality follows by applying Theorem 4.9. �

The next example illustrates the possibility that the sets Y, Y ′ and Y ′′ in Theo-
rem 4.13 can form a proper chain of sets.

4.15. Example. Let k be a field and T1, T2 two indeterminates over k. Let A be
the two-dimensional, integrally closed, local domain k[T1, T2](T1,T2) with quotient
field K := k(T1, T2). Let ⋆ be the b–operation on A. It is well known that the
b–operation is an e.a.b. operation of finite type. Hence, it satisfies the equivalent
conditions of Theorem 4.13. Our goal is to show that there is a great deal of
flexibility in the choice of the sets Y, Y ′ and Y ′′ in the theorem. First, note that
if the valuation domains in Zar(K|A) are ordered by inclusion then any chain
is finite [15, Corollary 30.10] and, hence, obviously there are minimal elements.
Any such minimal valuation overring V will necessarily have maximal ideal MV

lying over the maximal ideal (T1, T2) of A. The standard definition of the b–
operation involves extending an ideal (or, more generally a sub-A-module of K)
to all valuation overrings. It is clearly sufficient to extend to just those valuation
overrings that are minimal. So, any subcollection of Zar(K|A) which contains all the
minimal elements will generated the b–operation. It is not clear that the collection of
minimal valuation overrings is closed under the Zariski or the constructible topology.

• Consider the members of Zar(K|A) which do not contain the elements
1
T1

, 1
T2

. This is a closed, quasi-compact subset of Zar(K|A)zar. It can also be

thought of as being those valuation domains in Zar(K|A) whose maximal
ideal dominates (T1, T2) in A. Hence, it contains the minimal valuation
overrings and is sufficient to generate the b operation. We can let this
collection be denoted by Y ′′ in Theorem 4.14.

• The set Y ′′, described above, is a (proper) closed subset of Zar(K|A)zar.
Hence, it is also closed in Zar(K|A)cons. Moreover, any closed subset of
Zar(K|A)cons is compact. Hence, to obtain our set Y ′, we can choose any
closed subset of Zar(K|A)cons which contains Y ′′. Since any single point
is closed in Zar(K|A)cons, we can let Y ′ be the union of Y ′′ and any other
single valuation overring, for example, the localization of A at a height-one
prime.

• The set Y should contain all overrings of its members. An obvious choice
then is to let Y be all of Zar(K|A)cons. Since this is the entire space it is
trivially closed (in Zar(K|A)cons) and generates the b–operation.

This then gives three different sets Y ′′ ⊂ Y ′ ⊂ Y with the notation of Theorem
4.13, all associated with the same (semi)star operation.



CONSTRUCTIBLE TOPOLOGY ON SPACES OF VALUATION DOMAINS 17

By using Remark 2.2, we can restate Corollaries 4.10 and 4.14 as follows:

4.16. Corollary. Let A be an integrally closed domains and K be its quotient
field. Then the following conditions are equivalent.

(i) A is a vacant domain.
(ii) Each representation of A is dense in Zar(K|A), with respect to the inverse

topology.

4.17. Corollary. Let A be an integral domain and K its quotient field. Let Y
be a subset of Zar(K|A). Then, (∧Y )f = ∧Clinv(Y ).
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Prüfer v−multiplication domains, J. Algebra 226 (2000), 765–787.

[2] Claude Chevalley et Henri Cartan, Schémas normaux; morphismes; ensembles con-
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